xref: /openbmc/linux/fs/f2fs/f2fs.h (revision ecf4e678)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78 
79 /* maximum retry count for injected failure */
80 #define DEFAULT_FAILURE_RETRY_COUNT		8
81 #else
82 #define DEFAULT_FAILURE_RETRY_COUNT		1
83 #endif
84 
85 /*
86  * For mount options
87  */
88 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
89 #define F2FS_MOUNT_DISCARD		0x00000002
90 #define F2FS_MOUNT_NOHEAP		0x00000004
91 #define F2FS_MOUNT_XATTR_USER		0x00000008
92 #define F2FS_MOUNT_POSIX_ACL		0x00000010
93 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
94 #define F2FS_MOUNT_INLINE_XATTR		0x00000040
95 #define F2FS_MOUNT_INLINE_DATA		0x00000080
96 #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
97 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
98 #define F2FS_MOUNT_NOBARRIER		0x00000400
99 #define F2FS_MOUNT_FASTBOOT		0x00000800
100 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
101 #define F2FS_MOUNT_DATA_FLUSH		0x00002000
102 #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
103 #define F2FS_MOUNT_USRQUOTA		0x00008000
104 #define F2FS_MOUNT_GRPQUOTA		0x00010000
105 #define F2FS_MOUNT_PRJQUOTA		0x00020000
106 #define F2FS_MOUNT_QUOTA		0x00040000
107 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
108 #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
109 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
110 #define F2FS_MOUNT_NORECOVERY		0x00400000
111 #define F2FS_MOUNT_ATGC			0x00800000
112 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
113 #define	F2FS_MOUNT_GC_MERGE		0x02000000
114 #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
115 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
116 
117 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
118 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
119 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
120 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
121 
122 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
123 		typecheck(unsigned long long, b) &&			\
124 		((long long)((a) - (b)) > 0))
125 
126 typedef u32 block_t;	/*
127 			 * should not change u32, since it is the on-disk block
128 			 * address format, __le32.
129 			 */
130 typedef u32 nid_t;
131 
132 #define COMPRESS_EXT_NUM		16
133 
134 /*
135  * An implementation of an rwsem that is explicitly unfair to readers. This
136  * prevents priority inversion when a low-priority reader acquires the read lock
137  * while sleeping on the write lock but the write lock is needed by
138  * higher-priority clients.
139  */
140 
141 struct f2fs_rwsem {
142         struct rw_semaphore internal_rwsem;
143 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
144         wait_queue_head_t read_waiters;
145 #endif
146 };
147 
148 struct f2fs_mount_info {
149 	unsigned int opt;
150 	block_t root_reserved_blocks;	/* root reserved blocks */
151 	kuid_t s_resuid;		/* reserved blocks for uid */
152 	kgid_t s_resgid;		/* reserved blocks for gid */
153 	int active_logs;		/* # of active logs */
154 	int inline_xattr_size;		/* inline xattr size */
155 #ifdef CONFIG_F2FS_FAULT_INJECTION
156 	struct f2fs_fault_info fault_info;	/* For fault injection */
157 #endif
158 #ifdef CONFIG_QUOTA
159 	/* Names of quota files with journalled quota */
160 	char *s_qf_names[MAXQUOTAS];
161 	int s_jquota_fmt;			/* Format of quota to use */
162 #endif
163 	/* For which write hints are passed down to block layer */
164 	int alloc_mode;			/* segment allocation policy */
165 	int fsync_mode;			/* fsync policy */
166 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
167 	int bggc_mode;			/* bggc mode: off, on or sync */
168 	int memory_mode;		/* memory mode */
169 	int errors;			/* errors parameter */
170 	int discard_unit;		/*
171 					 * discard command's offset/size should
172 					 * be aligned to this unit: block,
173 					 * segment or section
174 					 */
175 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
176 	block_t unusable_cap_perc;	/* percentage for cap */
177 	block_t unusable_cap;		/* Amount of space allowed to be
178 					 * unusable when disabling checkpoint
179 					 */
180 
181 	/* For compression */
182 	unsigned char compress_algorithm;	/* algorithm type */
183 	unsigned char compress_log_size;	/* cluster log size */
184 	unsigned char compress_level;		/* compress level */
185 	bool compress_chksum;			/* compressed data chksum */
186 	unsigned char compress_ext_cnt;		/* extension count */
187 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
188 	int compress_mode;			/* compression mode */
189 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
190 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
191 };
192 
193 #define F2FS_FEATURE_ENCRYPT			0x00000001
194 #define F2FS_FEATURE_BLKZONED			0x00000002
195 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
196 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
197 #define F2FS_FEATURE_PRJQUOTA			0x00000010
198 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
199 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
200 #define F2FS_FEATURE_QUOTA_INO			0x00000080
201 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
202 #define F2FS_FEATURE_LOST_FOUND			0x00000200
203 #define F2FS_FEATURE_VERITY			0x00000400
204 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
205 #define F2FS_FEATURE_CASEFOLD			0x00001000
206 #define F2FS_FEATURE_COMPRESSION		0x00002000
