1 /*
2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
3 * USB2.0 OTG compliant core used in various chips.
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) version 3 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 *
21 * Only host-mode and non-DMA accesses are currently supported.
22 */
23 #include "qemu/osdep.h"
24 #include "qemu/timer.h"
25 #include "hw/usb.h"
26 #include "hw/usb/hcd-musb.h"
27 #include "hw/irq.h"
28 #include "hw/hw.h"
29
30 /* Common USB registers */
31 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */
32 #define MUSB_HDRC_POWER 0x01 /* 8-bit */
33
34 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */
35 #define MUSB_HDRC_INTRRX 0x04
36 #define MUSB_HDRC_INTRTXE 0x06
37 #define MUSB_HDRC_INTRRXE 0x08
38 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */
39 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */
40 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */
41 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */
42 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */
43
44 /* Per-EP registers in indexed mode */
45 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */
46
47 /* EP FIFOs */
48 #define MUSB_HDRC_FIFO 0x20
49
50 /* Additional Control Registers */
51 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */
52
53 /* These are indexed */
54 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */
55 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */
56 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */
57 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */
58
59 /* Some more registers */
60 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */
61 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */
62
63 /* Added in HDRC 1.9(?) & MHDRC 1.4 */
64 /* ULPI pass-through */
65 #define MUSB_HDRC_ULPI_VBUSCTL 0x70
66 #define MUSB_HDRC_ULPI_REGDATA 0x74
67 #define MUSB_HDRC_ULPI_REGADDR 0x75
68 #define MUSB_HDRC_ULPI_REGCTL 0x76
69
70 /* Extended config & PHY control */
71 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */
72 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */
73 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */
74 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */
75 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */
76 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */
77 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */
78
79 /* Per-EP BUSCTL registers */
80 #define MUSB_HDRC_BUSCTL 0x80
81
82 /* Per-EP registers in flat mode */
83 #define MUSB_HDRC_EP 0x100
84
85 /* offsets to registers in flat model */
86 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */
87 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */
88 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */
89 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */
90 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */
91 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */
92 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */
93 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */
94 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */
95 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */
96 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */
97 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */
98 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */
99 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */
100 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */
101
102 /* "Bus control" registers */
103 #define MUSB_HDRC_TXFUNCADDR 0x00
104 #define MUSB_HDRC_TXHUBADDR 0x02
105 #define MUSB_HDRC_TXHUBPORT 0x03
106
107 #define MUSB_HDRC_RXFUNCADDR 0x04
108 #define MUSB_HDRC_RXHUBADDR 0x06
109 #define MUSB_HDRC_RXHUBPORT 0x07
110
111 /*
112 * MUSBHDRC Register bit masks
113 */
114
115 /* POWER */
116 #define MGC_M_POWER_ISOUPDATE 0x80
117 #define MGC_M_POWER_SOFTCONN 0x40
118 #define MGC_M_POWER_HSENAB 0x20
119 #define MGC_M_POWER_HSMODE 0x10
120 #define MGC_M_POWER_RESET 0x08
121 #define MGC_M_POWER_RESUME 0x04
122 #define MGC_M_POWER_SUSPENDM 0x02
123 #define MGC_M_POWER_ENSUSPEND 0x01
124
125 /* INTRUSB */
126 #define MGC_M_INTR_SUSPEND 0x01
127 #define MGC_M_INTR_RESUME 0x02
128 #define MGC_M_INTR_RESET 0x04
129 #define MGC_M_INTR_BABBLE 0x04
130 #define MGC_M_INTR_SOF 0x08
131 #define MGC_M_INTR_CONNECT 0x10
132 #define MGC_M_INTR_DISCONNECT 0x20
133 #define MGC_M_INTR_SESSREQ 0x40
134 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */
135 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */
136
137 /* DEVCTL */
138 #define MGC_M_DEVCTL_BDEVICE 0x80
139 #define MGC_M_DEVCTL_FSDEV 0x40
140 #define MGC_M_DEVCTL_LSDEV 0x20
141 #define MGC_M_DEVCTL_VBUS 0x18
142 #define MGC_S_DEVCTL_VBUS 3
143 #define MGC_M_DEVCTL_HM 0x04
144 #define MGC_M_DEVCTL_HR 0x02
145 #define MGC_M_DEVCTL_SESSION 0x01
146
147 /* TESTMODE */
148 #define MGC_M_TEST_FORCE_HOST 0x80
149 #define MGC_M_TEST_FIFO_ACCESS 0x40
150 #define MGC_M_TEST_FORCE_FS 0x20
151 #define MGC_M_TEST_FORCE_HS 0x10
152 #define MGC_M_TEST_PACKET 0x08
153 #define MGC_M_TEST_K 0x04
154 #define MGC_M_TEST_J 0x02
155 #define MGC_M_TEST_SE0_NAK 0x01
156
157 /* CSR0 */
158 #define MGC_M_CSR0_FLUSHFIFO 0x0100
159 #define MGC_M_CSR0_TXPKTRDY 0x0002
160 #define MGC_M_CSR0_RXPKTRDY 0x0001
161
162 /* CSR0 in Peripheral mode */
163 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080
164 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040
165 #define MGC_M_CSR0_P_SENDSTALL 0x0020
166 #define MGC_M_CSR0_P_SETUPEND 0x0010
167 #define MGC_M_CSR0_P_DATAEND 0x0008
168 #define MGC_M_CSR0_P_SENTSTALL 0x0004
169
170 /* CSR0 in Host mode */
171 #define MGC_M_CSR0_H_NO_PING 0x0800
172 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */
173 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */
