xref: /openbmc/linux/drivers/net/ethernet/mellanox/mlxbf_gige/mlxbf_gige_mdio.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1 // SPDX-License-Identifier: GPL-2.0-only OR BSD-3-Clause
2 
3 /* MDIO support for Mellanox Gigabit Ethernet driver
4  *
5  * Copyright (C) 2020-2021 NVIDIA CORPORATION & AFFILIATES
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <linux/ioport.h>
16 #include <linux/irqreturn.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/phy.h>
21 #include <linux/platform_device.h>
22 #include <linux/property.h>
23 
24 #include "mlxbf_gige.h"
25 #include "mlxbf_gige_regs.h"
26 #include "mlxbf_gige_mdio_bf2.h"
27 #include "mlxbf_gige_mdio_bf3.h"
28 
29 static struct mlxbf_gige_mdio_gw mlxbf_gige_mdio_gw_t[] = {
30 	[MLXBF_GIGE_VERSION_BF2] = {
31 		.gw_address = MLXBF2_GIGE_MDIO_GW_OFFSET,
32 		.read_data_address = MLXBF2_GIGE_MDIO_GW_OFFSET,
33 		.busy = {
34 			.mask = MLXBF2_GIGE_MDIO_GW_BUSY_MASK,
35 			.shift = MLXBF2_GIGE_MDIO_GW_BUSY_SHIFT,
36 		},
37 		.read_data = {
38 			.mask = MLXBF2_GIGE_MDIO_GW_AD_MASK,
39 			.shift = MLXBF2_GIGE_MDIO_GW_AD_SHIFT,
40 		},
41 		.write_data = {
42 			.mask = MLXBF2_GIGE_MDIO_GW_AD_MASK,
43 			.shift = MLXBF2_GIGE_MDIO_GW_AD_SHIFT,
44 		},
45 		.devad = {
46 			.mask = MLXBF2_GIGE_MDIO_GW_DEVAD_MASK,
47 			.shift = MLXBF2_GIGE_MDIO_GW_DEVAD_SHIFT,
48 		},
49 		.partad = {
50 			.mask = MLXBF2_GIGE_MDIO_GW_PARTAD_MASK,
51 			.shift = MLXBF2_GIGE_MDIO_GW_PARTAD_SHIFT,
52 		},
53 		.opcode = {
54 			.mask = MLXBF2_GIGE_MDIO_GW_OPCODE_MASK,
55 			.shift = MLXBF2_GIGE_MDIO_GW_OPCODE_SHIFT,
56 		},
57 		.st1 = {
58 			.mask = MLXBF2_GIGE_MDIO_GW_ST1_MASK,
59 			.shift = MLXBF2_GIGE_MDIO_GW_ST1_SHIFT,
60 		},
61 	},
62 	[MLXBF_GIGE_VERSION_BF3] = {
63 		.gw_address = MLXBF3_GIGE_MDIO_GW_OFFSET,
64 		.read_data_address = MLXBF3_GIGE_MDIO_DATA_READ,
65 		.busy = {
66 			.mask = MLXBF3_GIGE_MDIO_GW_BUSY_MASK,
67 			.shift = MLXBF3_GIGE_MDIO_GW_BUSY_SHIFT,
68 		},
69 		.read_data = {
70 			.mask = MLXBF3_GIGE_MDIO_GW_DATA_READ_MASK,
71 			.shift = MLXBF3_GIGE_MDIO_GW_DATA_READ_SHIFT,
72 		},
73 		.write_data = {
74 			.mask = MLXBF3_GIGE_MDIO_GW_DATA_MASK,
75 			.shift = MLXBF3_GIGE_MDIO_GW_DATA_SHIFT,
76 		},
77 		.devad = {
78 			.mask = MLXBF3_GIGE_MDIO_GW_DEVAD_MASK,
79 			.shift = MLXBF3_GIGE_MDIO_GW_DEVAD_SHIFT,
80 		},
81 		.partad = {
82 			.mask = MLXBF3_GIGE_MDIO_GW_PARTAD_MASK,
83 			.shift = MLXBF3_GIGE_MDIO_GW_PARTAD_SHIFT,
84 		},
85 		.opcode = {
86 			.mask = MLXBF3_GIGE_MDIO_GW_OPCODE_MASK,
87 			.shift = MLXBF3_GIGE_MDIO_GW_OPCODE_SHIFT,
88 		},
89 		.st1 = {
90 			.mask = MLXBF3_GIGE_MDIO_GW_ST1_MASK,
91 			.shift = MLXBF3_GIGE_MDIO_GW_ST1_SHIFT,
92 		},
93 	},
94 };
95 