207 #define F2FS_FEATURE_RO				0x00004000
208 
209 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
210 	((raw_super->feature & cpu_to_le32(mask)) != 0)
211 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
212 
213 /*
214  * Default values for user and/or group using reserved blocks
215  */
216 #define	F2FS_DEF_RESUID		0
217 #define	F2FS_DEF_RESGID		0
218 
219 /*
220  * For checkpoint manager
221  */
222 enum {
223 	NAT_BITMAP,
224 	SIT_BITMAP
225 };
226 
227 #define	CP_UMOUNT	0x00000001
228 #define	CP_FASTBOOT	0x00000002
229 #define	CP_SYNC		0x00000004
230 #define	CP_RECOVERY	0x00000008
231 #define	CP_DISCARD	0x00000010
232 #define CP_TRIMMED	0x00000020
233 #define CP_PAUSE	0x00000040
234 #define CP_RESIZE 	0x00000080
235 
236 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
237 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
238 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
239 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
240 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
241 #define DEF_CP_INTERVAL			60	/* 60 secs */
242 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
243 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
244 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
245 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
246 
247 struct cp_control {
248 	int reason;
249 	__u64 trim_start;
250 	__u64 trim_end;
251 	__u64 trim_minlen;
252 };
253 
254 /*
255  * indicate meta/data type
256  */
257 enum {
258 	META_CP,
259 	META_NAT,
260 	META_SIT,
261 	META_SSA,
262 	META_MAX,
263 	META_POR,
264 	DATA_GENERIC,		/* check range only */
265 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
266 	DATA_GENERIC_ENHANCE_READ,	/*
267 					 * strong check on range and segment
268 					 * bitmap but no warning due to race
269 					 * condition of read on truncated area
270 					 * by extent_cache
271 					 */
272 	DATA_GENERIC_ENHANCE_UPDATE,	/*
273 					 * strong check on range and segment
274 					 * bitmap for update case
275 					 */
276 	META_GENERIC,
277 };
278 
279 /* for the list of ino */
280 enum {
281 	ORPHAN_INO,		/* for orphan ino list */
282 	APPEND_INO,		/* for append ino list */
283 	UPDATE_INO,		/* for update ino list */
284 	TRANS_DIR_INO,		/* for transactions dir ino list */
285 	XATTR_DIR_INO,		/* for xattr updated dir ino list */
286 	FLUSH_INO,		/* for multiple device flushing */
287 	MAX_INO_ENTRY,		/* max. list */
288 };
289 
290 struct ino_entry {
291 	struct list_head list;		/* list head */
292 	nid_t ino;			/* inode number */
293 	unsigned int dirty_device;	/* dirty device bitmap */
294 };
295 
296 /* for the list of inodes to be GCed */
297 struct inode_entry {
298 	struct list_head list;	/* list head */
299 	struct inode *inode;	/* vfs inode pointer */
300 };
301 
302 struct fsync_node_entry {
303 	struct list_head list;	/* list head */
304 	struct page *page;	/* warm node page pointer */
305 	unsigned int seq_id;	/* sequence id */
306 };
307 
308 struct ckpt_req {
309 	struct completion wait;		/* completion for checkpoint done */
310 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
311 	int ret;			/* return code of checkpoint */
312 	ktime_t queue_time;		/* request queued time */
313 };
314 
315 struct ckpt_req_control {
316 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
317 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
318 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
319 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
320 	atomic_t total_ckpt;		/* # of total ckpts */
321 	atomic_t queued_ckpt;		/* # of queued ckpts */
322 	struct llist_head issue_list;	/* list for command issue */
323 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
324 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
325 	unsigned int peak_time;		/* peak wait time in msec until now */
326 };
327 
328 /* for the bitmap indicate blocks to be discarded */
329 struct discard_entry {
330 	struct list_head list;	/* list head */
331 	block_t start_blkaddr;	/* start blockaddr of current segment */
332 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
333 };
334 
335 /* minimum discard granularity, unit: block count */
336 #define MIN_DISCARD_GRANULARITY		1
337 /* default discard granularity of inner discard thread, unit: block count */
338 #define DEFAULT_DISCARD_GRANULARITY		16
339 /* default maximum discard granularity of ordered discard, unit: block count */
340 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
341 
342 /* max discard pend list number */
343 #define MAX_PLIST_NUM		512
344 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
345 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
346 
347 enum {
348 	D_PREP,			/* initial */
349 	D_PARTIAL,		/* partially submitted */
350 	D_SUBMIT,		/* all submitted */
351 	D_DONE,			/* finished */
352 };
353 
354 struct discard_info {
355 	block_t lstart;			/* logical start address */
356 	block_t len;			/* length */
357 	block_t start;			/* actual start address in dev */
358 };
359 
360 struct discard_cmd {
361 	struct rb_node rb_node;		/* rb node located in rb-tree */
362 	struct discard_info di;		/* discard info */
363 	struct list_head list;		/* command list */
364 	struct completion wait;		/* compleation */
365 	struct block_device *bdev;	/* bdev */
366 	unsigned short ref;		/* reference count */
367 	unsigned char state;		/* state */
368 	unsigned char queued;		/* queued discard */