174 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080
175 #define MGC_M_CSR0_H_STATUSPKT 0x0040
176 #define MGC_M_CSR0_H_REQPKT 0x0020
177 #define MGC_M_CSR0_H_ERROR 0x0010
178 #define MGC_M_CSR0_H_SETUPPKT 0x0008
179 #define MGC_M_CSR0_H_RXSTALL 0x0004
180
181 /* CONFIGDATA */
182 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */
183 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */
184 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20
185 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */
186 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */
187 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */
188 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */
189 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */
190
191 /* TXCSR in Peripheral and Host mode */
192 #define MGC_M_TXCSR_AUTOSET 0x8000
193 #define MGC_M_TXCSR_ISO 0x4000
194 #define MGC_M_TXCSR_MODE 0x2000
195 #define MGC_M_TXCSR_DMAENAB 0x1000
196 #define MGC_M_TXCSR_FRCDATATOG 0x0800
197 #define MGC_M_TXCSR_DMAMODE 0x0400
198 #define MGC_M_TXCSR_CLRDATATOG 0x0040
199 #define MGC_M_TXCSR_FLUSHFIFO 0x0008
200 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002
201 #define MGC_M_TXCSR_TXPKTRDY 0x0001
202
203 /* TXCSR in Peripheral mode */
204 #define MGC_M_TXCSR_P_INCOMPTX 0x0080
205 #define MGC_M_TXCSR_P_SENTSTALL 0x0020
206 #define MGC_M_TXCSR_P_SENDSTALL 0x0010
207 #define MGC_M_TXCSR_P_UNDERRUN 0x0004
208
209 /* TXCSR in Host mode */
210 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200
211 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100
212 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080
213 #define MGC_M_TXCSR_H_RXSTALL 0x0020
214 #define MGC_M_TXCSR_H_ERROR 0x0004
215
216 /* RXCSR in Peripheral and Host mode */
217 #define MGC_M_RXCSR_AUTOCLEAR 0x8000
218 #define MGC_M_RXCSR_DMAENAB 0x2000
219 #define MGC_M_RXCSR_DISNYET 0x1000
220 #define MGC_M_RXCSR_DMAMODE 0x0800
221 #define MGC_M_RXCSR_INCOMPRX 0x0100
222 #define MGC_M_RXCSR_CLRDATATOG 0x0080
223 #define MGC_M_RXCSR_FLUSHFIFO 0x0010
224 #define MGC_M_RXCSR_DATAERROR 0x0008
225 #define MGC_M_RXCSR_FIFOFULL 0x0002
226 #define MGC_M_RXCSR_RXPKTRDY 0x0001
227
228 /* RXCSR in Peripheral mode */
229 #define MGC_M_RXCSR_P_ISO 0x4000
230 #define MGC_M_RXCSR_P_SENTSTALL 0x0040
231 #define MGC_M_RXCSR_P_SENDSTALL 0x0020
232 #define MGC_M_RXCSR_P_OVERRUN 0x0004
233
234 /* RXCSR in Host mode */
235 #define MGC_M_RXCSR_H_AUTOREQ 0x4000
236 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400
237 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200
238 #define MGC_M_RXCSR_H_RXSTALL 0x0040
239 #define MGC_M_RXCSR_H_REQPKT 0x0020
240 #define MGC_M_RXCSR_H_ERROR 0x0004
241
242 /* HUBADDR */
243 #define MGC_M_HUBADDR_MULTI_TT 0x80
244
245 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
246 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02
247 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01
248 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08
249 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04
250 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02
251 #define MGC_M_ULPI_REGCTL_REG 0x01
252
253 /* #define MUSB_DEBUG */
254
255 #ifdef MUSB_DEBUG
256 #define TRACE(fmt, ...) fprintf(stderr, "%s@%d: " fmt "\n", __func__, \
257 __LINE__, ##__VA_ARGS__)
258 #else
259 #define TRACE(...)
260 #endif
261
262
263 static void musb_attach(USBPort *port);
264 static void musb_detach(USBPort *port);
265 static void musb_child_detach(USBPort *port, USBDevice *child);
266 static void musb_schedule_cb(USBPort *port, USBPacket *p);
267 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev);
268
269 static USBPortOps musb_port_ops = {
270 .attach = musb_attach,
271 .detach = musb_detach,
272 .child_detach = musb_child_detach,
273 .complete = musb_schedule_cb,
274 };
275
276 static USBBusOps musb_bus_ops = {
277 };
278
279 typedef struct MUSBPacket MUSBPacket;
280 typedef struct MUSBEndPoint MUSBEndPoint;
281
282 struct MUSBPacket {
283 USBPacket p;
284 MUSBEndPoint *ep;
285 int dir;
286 };
287
288 struct MUSBEndPoint {
289 uint16_t faddr[2];
290 uint8_t haddr[2];
291 uint8_t hport[2];
292 uint16_t csr[2];
293 uint16_t maxp[2];
294 uint16_t rxcount;
295 uint8_t type[2];
296 uint8_t interval[2];
297 uint8_t config;
298 uint8_t fifosize;
299 int timeout[2]; /* Always in microframes */
300
301 uint8_t *buf[2];
302 int fifolen[2];
303 int fifostart[2];
304 int fifoaddr[2];
305 MUSBPacket packey[2];
306 int status[2];
307 int ext_size[2];
308
309 /* For callbacks' use */
310 int epnum;
311 int interrupt[2];
312 MUSBState *musb;
313 USBCallback *delayed_cb[2];
314 QEMUTimer *intv_timer[2];
315 };
316
317 struct MUSBState {
318 qemu_irq irqs[musb_irq_max];
319 USBBus bus;
320 USBPort port;
321
322 int idx;
323 uint8_t devctl;
324 uint8_t power;
325 uint8_t faddr;
326
327 uint8_t intr;
328 uint8_t mask;
329 uint16_t tx_intr;
330 uint16_t tx_mask;
331 uint16_t rx_intr;
332 uint16_t rx_mask;
333
334 int setup_len;
335 int session;
336
337 uint8_t buf[0x8000];
338
339 /* Duplicating the world since 2008!... probably we should have 32
340 * logical, single endpoints instead. */
341 MUSBEndPoint ep[16];
342 };
343
musb_reset(MUSBState * s)344 void musb_reset(MUSBState *s)
345 {
346 int i;
347
348 s->faddr = 0x00;
349 s->devctl = 0;
350 s->power = MGC_M_POWER_HSENAB;
351 s->tx_intr = 0x0000;
352 s->rx_intr = 0x0000;
353 s->tx_mask = 0xffff;
354 s->rx_mask = 0xffff;
355 s->intr = 0x00;
356 s->mask = 0x06;
357 s->idx = 0;
358
359 s->setup_len = 0;
360 s->session = 0;
361 memset(s->buf, 0, sizeof(s->buf));
362
363 /* TODO: _DW */
364 s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO;
365 for (i = 0; i < 16; i ++) {
366 s->ep[i].fifosize = 64;
367 s->ep[i].maxp[0] = 0x40;
368 s->ep[i].maxp[1] = 0x40;
369 s->ep[i].musb = s;
370 s->ep[i].epnum = i;