96 #define MLXBF_GIGE_MDIO_FREQ_REFERENCE 156250000ULL
97 #define MLXBF_GIGE_MDIO_COREPLL_CONST  16384ULL
98 #define MLXBF_GIGE_MDC_CLK_NS          400
99 #define MLXBF_GIGE_MDIO_PLL_I1CLK_REG1 0x4
100 #define MLXBF_GIGE_MDIO_PLL_I1CLK_REG2 0x8
101 #define MLXBF_GIGE_MDIO_CORE_F_SHIFT   0
102 #define MLXBF_GIGE_MDIO_CORE_F_MASK    GENMASK(25, 0)
103 #define MLXBF_GIGE_MDIO_CORE_R_SHIFT   26
104 #define MLXBF_GIGE_MDIO_CORE_R_MASK    GENMASK(31, 26)
105 #define MLXBF_GIGE_MDIO_CORE_OD_SHIFT  0
106 #define MLXBF_GIGE_MDIO_CORE_OD_MASK   GENMASK(3, 0)
107 
108 /* Support clause 22 */
109 #define MLXBF_GIGE_MDIO_CL22_ST1	0x1
110 #define MLXBF_GIGE_MDIO_CL22_WRITE	0x1
111 #define MLXBF_GIGE_MDIO_CL22_READ	0x2
112 
113 /* Busy bit is set by software and cleared by hardware */
114 #define MLXBF_GIGE_MDIO_SET_BUSY	0x1
115 
116 #define MLXBF_GIGE_BF2_COREPLL_ADDR 0x02800c30
117 #define MLXBF_GIGE_BF2_COREPLL_SIZE 0x0000000c
118 #define MLXBF_GIGE_BF3_COREPLL_ADDR 0x13409824
119 #define MLXBF_GIGE_BF3_COREPLL_SIZE 0x00000010
120 
121 static struct resource corepll_params[] = {
122 	[MLXBF_GIGE_VERSION_BF2] = {
123 		.start = MLXBF_GIGE_BF2_COREPLL_ADDR,
124 		.end = MLXBF_GIGE_BF2_COREPLL_ADDR + MLXBF_GIGE_BF2_COREPLL_SIZE - 1,
125 		.name = "COREPLL_RES"
126 	},
127 	[MLXBF_GIGE_VERSION_BF3] = {
128 		.start = MLXBF_GIGE_BF3_COREPLL_ADDR,
129 		.end = MLXBF_GIGE_BF3_COREPLL_ADDR + MLXBF_GIGE_BF3_COREPLL_SIZE - 1,
130 		.name = "COREPLL_RES"
131 	}
132 };
133 
134 /* Returns core clock i1clk in Hz */
calculate_i1clk(struct mlxbf_gige * priv)135 static u64 calculate_i1clk(struct mlxbf_gige *priv)
136 {
137 	u8 core_od, core_r;
138 	u64 freq_output;
139 	u32 reg1, reg2;
140 	u32 core_f;
141 
142 	reg1 = readl(priv->clk_io + MLXBF_GIGE_MDIO_PLL_I1CLK_REG1);
143 	reg2 = readl(priv->clk_io + MLXBF_GIGE_MDIO_PLL_I1CLK_REG2);
144 
145 	core_f = (reg1 & MLXBF_GIGE_MDIO_CORE_F_MASK) >>
146 		MLXBF_GIGE_MDIO_CORE_F_SHIFT;
147 	core_r = (reg1 & MLXBF_GIGE_MDIO_CORE_R_MASK) >>
148 		MLXBF_GIGE_MDIO_CORE_R_SHIFT;
149 	core_od = (reg2 & MLXBF_GIGE_MDIO_CORE_OD_MASK) >>
150 		MLXBF_GIGE_MDIO_CORE_OD_SHIFT;
151 
152 	/* Compute PLL output frequency as follow:
153 	 *
154 	 *                                     CORE_F / 16384
155 	 * freq_output = freq_reference * ----------------------------
156 	 *                              (CORE_R + 1) * (CORE_OD + 1)
157 	 */
158 	freq_output = div_u64((MLXBF_GIGE_MDIO_FREQ_REFERENCE * core_f),
159 			      MLXBF_GIGE_MDIO_COREPLL_CONST);
160 	freq_output = div_u64(freq_output, (core_r + 1) * (core_od + 1));
161 
162 	return freq_output;
163 }
164 
165 /* Formula for encoding the MDIO period. The encoded value is
166  * passed to the MDIO config register.