369 	int error;			/* bio error */
370 	spinlock_t lock;		/* for state/bio_ref updating */
371 	unsigned short bio_ref;		/* bio reference count */
372 };
373 
374 enum {
375 	DPOLICY_BG,
376 	DPOLICY_FORCE,
377 	DPOLICY_FSTRIM,
378 	DPOLICY_UMOUNT,
379 	MAX_DPOLICY,
380 };
381 
382 struct discard_policy {
383 	int type;			/* type of discard */
384 	unsigned int min_interval;	/* used for candidates exist */
385 	unsigned int mid_interval;	/* used for device busy */
386 	unsigned int max_interval;	/* used for candidates not exist */
387 	unsigned int max_requests;	/* # of discards issued per round */
388 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
389 	bool io_aware;			/* issue discard in idle time */
390 	bool sync;			/* submit discard with REQ_SYNC flag */
391 	bool ordered;			/* issue discard by lba order */
392 	bool timeout;			/* discard timeout for put_super */
393 	unsigned int granularity;	/* discard granularity */
394 };
395 
396 struct discard_cmd_control {
397 	struct task_struct *f2fs_issue_discard;	/* discard thread */
398 	struct list_head entry_list;		/* 4KB discard entry list */
399 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
400 	struct list_head wait_list;		/* store on-flushing entries */
401 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
402 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
403 	struct mutex cmd_lock;
404 	unsigned int nr_discards;		/* # of discards in the list */
405 	unsigned int max_discards;		/* max. discards to be issued */
406 	unsigned int max_discard_request;	/* max. discard request per round */
407 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
408 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
409 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
410 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
411 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
412 	unsigned int discard_granularity;	/* discard granularity */
413 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
414 	unsigned int undiscard_blks;		/* # of undiscard blocks */
415 	unsigned int next_pos;			/* next discard position */
416 	atomic_t issued_discard;		/* # of issued discard */
417 	atomic_t queued_discard;		/* # of queued discard */
418 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
419 	struct rb_root_cached root;		/* root of discard rb-tree */
420 	bool rbtree_check;			/* config for consistence check */
421 	bool discard_wake;			/* to wake up discard thread */
422 };
423 
424 /* for the list of fsync inodes, used only during recovery */
425 struct fsync_inode_entry {
426 	struct list_head list;	/* list head */
427 	struct inode *inode;	/* vfs inode pointer */
428 	block_t blkaddr;	/* block address locating the last fsync */
429 	block_t last_dentry;	/* block address locating the last dentry */
430 };
431 
432 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
433 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
434 
435 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
436 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
437 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
438 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
439 
440 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
441 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
442 
update_nats_in_cursum(struct f2fs_journal * journal,int i)443 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
444 {
445 	int before = nats_in_cursum(journal);
446 
447 	journal->n_nats = cpu_to_le16(before + i);
448 	return before;
449 }
450 
update_sits_in_cursum(struct f2fs_journal * journal,int i)451 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
452 {
453 	int before = sits_in_cursum(journal);
454 
455 	journal->n_sits = cpu_to_le16(before + i);
456 	return before;
457 }
458 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)459 static inline bool __has_cursum_space(struct f2fs_journal *journal,
460 							int size, int type)
461 {
462 	if (type == NAT_JOURNAL)
463 		return size <= MAX_NAT_JENTRIES(journal);
464 	return size <= MAX_SIT_JENTRIES(journal);
465 }
466 
467 /* for inline stuff */
468 #define DEF_INLINE_RESERVED_SIZE	1
469 static inline int get_extra_isize(struct inode *inode);
470 static inline int get_inline_xattr_addrs(struct inode *inode);
471 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
472 				(CUR_ADDRS_PER_INODE(inode) -		\
473 				get_inline_xattr_addrs(inode) -	\
474 				DEF_INLINE_RESERVED_SIZE))
475 
476 /* for inline dir */
477 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
478 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
479 				BITS_PER_BYTE + 1))
480 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
481 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
482 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
483 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
484 				NR_INLINE_DENTRY(inode) + \
485 				INLINE_DENTRY_BITMAP_SIZE(inode)))
486 
487 /*
488  * For INODE and NODE manager
489  */
490 /* for directory operations */
491 
492 struct f2fs_filename {
493 	/*
494 	 * The filename the user specified.  This is NULL for some
495 	 * filesystem-internal operations, e.g. converting an inline directory
496 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
497 	 */
498 	const struct qstr *usr_fname;
499 
500 	/*
501 	 * The on-disk filename.  For encrypted directories, this is encrypted.