371 usb_packet_init(&s->ep[i].packey[0].p);
372 usb_packet_init(&s->ep[i].packey[1].p);
373 }
374 }
375
musb_init(DeviceState * parent_device,int gpio_base)376 struct MUSBState *musb_init(DeviceState *parent_device, int gpio_base)
377 {
378 MUSBState *s = g_malloc0(sizeof(*s));
379 int i;
380
381 for (i = 0; i < musb_irq_max; i++) {
382 s->irqs[i] = qdev_get_gpio_in(parent_device, gpio_base + i);
383 }
384
385 musb_reset(s);
386
387 usb_bus_new(&s->bus, sizeof(s->bus), &musb_bus_ops, parent_device);
388 usb_register_port(&s->bus, &s->port, s, 0, &musb_port_ops,
389 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL);
390
391 return s;
392 }
393
musb_vbus_set(MUSBState * s,int level)394 static void musb_vbus_set(MUSBState *s, int level)
395 {
396 if (level)
397 s->devctl |= 3 << MGC_S_DEVCTL_VBUS;
398 else
399 s->devctl &= ~MGC_M_DEVCTL_VBUS;
400
401 qemu_set_irq(s->irqs[musb_set_vbus], level);
402 }
403
musb_intr_set(MUSBState * s,int line,int level)404 static void musb_intr_set(MUSBState *s, int line, int level)
405 {
406 if (!level) {
407 s->intr &= ~(1 << line);
408 qemu_irq_lower(s->irqs[line]);
409 } else if (s->mask & (1 << line)) {
410 s->intr |= 1 << line;
411 qemu_irq_raise(s->irqs[line]);
412 }
413 }
414
musb_tx_intr_set(MUSBState * s,int line,int level)415 static void musb_tx_intr_set(MUSBState *s, int line, int level)
416 {
417 if (!level) {
418 s->tx_intr &= ~(1 << line);
419 if (!s->tx_intr)
420 qemu_irq_lower(s->irqs[musb_irq_tx]);
421 } else if (s->tx_mask & (1 << line)) {
422 s->tx_intr |= 1 << line;
423 qemu_irq_raise(s->irqs[musb_irq_tx]);
424 }
425 }
426
musb_rx_intr_set(MUSBState * s,int line,int level)427 static void musb_rx_intr_set(MUSBState *s, int line, int level)
428 {
429 if (line) {
430 if (!level) {
431 s->rx_intr &= ~(1 << line);
432 if (!s->rx_intr)
433 qemu_irq_lower(s->irqs[musb_irq_rx]);
434 } else if (s->rx_mask & (1 << line)) {
435 s->rx_intr |= 1 << line;
436 qemu_irq_raise(s->irqs[musb_irq_rx]);
437 }
438 } else
439 musb_tx_intr_set(s, line, level);
440 }
441
musb_core_intr_get(MUSBState * s)442 uint32_t musb_core_intr_get(MUSBState *s)
443 {
444 return (s->rx_intr << 15) | s->tx_intr;
445 }
446
musb_core_intr_clear(MUSBState * s,uint32_t mask)447 void musb_core_intr_clear(MUSBState *s, uint32_t mask)
448 {
449 if (s->rx_intr) {
450 s->rx_intr &= mask >> 15;
451 if (!s->rx_intr)
452 qemu_irq_lower(s->irqs[musb_irq_rx]);
453 }
454
455 if (s->tx_intr) {
456 s->tx_intr &= mask & 0xffff;
457 if (!s->tx_intr)
458 qemu_irq_lower(s->irqs[musb_irq_tx]);
459 }
460 }
461
musb_set_size(MUSBState * s,int epnum,int size,int is_tx)462 void musb_set_size(MUSBState *s, int epnum, int size, int is_tx)
463 {
464 s->ep[epnum].ext_size[!is_tx] = size;
465 s->ep[epnum].fifostart[0] = 0;
466 s->ep[epnum].fifostart[1] = 0;
467 s->ep[epnum].fifolen[0] = 0;
468 s->ep[epnum].fifolen[1] = 0;
469 }
470
musb_session_update(MUSBState * s,int prev_dev,int prev_sess)471 static void musb_session_update(MUSBState *s, int prev_dev, int prev_sess)
472 {
473 int detect_prev = prev_dev && prev_sess;
474 int detect = !!s->port.dev && s->session;
475
476 if (detect && !detect_prev) {
477 /* Let's skip the ID pin sense and VBUS sense formalities and
478 * and signal a successful SRP directly. This should work at least
479 * for the Linux driver stack. */
480 musb_intr_set(s, musb_irq_connect, 1);
481
482 if (s->port.dev->speed == USB_SPEED_LOW) {
483 s->devctl &= ~MGC_M_DEVCTL_FSDEV;
484 s->devctl |= MGC_M_DEVCTL_LSDEV;
485 } else {
486 s->devctl |= MGC_M_DEVCTL_FSDEV;
487 s->devctl &= ~MGC_M_DEVCTL_LSDEV;
488 }
489
490 /* A-mode? */
491 s->devctl &= ~MGC_M_DEVCTL_BDEVICE;
492
493 /* Host-mode bit? */
494 s->devctl |= MGC_M_DEVCTL_HM;
495 #if 1
496 musb_vbus_set(s, 1);
497 #endif
498 } else if (!detect && detect_prev) {
499 #if 1
500 musb_vbus_set(s, 0);
501 #endif
502 }
503 }
504
505 /* Attach or detach a device on our only port. */
musb_attach(USBPort * port)506 static void musb_attach(USBPort *port)
507 {
508 MUSBState *s = (MUSBState *) port->opaque;
509
510 musb_intr_set(s, musb_irq_vbus_request, 1);
511 musb_session_update(s, 0, s->session);
512 }
513
musb_detach(USBPort * port)514 static void musb_detach(USBPort *port)
515 {
516 MUSBState *s = (MUSBState *) port->opaque;
517
518 musb_async_cancel_device(s, port->dev);
519
520 musb_intr_set(s, musb_irq_disconnect, 1);
521 musb_session_update(s, 1, s->session);
522 }
523
musb_child_detach(USBPort * port,USBDevice * child)524 static void musb_child_detach(USBPort *port, USBDevice *child)
525 {
526 MUSBState *s = (MUSBState *) port->opaque;
527
528 musb_async_cancel_device(s, child);
529 }
530
musb_cb_tick0(void * opaque)531 static void musb_cb_tick0(void *opaque)
532 {
533 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
534
535 ep->delayed_cb[0](&ep->packey[0].p, opaque);
536 }
537
musb_cb_tick1(void * opaque)538 static void musb_cb_tick1(void *opaque)
539 {
540 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
541
542 ep->delayed_cb[1](&ep->packey[1].p, opaque);
543 }
544
545 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0)
546
musb_schedule_cb(USBPort * port,USBPacket * packey)547 static void musb_schedule_cb(USBPort *port, USBPacket *packey)
548 {
549 MUSBPacket *p = container_of(packey, MUSBPacket, p);
550 MUSBEndPoint *ep = p->ep;
551 int dir = p->dir;
552 int timeout = 0;
553
554 if (ep->status[dir] == USB_RET_NAK)
555 timeout = ep->timeout[dir];
556 else if (ep->interrupt[dir])
557 timeout = 8;
558 else {
559 musb_cb_tick(ep);
560 return;
561 }
562
563 if (!ep->intv_timer[dir])
564 ep->intv_timer[dir] = timer_new_ns(QEMU_CLOCK_VIRTUAL, musb_cb_tick, ep);
565
566 timer_mod(ep->intv_timer[dir], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
567 muldiv64(timeout, NANOSECONDS_PER_SECOND, 8000));
568 }
569