167  *
168  * mdc_clk = 2*(val + 1)*(core clock in sec)
169  *
170  * i1clk is in Hz:
171  * 400 ns = 2*(val + 1)*(1/i1clk)
172  *
173  * val = (((400/10^9) / (1/i1clk) / 2) - 1)
174  * val = (400/2 * i1clk)/10^9 - 1
175  */
mdio_period_map(struct mlxbf_gige * priv)176 static u8 mdio_period_map(struct mlxbf_gige *priv)
177 {
178 	u8 mdio_period;
179 	u64 i1clk;
180 
181 	i1clk = calculate_i1clk(priv);
182 
183 	mdio_period = div_u64((MLXBF_GIGE_MDC_CLK_NS >> 1) * i1clk, 1000000000) - 1;
184 
185 	return mdio_period;
186 }
187 
mlxbf_gige_mdio_create_cmd(struct mlxbf_gige_mdio_gw * mdio_gw,u16 data,int phy_add,int phy_reg,u32 opcode)188 static u32 mlxbf_gige_mdio_create_cmd(struct mlxbf_gige_mdio_gw *mdio_gw, u16 data, int phy_add,
189 				      int phy_reg, u32 opcode)
190 {
191 	u32 gw_reg = 0;
192 
193 	gw_reg |= ((data << mdio_gw->write_data.shift) &
194 		   mdio_gw->write_data.mask);
195 	gw_reg |= ((phy_reg << mdio_gw->devad.shift) &
196 		   mdio_gw->devad.mask);
197 	gw_reg |= ((phy_add << mdio_gw->partad.shift) &
198 		   mdio_gw->partad.mask);
199 	gw_reg |= ((opcode << mdio_gw->opcode.shift) &
200 		   mdio_gw->opcode.mask);
201 	gw_reg |= ((MLXBF_GIGE_MDIO_CL22_ST1 << mdio_gw->st1.shift) &
202 		   mdio_gw->st1.mask);
203 	gw_reg |= ((MLXBF_GIGE_MDIO_SET_BUSY << mdio_gw->busy.shift) &
204 		   mdio_gw->busy.mask);
205 
206 	return gw_reg;
207 }
208 
mlxbf_gige_mdio_read(struct mii_bus * bus,int phy_add,int phy_reg)209 static int mlxbf_gige_mdio_read(struct mii_bus *bus, int phy_add, int phy_reg)
210 {
211 	struct mlxbf_gige *priv = bus->priv;
212 	u32 cmd;
213 	int ret;
214 	u32 val;
215 
216 	/* Send mdio read request */
217 	cmd = mlxbf_gige_mdio_create_cmd(priv->mdio_gw, 0, phy_add, phy_reg,
218 					 MLXBF_GIGE_MDIO_CL22_READ);
219 
220 	writel(cmd, priv->mdio_io + priv->mdio_gw->gw_address);
221 
222 	ret = readl_poll_timeout_atomic(priv->mdio_io + priv->mdio_gw->gw_address,
223 					val, !(val & priv->mdio_gw->busy.mask),
224 					5, 1000000);
225 
226 	if (ret) {
227 		writel(0, priv->mdio_io + priv->mdio_gw->gw_address);
228 		return ret;
229 	}
230 
231 	ret = readl(priv->mdio_io + priv->mdio_gw->read_data_address);
232 	/* Only return ad bits of the gw register */
233 	ret &= priv->mdio_gw->read_data.mask;
234 
235 	/* The MDIO lock is set on read. To release it, clear gw register */
236 	writel(0, priv->mdio_io + priv->mdio_gw->gw_address);
237 
238 	return ret;
239 }
240 
mlxbf_gige_mdio_write(struct mii_bus * bus,int phy_add,int phy_reg,u16 val)241 static int mlxbf_gige_mdio_write(struct mii_bus *bus, int phy_add,
242 				 int phy_reg, u16 val)
243 {
244 	struct mlxbf_gige *priv = bus->priv;
245 	u32 temp;
246 	u32 cmd;
247 	int ret;
248 
249 	/* Send mdio write request */
250 	cmd = mlxbf_gige_mdio_create_cmd(priv->mdio_gw, val, phy_add, phy_reg,
251 					 MLXBF_GIGE_MDIO_CL22_WRITE);
252 	writel(cmd, priv->mdio_io + priv->mdio_gw->gw_address);
253 
254 	/* If the poll timed out, drop the request */
255 	ret = readl_poll_timeout_atomic(priv->mdio_io + priv->mdio_gw->gw_address,
256 					temp, !(temp & priv->mdio_gw->busy.mask),