502 	 * This may be NULL for lookups in an encrypted dir without the key.
503 	 */
504 	struct fscrypt_str disk_name;
505 
506 	/* The dirhash of this filename */
507 	f2fs_hash_t hash;
508 
509 #ifdef CONFIG_FS_ENCRYPTION
510 	/*
511 	 * For lookups in encrypted directories: either the buffer backing
512 	 * disk_name, or a buffer that holds the decoded no-key name.
513 	 */
514 	struct fscrypt_str crypto_buf;
515 #endif
516 #if IS_ENABLED(CONFIG_UNICODE)
517 	/*
518 	 * For casefolded directories: the casefolded name, but it's left NULL
519 	 * if the original name is not valid Unicode, if the original name is
520 	 * "." or "..", if the directory is both casefolded and encrypted and
521 	 * its encryption key is unavailable, or if the filesystem is doing an
522 	 * internal operation where usr_fname is also NULL.  In all these cases
523 	 * we fall back to treating the name as an opaque byte sequence.
524 	 */
525 	struct fscrypt_str cf_name;
526 #endif
527 };
528 
529 struct f2fs_dentry_ptr {
530 	struct inode *inode;
531 	void *bitmap;
532 	struct f2fs_dir_entry *dentry;
533 	__u8 (*filename)[F2FS_SLOT_LEN];
534 	int max;
535 	int nr_bitmap;
536 };
537 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)538 static inline void make_dentry_ptr_block(struct inode *inode,
539 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
540 {
541 	d->inode = inode;
542 	d->max = NR_DENTRY_IN_BLOCK;
543 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
544 	d->bitmap = t->dentry_bitmap;
545 	d->dentry = t->dentry;
546 	d->filename = t->filename;
547 }
548 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)549 static inline void make_dentry_ptr_inline(struct inode *inode,
550 					struct f2fs_dentry_ptr *d, void *t)
551 {
552 	int entry_cnt = NR_INLINE_DENTRY(inode);
553 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
554 	int reserved_size = INLINE_RESERVED_SIZE(inode);
555 
556 	d->inode = inode;
557 	d->max = entry_cnt;
558 	d->nr_bitmap = bitmap_size;
559 	d->bitmap = t;
560 	d->dentry = t + bitmap_size + reserved_size;
561 	d->filename = t + bitmap_size + reserved_size +
562 					SIZE_OF_DIR_ENTRY * entry_cnt;
563 }
564 
565 /*
566  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
567  * as its node offset to distinguish from index node blocks.
568  * But some bits are used to mark the node block.
569  */
570 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
571 				>> OFFSET_BIT_SHIFT)
572 enum {
573 	ALLOC_NODE,			/* allocate a new node page if needed */
574 	LOOKUP_NODE,			/* look up a node without readahead */
575 	LOOKUP_NODE_RA,			/*
576 					 * look up a node with readahead called
577 					 * by get_data_block.