musb_timeout(int ttype,int speed,int val)570 static int musb_timeout(int ttype, int speed, int val)
571 {
572 #if 1
573 return val << 3;
574 #endif
575
576 switch (ttype) {
577 case USB_ENDPOINT_XFER_CONTROL:
578 if (val < 2)
579 return 0;
580 else if (speed == USB_SPEED_HIGH)
581 return 1 << (val - 1);
582 else
583 return 8 << (val - 1);
584
585 case USB_ENDPOINT_XFER_INT:
586 if (speed == USB_SPEED_HIGH)
587 if (val < 2)
588 return 0;
589 else
590 return 1 << (val - 1);
591 else
592 return val << 3;
593
594 case USB_ENDPOINT_XFER_BULK:
595 case USB_ENDPOINT_XFER_ISOC:
596 if (val < 2)
597 return 0;
598 else if (speed == USB_SPEED_HIGH)
599 return 1 << (val - 1);
600 else
601 return 8 << (val - 1);
602 /* TODO: what with low-speed Bulk and Isochronous? */
603 }
604
605 hw_error("bad interval\n");
606 }
607
musb_packet(MUSBState * s,MUSBEndPoint * ep,int epnum,int pid,int len,USBCallback cb,int dir)608 static void musb_packet(MUSBState *s, MUSBEndPoint *ep,
609 int epnum, int pid, int len, USBCallback cb, int dir)
610 {
611 USBDevice *dev;
612 USBEndpoint *uep;
613 int idx = epnum && dir;
614 int id;
615 int ttype;
616
617 /* ep->type[0,1] contains:
618 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
619 * in bits 5:4 the transfer type (BULK / INT)
620 * in bits 3:0 the EP num
621 */
622 ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0;
623
624 ep->timeout[dir] = musb_timeout(ttype,
625 ep->type[idx] >> 6, ep->interval[idx]);
626 ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT;
627 ep->delayed_cb[dir] = cb;
628
629 /* A wild guess on the FADDR semantics... */
630 dev = usb_find_device(&s->port, ep->faddr[idx]);
631 if (dev == NULL) {
632 return;
633 }
634 uep = usb_ep_get(dev, pid, ep->type[idx] & 0xf);
635 id = pid | (dev->addr << 16) | (uep->nr << 8);
636 usb_packet_setup(&ep->packey[dir].p, pid, uep, 0, id, false, true);
637 usb_packet_addbuf(&ep->packey[dir].p, ep->buf[idx], len);
638 ep->packey[dir].ep = ep;
639 ep->packey[dir].dir = dir;
640
641 usb_handle_packet(dev, &ep->packey[dir].p);
642
643 if (ep->packey[dir].p.status == USB_RET_ASYNC) {
644 usb_device_flush_ep_queue(dev, uep);
645 ep->status[dir] = len;
646 return;
647 }
648
649 if (ep->packey[dir].p.status == USB_RET_SUCCESS) {
650 ep->status[dir] = ep->packey[dir].p.actual_length;
651 } else {
652 ep->status[dir] = ep->packey[dir].p.status;
653 }
654 musb_schedule_cb(&s->port, &ep->packey[dir].p);
655 }
656
musb_tx_packet_complete(USBPacket * packey,void * opaque)657 static void musb_tx_packet_complete(USBPacket *packey, void *opaque)
658 {
659 /* Unfortunately we can't use packey->devep because that's the remote
660 * endpoint number and may be different than our local. */
661 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
662 int epnum = ep->epnum;
663 MUSBState *s = ep->musb;
664
665 ep->fifostart[0] = 0;
666 ep->fifolen[0] = 0;
667 #ifdef CLEAR_NAK
668 if (ep->status[0] != USB_RET_NAK) {
669 #endif
670 if (epnum)
671 ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
672 else
673 ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY;
674 #ifdef CLEAR_NAK
675 }
676 #endif
677
678 /* Clear all of the error bits first */
679 if (epnum)
680 ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL |
681 MGC_M_TXCSR_H_NAKTIMEOUT);
682 else
683 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
684 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
685
686 if (ep->status[0] == USB_RET_STALL) {
687 /* Command not supported by target! */
688 ep->status[0] = 0;
689
690 if (epnum)
691 ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL;
692 else
693 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
694 }
695
696 if (ep->status[0] == USB_RET_NAK) {
697 ep->status[0] = 0;
698
699 /* NAK timeouts are only generated in Bulk transfers and
700 * Data-errors in Isochronous. */
701 if (ep->interrupt[0]) {
702 return;
703 }
704
705 if (epnum)
706 ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT;
707 else
708 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
709 }
710
711 if (ep->status[0] < 0) {
712 if (ep->status[0] == USB_RET_BABBLE)
713 musb_intr_set(s, musb_irq_rst_babble, 1);
714
715 /* Pretend we've tried three times already and failed (in
716 * case of USB_TOKEN_SETUP). */
717 if (epnum)
718 ep->csr[0] |= MGC_M_TXCSR_H_ERROR;
719 else
720 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
721
722 musb_tx_intr_set(s, epnum, 1);
723 return;
724 }
725 /* TODO: check len for over/underruns of an OUT packet? */
726
727 #ifdef SETUPLEN_HACK
728 if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP)
729 s->setup_len = ep->packey[0].data[6];
730 #endif
731
732 /* In DMA mode: if no error, assert DMA request for this EP,
733 * and skip the interrupt. */
734 musb_tx_intr_set(s, epnum, 1);
735 }
736
musb_rx_packet_complete(USBPacket * packey,void * opaque)737 static void musb_rx_packet_complete(USBPacket *packey, void *opaque)
738 {
739 /* Unfortunately we can't use packey->devep because that's the remote
740 * endpoint number and may be different than our local. */
741 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
742 int epnum = ep->epnum;
743 MUSBState *s = ep->musb;
744
745 ep->fifostart[1] = 0;
746 ep->fifolen[1] = 0;
747
748 #ifdef CLEAR_NAK
749 if (ep->status[1] != USB_RET_NAK) {
750 #endif
751 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
752 if (!epnum)
753 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
754 #ifdef CLEAR_NAK
755 }
756 #endif
757
758 /* Clear all of the imaginable error bits first */
759 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
760 MGC_M_RXCSR_DATAERROR);
761 if (!epnum)
762 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
763 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
764
765 if (ep->status[1] == USB_RET_STALL) {
766 ep->status[1] = 0;
767