257 					5, 1000000);
258 
259 	/* The MDIO lock is set on read. To release it, clear gw register */
260 	writel(0, priv->mdio_io + priv->mdio_gw->gw_address);
261 
262 	return ret;
263 }
264 
mlxbf_gige_mdio_cfg(struct mlxbf_gige * priv)265 static void mlxbf_gige_mdio_cfg(struct mlxbf_gige *priv)
266 {
267 	u8 mdio_period;
268 	u32 val;
269 
270 	mdio_period = mdio_period_map(priv);
271 
272 	if (priv->hw_version == MLXBF_GIGE_VERSION_BF2) {
273 		val = MLXBF2_GIGE_MDIO_CFG_VAL;
274 		val |= FIELD_PREP(MLXBF2_GIGE_MDIO_CFG_MDC_PERIOD_MASK, mdio_period);
275 		writel(val, priv->mdio_io + MLXBF2_GIGE_MDIO_CFG_OFFSET);
276 	} else {
277 		val = FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDIO_MODE_MASK, 1) |
278 		      FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDIO_FULL_DRIVE_MASK, 1);
279 		writel(val, priv->mdio_io + MLXBF3_GIGE_MDIO_CFG_REG0);
280 		val = FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDC_PERIOD_MASK, mdio_period);
281 		writel(val, priv->mdio_io + MLXBF3_GIGE_MDIO_CFG_REG1);
282 		val = FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDIO_IN_SAMP_MASK, 6) |
283 		      FIELD_PREP(MLXBF3_GIGE_MDIO_CFG_MDIO_OUT_SAMP_MASK, 13);
284 		writel(val, priv->mdio_io + MLXBF3_GIGE_MDIO_CFG_REG2);
285 	}
286 }
287 
mlxbf_gige_mdio_probe(struct platform_device * pdev,struct mlxbf_gige * priv)288 int mlxbf_gige_mdio_probe(struct platform_device *pdev, struct mlxbf_gige *priv)
289 {
290 	struct device *dev = &pdev->dev;
291 	struct resource *res;
292 	int ret;
293 
294 	if (priv->hw_version > MLXBF_GIGE_VERSION_BF3)
295 		return -ENODEV;
296 
297 	priv->mdio_io = devm_platform_ioremap_resource(pdev, MLXBF_GIGE_RES_MDIO9);
298 	if (IS_ERR(priv->mdio_io))
299 		return PTR_ERR(priv->mdio_io);
300 
301 	/* clk resource shared with other drivers so cannot use
302 	 * devm_platform_ioremap_resource
303 	 */
304 	res = platform_get_resource(pdev, IORESOURCE_MEM, MLXBF_GIGE_RES_CLK);
305 	if (!res) {
306 		/* For backward compatibility with older ACPI tables, also keep
307 		 * CLK resource internal to the driver.
308 		 */
309 		res = &corepll_params[priv->hw_version];
310 	}
311 
312 	priv->clk_io = devm_ioremap(dev, res->start, resource_size(res));
313 	if (!priv->clk_io)
314 		return -ENOMEM;
315 
316 	priv->mdio_gw = &mlxbf_gige_mdio_gw_t[priv->hw_version];
317 
318 	mlxbf_gige_mdio_cfg(priv);
319 
320 	priv->mdiobus = devm_mdiobus_alloc(dev);
321 	if (!priv->mdiobus) {
322 		dev_err(dev, "Failed to alloc MDIO bus\n");
323 		return -ENOMEM;
324 	}
325 
326 	priv->mdiobus->name = "mlxbf-mdio";
327 	priv->mdiobus->read = mlxbf_gige_mdio_read;
328 	priv->mdiobus->write = mlxbf_gige_mdio_write;
329 	priv->mdiobus->parent = dev;
330 	priv->mdiobus->priv = priv;
331 	snprintf(priv->mdiobus->id, MII_BUS_ID_SIZE, "%s",
332 		 dev_name(dev));
333 
334 	ret = mdiobus_register(priv->mdiobus);
335 	if (ret)
336 		dev_err(dev, "Failed to register MDIO bus\n");
337 
338 	return ret;
339 }
340 
mlxbf_gige_mdio_remove(struct mlxbf_gige * priv)341 void mlxbf_gige_mdio_remove(struct mlxbf_gige *priv)
342 {
343 	mdiobus_unregister(priv->mdiobus);
344 }
345