578 					 */
579 };
580 
581 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
582 
583 /* congestion wait timeout value, default: 20ms */
584 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
585 
586 /* maximum retry quota flush count */
587 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
588 
589 /* maximum retry of EIO'ed page */
590 #define MAX_RETRY_PAGE_EIO			100
591 
592 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
593 
594 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
595 
596 /* dirty segments threshold for triggering CP */
597 #define DEFAULT_DIRTY_THRESHOLD		4
598 
599 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
600 #define RECOVERY_MIN_RA_BLOCKS		1
601 
602 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
603 
604 /* for in-memory extent cache entry */
605 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
606 
607 /* number of extent info in extent cache we try to shrink */
608 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
609 
610 /* number of age extent info in extent cache we try to shrink */
611 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
612 #define LAST_AGE_WEIGHT			30
613 #define SAME_AGE_REGION			1024
614 
615 /*
616  * Define data block with age less than 1GB as hot data
617  * define data block with age less than 10GB but more than 1GB as warm data
618  */
619 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
620 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
621 
622 /* extent cache type */
623 enum extent_type {
624 	EX_READ,
625 	EX_BLOCK_AGE,
626 	NR_EXTENT_CACHES,
627 };
628 
629 struct extent_info {
630 	unsigned int fofs;		/* start offset in a file */
631 	unsigned int len;		/* length of the extent */
632 	union {
633 		/* read extent_cache */
634 		struct {
635 			/* start block address of the extent */
636 			block_t blk;
637 #ifdef CONFIG_F2FS_FS_COMPRESSION
638 			/* physical extent length of compressed blocks */
639 			unsigned int c_len;
640 #endif
641 		};
642 		/* block age extent_cache */
643 		struct {
644 			/* block age of the extent */
645 			unsigned long long age;
646 			/* last total blocks allocated */
647 			unsigned long long last_blocks;
648 		};
649 	};
650 };
651 
652 struct extent_node {
653 	struct rb_node rb_node;		/* rb node located in rb-tree */
654 	struct extent_info ei;		/* extent info */
655 	struct list_head list;		/* node in global extent list of sbi */
656 	struct extent_tree *et;		/* extent tree pointer */
657 };
658 
659 struct extent_tree {
660 	nid_t ino;			/* inode number */
661 	enum extent_type type;		/* keep the extent tree type */
662 	struct rb_root_cached root;	/* root of extent info rb-tree */
663 	struct extent_node *cached_en;	/* recently accessed extent node */
664 	struct list_head list;		/* to be used by sbi->zombie_list */
665 	rwlock_t lock;			/* protect extent info rb-tree */
666 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
667 	bool largest_updated;		/* largest extent updated */
668 	struct extent_info largest;	/* largest cached extent for EX_READ */
669 };
670 
671 struct extent_tree_info {
672 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
673 	struct mutex extent_tree_lock;	/* locking extent radix tree */
674 	struct list_head extent_list;		/* lru list for shrinker */
675 	spinlock_t extent_lock;			/* locking extent lru list */
676 	atomic_t total_ext_tree;		/* extent tree count */
677 	struct list_head zombie_list;		/* extent zombie tree list */
678 	atomic_t total_zombie_tree;		/* extent zombie tree count */
679 	atomic_t total_ext_node;		/* extent info count */
680 };
681 
682 /*
683  * State of block returned by f2fs_map_blocks.
684  */
685 #define F2FS_MAP_NEW		(1U << 0)
686 #define F2FS_MAP_MAPPED		(1U << 1)
687 #define F2FS_MAP_DELALLOC	(1U << 2)
688 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
689 				F2FS_MAP_DELALLOC)
690 
691 struct f2fs_map_blocks {
692 	struct block_device *m_bdev;	/* for multi-device dio */
693 	block_t m_pblk;
694 	block_t m_lblk;
695 	unsigned int m_len;
696 	unsigned int m_flags;
697 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
698 	pgoff_t *m_next_extent;		/* point to next possible extent */
699 	int m_seg_type;
700 	bool m_may_create;		/* indicate it is from write path */
701 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
702 };
703 
704 /* for flag in get_data_block */
705 enum {
706 	F2FS_GET_BLOCK_DEFAULT,
707 	F2FS_GET_BLOCK_FIEMAP,
708 	F2FS_GET_BLOCK_BMAP,
709 	F2FS_GET_BLOCK_DIO,
710 	F2FS_GET_BLOCK_PRE_DIO,
711 	F2FS_GET_BLOCK_PRE_AIO,
712 	F2FS_GET_BLOCK_PRECACHE,
713 };
714 
715 /*
716  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
717  */
718 #define FADVISE_COLD_BIT	0x01
719 #define FADVISE_LOST_PINO_BIT	0x02
720 #define FADVISE_ENCRYPT_BIT	0x04
721 #define FADVISE_ENC_NAME_BIT	0x08
722 #define FADVISE_KEEP_SIZE_BIT	0x10
723 #define FADVISE_HOT_BIT		0x20
724 #define FADVISE_VERITY_BIT	0x40
725 #define FADVISE_TRUNC_BIT	0x80
726 
727 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
728 
729 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
730 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
731 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
732 
733 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
734 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
735 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
736 
737 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
738 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
739 
740 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