768 ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL;
769 if (!epnum)
770 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
771 }
772
773 if (ep->status[1] == USB_RET_NAK) {
774 ep->status[1] = 0;
775
776 /* NAK timeouts are only generated in Bulk transfers and
777 * Data-errors in Isochronous. */
778 if (ep->interrupt[1]) {
779 musb_packet(s, ep, epnum, USB_TOKEN_IN,
780 packey->iov.size, musb_rx_packet_complete, 1);
781 return;
782 }
783
784 ep->csr[1] |= MGC_M_RXCSR_DATAERROR;
785 if (!epnum)
786 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
787 }
788
789 if (ep->status[1] < 0) {
790 if (ep->status[1] == USB_RET_BABBLE) {
791 musb_intr_set(s, musb_irq_rst_babble, 1);
792 return;
793 }
794
795 /* Pretend we've tried three times already and failed (in
796 * case of a control transfer). */
797 ep->csr[1] |= MGC_M_RXCSR_H_ERROR;
798 if (!epnum)
799 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
800
801 musb_rx_intr_set(s, epnum, 1);
802 return;
803 }
804 /* TODO: check len for over/underruns of an OUT packet? */
805 /* TODO: perhaps make use of e->ext_size[1] here. */
806
807 if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) {
808 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
809 if (!epnum)
810 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
811
812 ep->rxcount = ep->status[1]; /* XXX: MIN(packey->len, ep->maxp[1]); */
813 /* In DMA mode: assert DMA request for this EP */
814 }
815
816 /* Only if DMA has not been asserted */
817 musb_rx_intr_set(s, epnum, 1);
818 }
819
musb_async_cancel_device(MUSBState * s,USBDevice * dev)820 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev)
821 {
822 int ep, dir;
823
824 for (ep = 0; ep < 16; ep++) {
825 for (dir = 0; dir < 2; dir++) {
826 if (!usb_packet_is_inflight(&s->ep[ep].packey[dir].p) ||
827 s->ep[ep].packey[dir].p.ep->dev != dev) {
828 continue;
829 }
830 usb_cancel_packet(&s->ep[ep].packey[dir].p);
831 /* status updates needed here? */
832 }
833 }
834 }
835
musb_tx_rdy(MUSBState * s,int epnum)836 static void musb_tx_rdy(MUSBState *s, int epnum)
837 {
838 MUSBEndPoint *ep = s->ep + epnum;
839 int pid;
840 int total, valid = 0;
841 TRACE("start %d, len %d", ep->fifostart[0], ep->fifolen[0] );
842 ep->fifostart[0] += ep->fifolen[0];
843 ep->fifolen[0] = 0;
844
845 /* XXX: how's the total size of the packet retrieved exactly in
846 * the generic case? */
847 total = ep->maxp[0] & 0x3ff;
848
849 if (ep->ext_size[0]) {
850 total = ep->ext_size[0];
851 ep->ext_size[0] = 0;
852 valid = 1;
853 }
854
855 /* If the packet is not fully ready yet, wait for a next segment. */
856 if (epnum && (ep->fifostart[0]) < total)
857 return;
858
859 if (!valid)
860 total = ep->fifostart[0];
861
862 pid = USB_TOKEN_OUT;
863 if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) {
864 pid = USB_TOKEN_SETUP;
865 if (total != 8) {
866 TRACE("illegal SETUPPKT length of %i bytes", total);
867 }
868 /* Controller should retry SETUP packets three times on errors
869 * but it doesn't make sense for us to do that. */
870 }
871
872 musb_packet(s, ep, epnum, pid, total, musb_tx_packet_complete, 0);
873 }
874
musb_rx_req(MUSBState * s,int epnum)875 static void musb_rx_req(MUSBState *s, int epnum)
876 {
877 MUSBEndPoint *ep = s->ep + epnum;
878 int total;
879
880 /* If we already have a packet, which didn't fit into the
881 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
882 if (ep->packey[1].p.pid == USB_TOKEN_IN && ep->status[1] >= 0 &&
883 (ep->fifostart[1]) + ep->rxcount <
884 ep->packey[1].p.iov.size) {
885 TRACE("0x%08x, %d", ep->fifostart[1], ep->rxcount );
886 ep->fifostart[1] += ep->rxcount;
887 ep->fifolen[1] = 0;
888
889 ep->rxcount = MIN(ep->packey[0].p.iov.size - (ep->fifostart[1]),
890 ep->maxp[1]);
891
892 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
893 if (!epnum)
894 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
895
896 /* Clear all of the error bits first */
897 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
898 MGC_M_RXCSR_DATAERROR);
899 if (!epnum)
900 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
901 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
902
903 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
904 if (!epnum)
905 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
906 musb_rx_intr_set(s, epnum, 1);
907 return;
908 }
909
910 /* The driver sets maxp[1] to 64 or less because it knows the hardware
911 * FIFO is this deep. Bigger packets get split in
912 * usb_generic_handle_packet but we can also do the splitting locally
913 * for performance. It turns out we can also have a bigger FIFO and
914 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals
915 * OK with single packets of even 32KB and we avoid splitting, however
916 * usb_msd.c sometimes sends a packet bigger than what Linux expects
917 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting
918 * hides this overrun from Linux. Up to 4096 everything is fine
919 * though. Currently this is disabled.
920 *
921 * XXX: mind ep->fifosize. */
922 total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf));
923
924 #ifdef SETUPLEN_HACK
925 /* Why should *we* do that instead of Linux? */
926 if (!epnum) {
927 if (ep->packey[0].p.devaddr == 2) {
928 total = MIN(s->setup_len, 8);
929 } else {
930 total = MIN(s->setup_len, 64);
931 }
932 s->setup_len -= total;
933 }
934 #endif
935
936 musb_packet(s, ep, epnum, USB_TOKEN_IN, total, musb_rx_packet_complete, 1);
937 }
938
musb_read_fifo(MUSBEndPoint * ep)939 static uint8_t musb_read_fifo(MUSBEndPoint *ep)
940 {
941 uint8_t value;
942 if (ep->fifolen[1] >= 64) {
943 /* We have a FIFO underrun */
944 TRACE("EP%d FIFO is now empty, stop reading", ep->epnum);
945 return 0x00000000;
946 }
947 /* In DMA mode clear RXPKTRDY and set REQPKT automatically
948 * (if AUTOREQ is set) */
949
950 ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL;
951 value=ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++];
952 TRACE("EP%d 0x%02x, %d", ep->epnum, value, ep->fifolen[1] );
953 return value;
954 }
955
musb_write_fifo(MUSBEndPoint * ep,uint8_t value)956 static void musb_write_fifo(MUSBEndPoint *ep, uint8_t value)
957 {
958 TRACE("EP%d = %02x", ep->epnum, value);
959 if (ep->fifolen[0] >= 64) {
960 /* We have a FIFO overrun */
961 TRACE("EP%d FIFO exceeded 64 bytes, stop feeding data", ep->epnum);
962 return;
963 }
964
965 ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value;
966 ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY;
967 }
968
musb_ep_frame_cancel(MUSBEndPoint * ep,int dir)969 static void musb_ep_frame_cancel(MUSBEndPoint *ep, int dir)
970 {
971 if (ep->intv_timer[dir])
972 timer_del(ep->intv_timer[dir]);
973 }
974
975 /* Bus control */
musb_busctl_readb(void * opaque,int ep,int addr)976 static uint8_t musb_busctl_readb(void *opaque, int ep, int addr)
977 {
978 MUSBState *s = (MUSBState *) opaque;
979
980 switch (addr) {
981 /* For USB2.0 HS hubs only */
982 case MUSB_HDRC_TXHUBADDR:
983 return s->ep[ep].haddr[0];
984 case MUSB_HDRC_TXHUBPORT:
985 return s->ep[ep].hport[0];
986 case MUSB_HDRC_RXHUBADDR:
987 return s->ep[ep].haddr[1];
988 case MUSB_HDRC_RXHUBPORT:
989 return s->ep[ep].hport[1];
990
991 default:
992 TRACE("unknown register 0x%02x", addr);
993 return 0x00;
994 };
995 }
996
musb_busctl_writeb(void * opaque,int ep,int addr,uint8_t value)997 static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value)
998 {
999 MUSBState *s = (MUSBState *) opaque;
1000
1001 switch (addr) {
1002 case MUSB_HDRC_TXFUNCADDR:
1003 s->ep[ep].faddr[0] = value;
1004 break;
1005 case MUSB_HDRC_RXFUNCADDR:
1006 s->ep[ep].faddr[1] = value;
1007 break;
1008 case MUSB_HDRC_TXHUBADDR:
1009 s->ep[ep].haddr[0] = value;
1010 break;
1011 case MUSB_HDRC_TXHUBPORT:
1012 s->ep[ep].hport[0] = value;
1013 break;
1014 case MUSB_HDRC_RXHUBADDR:
1015 s->ep[ep].haddr[1] = value;
1016 break;
1017 case MUSB_HDRC_RXHUBPORT:
1018 s->ep[ep].hport[1] = value;
1019 break;
1020
1021 default:
1022 TRACE("unknown register 0x%02x", addr);
1023 break;
1024 };
1025 }
1026
musb_busctl_readh(void * opaque,int ep,int addr)1027 static uint16_t musb_busctl_readh(void *opaque, int ep, int addr)
1028 {
1029 MUSBState *s = (MUSBState *) opaque;
1030
1031 switch (addr) {
1032 case MUSB_HDRC_TXFUNCADDR:
1033 return s->ep[ep].faddr[0];
1034 case MUSB_HDRC_RXFUNCADDR:
1035 return s->ep[ep].faddr[1];
1036
1037 default:
1038 return musb_busctl_readb(s, ep, addr) |
1039 (musb_busctl_readb(s, ep, addr | 1) << 8);
1040 };
1041 }
1042
musb_busctl_writeh(void * opaque,int ep,int addr,uint16_t value)1043 static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value)
1044 {
1045 MUSBState *s = (MUSBState *) opaque;
1046
1047 switch (addr) {
1048 case MUSB_HDRC_TXFUNCADDR:
1049 s->ep[ep].faddr[0] = value;
1050 break;
1051 case MUSB_HDRC_RXFUNCADDR:
1052 s->ep[ep].faddr[1] = value;
1053 break;
1054
1055 default:
1056 musb_busctl_writeb(s, ep, addr, value & 0xff);
1057 musb_busctl_writeb(s, ep, addr | 1, value >> 8);
1058 };
1059 }
1060
1061 /* Endpoint control */
musb_ep_readb(void * opaque,int ep,int addr)1062 static uint8_t musb_ep_readb(void *opaque, int ep, int addr)
1063 {
1064 MUSBState *s = (MUSBState *) opaque;
1065
1066 switch (addr) {
1067 case MUSB_HDRC_TXTYPE:
1068 return s->ep[ep].type[0];
1069 case MUSB_HDRC_TXINTERVAL:
1070 return s->ep[ep].interval[0];
1071 case MUSB_HDRC_RXTYPE:
1072 return s->ep[ep].type[1];
1073 case MUSB_HDRC_RXINTERVAL:
1074 return s->ep[ep].interval[1];
1075 case (MUSB_HDRC_FIFOSIZE & ~1):
1076 return 0x00;
1077 case MUSB_HDRC_FIFOSIZE:
1078 return ep ? s->ep[ep].fifosize : s->ep[ep].config;
1079 case MUSB_HDRC_RXCOUNT:
1080 return s->ep[ep].rxcount;
1081
1082 default:
1083 TRACE("unknown register 0x%02x", addr);
1084 return 0x00;
1085 };
1086 }
1087
musb_ep_writeb(void * opaque,int ep,int addr,uint8_t value)1088 static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value)
1089 {
1090 MUSBState *s = (MUSBState *) opaque;
1091
1092 switch (addr) {
1093 case MUSB_HDRC_TXTYPE:
1094 s->ep[ep].type[0] = value;
1095 break;
1096 case MUSB_HDRC_TXINTERVAL:
1097 s->ep[ep].interval[0] = value;
1098 musb_ep_frame_cancel(&s->ep[ep], 0);
1099 break;
1100 case MUSB_HDRC_RXTYPE:
1101 s->ep[ep].type[1] = value;
1102 break;
1103 case MUSB_HDRC_RXINTERVAL:
1104 s->ep[ep].interval[1] = value;
1105 musb_ep_frame_cancel(&s->ep[ep], 1);
1106 break;
1107 case (MUSB_HDRC_FIFOSIZE & ~1):
1108 break;
1109 case MUSB_HDRC_FIFOSIZE:
1110 TRACE("somebody messes with fifosize (now %i bytes)", value);
1111 s->ep[ep].fifosize = value;
1112 break;
1113 default:
1114 TRACE("unknown register 0x%02x", addr);
1115 break;
1116 };
1117 }
1118
musb_ep_readh(void * opaque,int ep,int addr)1119 static uint16_t musb_ep_readh(void *opaque, int ep, int addr)
1120 {
1121 MUSBState *s = (MUSBState *) opaque;
1122 uint16_t ret;
1123
1124 switch (addr) {
1125 case MUSB_HDRC_TXMAXP:
1126 return s->ep[ep].maxp[0];
1127 case MUSB_HDRC_TXCSR:
1128 return s->ep[ep].csr[0];
1129 case MUSB_HDRC_RXMAXP:
1130 return s->ep[ep].maxp[1];
1131 case MUSB_HDRC_RXCSR:
1132 ret = s->ep[ep].csr[1];
1133
1134 /* TODO: This and other bits probably depend on
1135 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */
1136 if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR)
1137 s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY;
1138
1139 return ret;
1140 case MUSB_HDRC_RXCOUNT:
1141 return s->ep[ep].rxcount;
1142
1143 default:
1144 return musb_ep_readb(s, ep, addr) |
1145 (musb_ep_readb(s, ep, addr | 1) << 8);
1146 };
1147 }
1148
musb_ep_writeh(void * opaque,int ep,int addr,uint16_t value)1149 static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value)