741 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
742 
743 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
744 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
745 
746 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
747 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
748 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
749 
750 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
751 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
752 
753 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
754 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
755 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
756 
757 #define DEF_DIR_LEVEL		0
758 
759 enum {
760 	GC_FAILURE_PIN,
761 	MAX_GC_FAILURE
762 };
763 
764 /* used for f2fs_inode_info->flags */
765 enum {
766 	FI_NEW_INODE,		/* indicate newly allocated inode */
767 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
768 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
769 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
770 	FI_INC_LINK,		/* need to increment i_nlink */
771 	FI_ACL_MODE,		/* indicate acl mode */
772 	FI_NO_ALLOC,		/* should not allocate any blocks */
773 	FI_FREE_NID,		/* free allocated nide */
774 	FI_NO_EXTENT,		/* not to use the extent cache */
775 	FI_INLINE_XATTR,	/* used for inline xattr */
776 	FI_INLINE_DATA,		/* used for inline data*/
777 	FI_INLINE_DENTRY,	/* used for inline dentry */
778 	FI_APPEND_WRITE,	/* inode has appended data */
779 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
780 	FI_NEED_IPU,		/* used for ipu per file */
781 	FI_ATOMIC_FILE,		/* indicate atomic file */
782 	FI_DATA_EXIST,		/* indicate data exists */
783 	FI_SKIP_WRITES,		/* should skip data page writeback */
784 	FI_OPU_WRITE,		/* used for opu per file */
785 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
786 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
787 	FI_HOT_DATA,		/* indicate file is hot */
788 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
789 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
790 	FI_PIN_FILE,		/* indicate file should not be gced */
791 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
792 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
793 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
794 	FI_MMAP_FILE,		/* indicate file was mmapped */
795 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
796 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
797 	FI_ALIGNED_WRITE,	/* enable aligned write */
798 	FI_COW_FILE,		/* indicate COW file */
799 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
800 	FI_ATOMIC_DIRTIED,	/* indicate atomic file is dirtied */
801 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
802 	FI_OPENED_FILE,		/* indicate file has been opened */
803 	FI_MAX,			/* max flag, never be used */
804 };
805 
806 struct f2fs_inode_info {
807 	struct inode vfs_inode;		/* serve a vfs inode */
808 	unsigned long i_flags;		/* keep an inode flags for ioctl */
809 	unsigned char i_advise;		/* use to give file attribute hints */
810 	unsigned char i_dir_level;	/* use for dentry level for large dir */
811 	unsigned int i_current_depth;	/* only for directory depth */
812 	/* for gc failure statistic */
813 	unsigned int i_gc_failures[MAX_GC_FAILURE];
814 	unsigned int i_pino;		/* parent inode number */
815 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
816 
817 	/* Use below internally in f2fs*/
818 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
819 	struct f2fs_rwsem i_sem;	/* protect fi info */
820 	atomic_t dirty_pages;		/* # of dirty pages */
821 	f2fs_hash_t chash;		/* hash value of given file name */
822 	unsigned int clevel;		/* maximum level of given file name */
823 	struct task_struct *task;	/* lookup and create consistency */
824 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
825 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
826 	nid_t i_xattr_nid;		/* node id that contains xattrs */
827 	loff_t	last_disk_size;		/* lastly written file size */
828 	spinlock_t i_size_lock;		/* protect last_disk_size */
829 
830 #ifdef CONFIG_QUOTA
831 	struct dquot __rcu *i_dquot[MAXQUOTAS];
832 
833 	/* quota space reservation, managed internally by quota code */
834 	qsize_t i_reserved_quota;
835 #endif
836 	struct list_head dirty_list;	/* dirty list for dirs and files */
837 	struct list_head gdirty_list;	/* linked in global dirty list */
838 	struct task_struct *atomic_write_task;	/* store atomic write task */
839 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
840 					/* cached extent_tree entry */
841 	union {
842 		struct inode *cow_inode;	/* copy-on-write inode for atomic write */
843 		struct inode *atomic_inode;
844 					/* point to atomic_inode, available only for cow_inode */
845 	};
846 
847 	/* avoid racing between foreground op and gc */
848 	struct f2fs_rwsem i_gc_rwsem[2];
849 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
850 
851 	int i_extra_isize;		/* size of extra space located in i_addr */
852 	kprojid_t i_projid;		/* id for project quota */
853 	int i_inline_xattr_size;	/* inline xattr size */
854 	struct timespec64 i_crtime;	/* inode creation time */
855 	struct timespec64 i_disk_time[3];/* inode disk times */
856 
857 	/* for file compress */
858 	atomic_t i_compr_blocks;		/* # of compressed blocks */
859 	unsigned char i_compress_algorithm;	/* algorithm type */
860 	unsigned char i_log_cluster_size;	/* log of cluster size */
861 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