1150 {
1151 MUSBState *s = (MUSBState *) opaque;
1152
1153 switch (addr) {
1154 case MUSB_HDRC_TXMAXP:
1155 s->ep[ep].maxp[0] = value;
1156 break;
1157 case MUSB_HDRC_TXCSR:
1158 if (ep) {
1159 s->ep[ep].csr[0] &= value & 0xa6;
1160 s->ep[ep].csr[0] |= value & 0xff59;
1161 } else {
1162 s->ep[ep].csr[0] &= value & 0x85;
1163 s->ep[ep].csr[0] |= value & 0xf7a;
1164 }
1165
1166 musb_ep_frame_cancel(&s->ep[ep], 0);
1167
1168 if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) ||
1169 (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) {
1170 s->ep[ep].fifolen[0] = 0;
1171 s->ep[ep].fifostart[0] = 0;
1172 if (ep)
1173 s->ep[ep].csr[0] &=
1174 ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
1175 else
1176 s->ep[ep].csr[0] &=
1177 ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY);
1178 }
1179 if (
1180 (ep &&
1181 #ifdef CLEAR_NAK
1182 (value & MGC_M_TXCSR_TXPKTRDY) &&
1183 !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) ||
1184 #else
1185 (value & MGC_M_TXCSR_TXPKTRDY)) ||
1186 #endif
1187 (!ep &&
1188 #ifdef CLEAR_NAK
1189 (value & MGC_M_CSR0_TXPKTRDY) &&
1190 !(value & MGC_M_CSR0_H_NAKTIMEOUT)))
1191 #else
1192 (value & MGC_M_CSR0_TXPKTRDY)))
1193 #endif
1194 musb_tx_rdy(s, ep);
1195 if (!ep &&
1196 (value & MGC_M_CSR0_H_REQPKT) &&
1197 #ifdef CLEAR_NAK
1198 !(value & (MGC_M_CSR0_H_NAKTIMEOUT |
1199 MGC_M_CSR0_RXPKTRDY)))
1200 #else
1201 !(value & MGC_M_CSR0_RXPKTRDY))
1202 #endif
1203 musb_rx_req(s, ep);
1204 break;
1205
1206 case MUSB_HDRC_RXMAXP:
1207 s->ep[ep].maxp[1] = value;
1208 break;
1209 case MUSB_HDRC_RXCSR:
1210 /* (DMA mode only) */
1211 if (
1212 (value & MGC_M_RXCSR_H_AUTOREQ) &&
1213 !(value & MGC_M_RXCSR_RXPKTRDY) &&
1214 (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY))
1215 value |= MGC_M_RXCSR_H_REQPKT;
1216
1217 s->ep[ep].csr[1] &= 0x102 | (value & 0x4d);
1218 s->ep[ep].csr[1] |= value & 0xfeb0;
1219
1220 musb_ep_frame_cancel(&s->ep[ep], 1);
1221
1222 if (value & MGC_M_RXCSR_FLUSHFIFO) {
1223 s->ep[ep].fifolen[1] = 0;
1224 s->ep[ep].fifostart[1] = 0;
1225 s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY);
1226 /* If double buffering and we have two packets ready, flush
1227 * only the first one and set up the fifo at the second packet. */
1228 }
1229 #ifdef CLEAR_NAK
1230 if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR))
1231 #else
1232 if (value & MGC_M_RXCSR_H_REQPKT)
1233 #endif
1234 musb_rx_req(s, ep);
1235 break;
1236 case MUSB_HDRC_RXCOUNT:
1237 s->ep[ep].rxcount = value;
1238 break;
1239
1240 default:
1241 musb_ep_writeb(s, ep, addr, value & 0xff);
1242 musb_ep_writeb(s, ep, addr | 1, value >> 8);
1243 };
1244 }
1245
1246 /* Generic control */
musb_readb(void * opaque,hwaddr addr)1247 static uint32_t musb_readb(void *opaque, hwaddr addr)
1248 {
1249 MUSBState *s = (MUSBState *) opaque;
1250 int ep, i;
1251 uint8_t ret;
1252
1253 switch (addr) {
1254 case MUSB_HDRC_FADDR:
1255 return s->faddr;
1256 case MUSB_HDRC_POWER:
1257 return s->power;
1258 case MUSB_HDRC_INTRUSB:
1259 ret = s->intr;
1260 for (i = 0; i < sizeof(ret) * 8; i ++)
1261 if (ret & (1 << i))
1262 musb_intr_set(s, i, 0);
1263 return ret;
1264 case MUSB_HDRC_INTRUSBE:
1265 return s->mask;
1266 case MUSB_HDRC_INDEX:
1267 return s->idx;
1268 case MUSB_HDRC_TESTMODE:
1269 return 0x00;
1270
1271 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1272 return musb_ep_readb(s, s->idx, addr & 0xf);
1273
1274 case MUSB_HDRC_DEVCTL:
1275 return s->devctl;
1276
1277 case MUSB_HDRC_TXFIFOSZ:
1278 case MUSB_HDRC_RXFIFOSZ:
1279 case MUSB_HDRC_VCTRL:
1280 /* TODO */
1281 return 0x00;
1282
1283 case MUSB_HDRC_HWVERS:
1284 return (1 << 10) | 400;
1285
1286 case (MUSB_HDRC_VCTRL | 1):
1287 case (MUSB_HDRC_HWVERS | 1):
1288 case (MUSB_HDRC_DEVCTL | 1):
1289 return 0x00;
1290
1291 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1292 ep = (addr >> 3) & 0xf;
1293 return musb_busctl_readb(s, ep, addr & 0x7);
1294
1295 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1296 ep = (addr >> 4) & 0xf;
1297 return musb_ep_readb(s, ep, addr & 0xf);
1298
1299 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1300 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1301 return musb_read_fifo(s->ep + ep);
1302
1303 default:
1304 TRACE("unknown register 0x%02x", (int) addr);
1305 return 0x00;
1306 };
1307 }
1308
musb_writeb(void * opaque,hwaddr addr,uint32_t value)1309 static void musb_writeb(void *opaque, hwaddr addr, uint32_t value)
1310 {
1311 MUSBState *s = (MUSBState *) opaque;
1312 int ep;
1313
1314 switch (addr) {
1315 case MUSB_HDRC_FADDR:
1316 s->faddr = value & 0x7f;
1317 break;
1318 case MUSB_HDRC_POWER:
1319 s->power = (value & 0xef) | (s->power & 0x10);
1320 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
1321 if ((value & MGC_M_POWER_RESET) && s->port.dev) {
1322 usb_device_reset(s->port.dev);
1323 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */
1324 if ((value & MGC_M_POWER_HSENAB) &&
1325 s->port.dev->speed == USB_SPEED_HIGH)
1326 s->power |= MGC_M_POWER_HSMODE; /* Success */
1327 /* Restart frame counting. */
1328 }
1329 if (value & MGC_M_POWER_SUSPENDM) {
1330 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
1331 * is set, also go into low power mode. Frame counting stops. */
1332 /* XXX: Cleared when the interrupt register is read */
1333 }
1334 if (value & MGC_M_POWER_RESUME) {
1335 /* Wait 20ms and signal resuming on the bus. Frame counting
1336 * restarts. */
1337 }
1338 break;
1339 case MUSB_HDRC_INTRUSB:
1340 break;
1341 case MUSB_HDRC_INTRUSBE:
1342 s->mask = value & 0xff;
1343 break;
1344 case MUSB_HDRC_INDEX:
1345 s->idx = value & 0xf;
1346 break;
1347 case MUSB_HDRC_TESTMODE:
1348 break;
1349
1350 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1351 musb_ep_writeb(s, s->idx, addr & 0xf, value);
1352 break;
1353