862 	unsigned char i_compress_flag;		/* compress flag */
863 	unsigned int i_cluster_size;		/* cluster size */
864 
865 	unsigned int atomic_write_cnt;
866 	loff_t original_i_size;		/* original i_size before atomic write */
867 };
868 
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)869 static inline void get_read_extent_info(struct extent_info *ext,
870 					struct f2fs_extent *i_ext)
871 {
872 	ext->fofs = le32_to_cpu(i_ext->fofs);
873 	ext->blk = le32_to_cpu(i_ext->blk);
874 	ext->len = le32_to_cpu(i_ext->len);
875 }
876 
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)877 static inline void set_raw_read_extent(struct extent_info *ext,
878 					struct f2fs_extent *i_ext)
879 {
880 	i_ext->fofs = cpu_to_le32(ext->fofs);
881 	i_ext->blk = cpu_to_le32(ext->blk);
882 	i_ext->len = cpu_to_le32(ext->len);
883 }
884 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)885 static inline bool __is_discard_mergeable(struct discard_info *back,
886 			struct discard_info *front, unsigned int max_len)
887 {
888 	return (back->lstart + back->len == front->lstart) &&
889 		(back->len + front->len <= max_len);
890 }
891 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)892 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
893 			struct discard_info *back, unsigned int max_len)
894 {
895 	return __is_discard_mergeable(back, cur, max_len);
896 }
897 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)898 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
899 			struct discard_info *front, unsigned int max_len)
900 {
901 	return __is_discard_mergeable(cur, front, max_len);
902 }
903 
904 /*
905  * For free nid management
906  */
907 enum nid_state {
908 	FREE_NID,		/* newly added to free nid list */
909 	PREALLOC_NID,		/* it is preallocated */
910 	MAX_NID_STATE,
911 };
912 
913 enum nat_state {
914 	TOTAL_NAT,
915 	DIRTY_NAT,
916 	RECLAIMABLE_NAT,
917 	MAX_NAT_STATE,
918 };
919 
920 struct f2fs_nm_info {
921 	block_t nat_blkaddr;		/* base disk address of NAT */
922 	nid_t max_nid;			/* maximum possible node ids */
923 	nid_t available_nids;		/* # of available node ids */
924 	nid_t next_scan_nid;		/* the next nid to be scanned */
925 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
926 	unsigned int ram_thresh;	/* control the memory footprint */
927 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
928 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
929 
930 	/* NAT cache management */
931 	struct radix_tree_root nat_root;/* root of the nat entry cache */
932 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
933 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
934 	struct list_head nat_entries;	/* cached nat entry list (clean) */
935 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
936 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
937 	unsigned int nat_blocks;	/* # of nat blocks */
938 
939 	/* free node ids management */
940 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
941 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
942 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
943 	spinlock_t nid_list_lock;	/* protect nid lists ops */
944 	struct mutex build_lock;	/* lock for build free nids */
945 	unsigned char **free_nid_bitmap;
946 	unsigned char *nat_block_bitmap;
947 	unsigned short *free_nid_count;	/* free nid count of NAT block */
948 
949 	/* for checkpoint */
950 	char *nat_bitmap;		/* NAT bitmap pointer */
951 
952 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
953 	unsigned char *nat_bits;	/* NAT bits blocks */
954 	unsigned char *full_nat_bits;	/* full NAT pages */
955 	unsigned char *empty_nat_bits;	/* empty NAT pages */
956 #ifdef CONFIG_F2FS_CHECK_FS
957 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
958 #endif
959 	int bitmap_size;		/* bitmap size */
960 };
961 
962 /*
963  * this structure is used as one of function parameters.
964  * all the information are dedicated to a given direct node block determined
965  * by the data offset in a file.
966  */
967 struct dnode_of_data {
968 	struct inode *inode;		/* vfs inode pointer */
969 	struct page *inode_page;	/* its inode page, NULL is possible */
970 	struct page *node_page;		/* cached direct node page */
971 	nid_t nid;			/* node id of the direct node block */
972 	unsigned int ofs_in_node;	/* data offset in the node page */
973 	bool inode_page_locked;		/* inode page is locked or not */
974 	bool node_changed;		/* is node block changed */
975 	char cur_level;			/* level of hole node page */
976 	char max_level;			/* level of current page located */
977 	block_t	data_blkaddr;		/* block address of the node block */
978 };
979 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)980 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
981 		struct page *ipage, struct page *npage, nid_t nid)
982 {
983 	memset(dn, 0, sizeof(*dn));
984 	dn->inode = inode;
985 	dn->inode_page = ipage;
986 	dn->node_page = npage;
987 	dn->nid = nid;
988 }
989 
990 /*
991  * For SIT manager
992  *
993  * By default, there are 6 active log areas across the whole main area.
994  * When considering hot and cold data separation to reduce cleaning overhead,
995  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
996  * respectively.
997  * In the current design, you should not change the numbers intentionally.
998  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
999  * logs individually according to the underlying devices. (default: 6)
1000  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1001  * data and 8 for node logs.