1354 case MUSB_HDRC_DEVCTL:
1355 s->session = !!(value & MGC_M_DEVCTL_SESSION);
1356 musb_session_update(s,
1357 !!s->port.dev,
1358 !!(s->devctl & MGC_M_DEVCTL_SESSION));
1359
1360 /* It seems this is the only R/W bit in this register? */
1361 s->devctl &= ~MGC_M_DEVCTL_SESSION;
1362 s->devctl |= value & MGC_M_DEVCTL_SESSION;
1363 break;
1364
1365 case MUSB_HDRC_TXFIFOSZ:
1366 case MUSB_HDRC_RXFIFOSZ:
1367 case MUSB_HDRC_VCTRL:
1368 /* TODO */
1369 break;
1370
1371 case (MUSB_HDRC_VCTRL | 1):
1372 case (MUSB_HDRC_DEVCTL | 1):
1373 break;
1374
1375 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1376 ep = (addr >> 3) & 0xf;
1377 musb_busctl_writeb(s, ep, addr & 0x7, value);
1378 break;
1379
1380 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1381 ep = (addr >> 4) & 0xf;
1382 musb_ep_writeb(s, ep, addr & 0xf, value);
1383 break;
1384
1385 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1386 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1387 musb_write_fifo(s->ep + ep, value & 0xff);
1388 break;
1389
1390 default:
1391 TRACE("unknown register 0x%02x", (int) addr);
1392 break;
1393 };
1394 }
1395
musb_readh(void * opaque,hwaddr addr)1396 static uint32_t musb_readh(void *opaque, hwaddr addr)
1397 {
1398 MUSBState *s = (MUSBState *) opaque;
1399 int ep, i;
1400 uint16_t ret;
1401
1402 switch (addr) {
1403 case MUSB_HDRC_INTRTX:
1404 ret = s->tx_intr;
1405 /* Auto clear */
1406 for (i = 0; i < sizeof(ret) * 8; i ++)
1407 if (ret & (1 << i))
1408 musb_tx_intr_set(s, i, 0);
1409 return ret;
1410 case MUSB_HDRC_INTRRX:
1411 ret = s->rx_intr;
1412 /* Auto clear */
1413 for (i = 0; i < sizeof(ret) * 8; i ++)
1414 if (ret & (1 << i))
1415 musb_rx_intr_set(s, i, 0);
1416 return ret;
1417 case MUSB_HDRC_INTRTXE:
1418 return s->tx_mask;
1419 case MUSB_HDRC_INTRRXE:
1420 return s->rx_mask;
1421
1422 case MUSB_HDRC_FRAME:
1423 /* TODO */
1424 return 0x0000;
1425 case MUSB_HDRC_TXFIFOADDR:
1426 return s->ep[s->idx].fifoaddr[0];
1427 case MUSB_HDRC_RXFIFOADDR:
1428 return s->ep[s->idx].fifoaddr[1];
1429
1430 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1431 return musb_ep_readh(s, s->idx, addr & 0xf);
1432
1433 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1434 ep = (addr >> 3) & 0xf;
1435 return musb_busctl_readh(s, ep, addr & 0x7);
1436
1437 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1438 ep = (addr >> 4) & 0xf;
1439 return musb_ep_readh(s, ep, addr & 0xf);
1440
1441 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1442 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1443 return (musb_read_fifo(s->ep + ep) | musb_read_fifo(s->ep + ep) << 8);
1444
1445 default:
1446 return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8);
1447 };
1448 }
1449
musb_writeh(void * opaque,hwaddr addr,uint32_t value)1450 static void musb_writeh(void *opaque, hwaddr addr, uint32_t value)
1451 {
1452 MUSBState *s = (MUSBState *) opaque;
1453 int ep;
1454
1455 switch (addr) {
1456 case MUSB_HDRC_INTRTXE:
1457 s->tx_mask = value;
1458 /* XXX: the masks seem to apply on the raising edge like with
1459 * edge-triggered interrupts, thus no need to update. I may be
1460 * wrong though. */
1461 break;
1462 case MUSB_HDRC_INTRRXE:
1463 s->rx_mask = value;
1464 break;
1465
1466 case MUSB_HDRC_FRAME:
1467 /* TODO */
1468 break;
1469 case MUSB_HDRC_TXFIFOADDR:
1470 s->ep[s->idx].fifoaddr[0] = value;
1471 s->ep[s->idx].buf[0] =
1472 s->buf + ((value << 3) & 0x7ff );
1473 break;
1474 case MUSB_HDRC_RXFIFOADDR:
1475 s->ep[s->idx].fifoaddr[1] = value;
1476 s->ep[s->idx].buf[1] =
1477 s->buf + ((value << 3) & 0x7ff);
1478 break;
1479
1480 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1481 musb_ep_writeh(s, s->idx, addr & 0xf, value);
1482 break;
1483
1484 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1485 ep = (addr >> 3) & 0xf;
1486 musb_busctl_writeh(s, ep, addr & 0x7, value);
1487 break;
1488
1489 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1490 ep = (addr >> 4) & 0xf;
1491 musb_ep_writeh(s, ep, addr & 0xf, value);
1492 break;
1493
1494 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1495 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1496 musb_write_fifo(s->ep + ep, value & 0xff);
1497 musb_write_fifo(s->ep + ep, (value >> 8) & 0xff);
1498 break;
1499
1500 default:
1501 musb_writeb(s, addr, value & 0xff);
1502 musb_writeb(s, addr | 1, value >> 8);
1503 };
1504 }
1505
musb_readw(void * opaque,hwaddr addr)1506 static uint32_t musb_readw(void *opaque, hwaddr addr)
1507 {
1508 MUSBState *s = (MUSBState *) opaque;
1509 int ep;
1510
1511 switch (addr) {
1512 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1513 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1514 return ( musb_read_fifo(s->ep + ep) |
1515 musb_read_fifo(s->ep + ep) << 8 |
1516 musb_read_fifo(s->ep + ep) << 16 |
1517 musb_read_fifo(s->ep + ep) << 24 );
1518 default:
1519 TRACE("unknown register 0x%02x", (int) addr);
1520 return 0x00000000;
1521 };
1522 }
1523
musb_writew(void * opaque,hwaddr addr,uint32_t value)1524 static void musb_writew(void *opaque, hwaddr addr, uint32_t value)
1525 {
1526 MUSBState *s = (MUSBState *) opaque;
1527 int ep;
1528
1529 switch (addr) {
1530 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1531 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1532 musb_write_fifo(s->ep + ep, value & 0xff);
1533 musb_write_fifo(s->ep + ep, (value >> 8 ) & 0xff);
1534 musb_write_fifo(s->ep + ep, (value >> 16) & 0xff);
1535 musb_write_fifo(s->ep + ep, (value >> 24) & 0xff);
1536 break;
1537 default:
1538 TRACE("unknown register 0x%02x", (int) addr);
1539 break;
1540 };
1541 }
1542
1543 MUSBReadFunc * const musb_read[] = {
1544 musb_readb,
1545 musb_readh,
1546 musb_readw,
1547 };
1548
1549 MUSBWriteFunc * const musb_write[] = {
1550 musb_writeb,
1551 musb_writeh,
1552 musb_writew,
1553 };
1554