1002  */
1003 #define	NR_CURSEG_DATA_TYPE	(3)
1004 #define NR_CURSEG_NODE_TYPE	(3)
1005 #define NR_CURSEG_INMEM_TYPE	(2)
1006 #define NR_CURSEG_RO_TYPE	(2)
1007 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1008 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1009 
1010 enum {
1011 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1012 	CURSEG_WARM_DATA,	/* data blocks */
1013 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1014 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1015 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1016 	CURSEG_COLD_NODE,	/* indirect node blocks */
1017 	NR_PERSISTENT_LOG,	/* number of persistent log */
1018 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1019 				/* pinned file that needs consecutive block address */
1020 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1021 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1022 };
1023 
1024 struct flush_cmd {
1025 	struct completion wait;
1026 	struct llist_node llnode;
1027 	nid_t ino;
1028 	int ret;
1029 };
1030 
1031 struct flush_cmd_control {
1032 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1033 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1034 	atomic_t issued_flush;			/* # of issued flushes */
1035 	atomic_t queued_flush;			/* # of queued flushes */
1036 	struct llist_head issue_list;		/* list for command issue */
1037 	struct llist_node *dispatch_list;	/* list for command dispatch */
1038 };
1039 
1040 struct f2fs_sm_info {
1041 	struct sit_info *sit_info;		/* whole segment information */
1042 	struct free_segmap_info *free_info;	/* free segment information */
1043 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1044 	struct curseg_info *curseg_array;	/* active segment information */
1045 
1046 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1047 
1048 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1049 	block_t main_blkaddr;		/* start block address of main area */
1050 	block_t ssa_blkaddr;		/* start block address of SSA area */
1051 
1052 	unsigned int segment_count;	/* total # of segments */
1053 	unsigned int main_segments;	/* # of segments in main area */
1054 	unsigned int reserved_segments;	/* # of reserved segments */
1055 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1056 	unsigned int ovp_segments;	/* # of overprovision segments */
1057 
1058 	/* a threshold to reclaim prefree segments */
1059 	unsigned int rec_prefree_segments;
1060 
1061 	struct list_head sit_entry_set;	/* sit entry set list */
1062 
1063 	unsigned int ipu_policy;	/* in-place-update policy */
1064 	unsigned int min_ipu_util;	/* in-place-update threshold */
1065 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1066 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1067 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1068 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1069 
1070 	/* for flush command control */
1071 	struct flush_cmd_control *fcc_info;
1072 
1073 	/* for discard command control */
1074 	struct discard_cmd_control *dcc_info;
1075 };
1076 
1077 /*
1078  * For superblock
1079  */
1080 /*
1081  * COUNT_TYPE for monitoring
1082  *
1083  * f2fs monitors the number of several block types such as on-writeback,
1084  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1085  */
1086 #define WB_DATA_TYPE(p, f)			\
1087 	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1088 enum count_type {
1089 	F2FS_DIRTY_DENTS,
1090 	F2FS_DIRTY_DATA,
1091 	F2FS_DIRTY_QDATA,
1092 	F2FS_DIRTY_NODES,
1093 	F2FS_DIRTY_META,
1094 	F2FS_DIRTY_IMETA,
1095 	F2FS_WB_CP_DATA,
1096 	F2FS_WB_DATA,
1097 	F2FS_RD_DATA,
1098 	F2FS_RD_NODE,
1099 	F2FS_RD_META,
1100 	F2FS_DIO_WRITE,
1101 	F2FS_DIO_READ,
1102 	NR_COUNT_TYPE,
1103 };
1104 
1105 /*
1106  * The below are the page types of bios used in submit_bio().
1107  * The available types are:
1108  * DATA			User data pages. It operates as async mode.
1109  * NODE			Node pages. It operates as async mode.
1110  * META			FS metadata pages such as SIT, NAT, CP.
1111  * NR_PAGE_TYPE		The number of page types.
1112  * META_FLUSH		Make sure the previous pages are written
1113  *			with waiting the bio's completion
1114  * ...			Only can be used with META.
1115  */
1116 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1117 #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1118 enum page_type {
1119 	DATA = 0,
1120 	NODE = 1,	/* should not change this */
1121 	META,
1122 	NR_PAGE_TYPE,
1123 	META_FLUSH,
1124 	IPU,		/* the below types are used by tracepoints only. */
1125 	OPU,
1126 };
1127 
1128 enum temp_type {
1129 	HOT = 0,	/* must be zero for meta bio */
1130 	WARM,
1131 	COLD,
1132 	NR_TEMP_TYPE,
1133 };
1134 
1135 enum need_lock_type {
1136 	LOCK_REQ = 0,
1137 	LOCK_DONE,
1138 	LOCK_RETRY,
1139 };
1140 
1141 enum cp_reason_type {
1142 	CP_NO_NEEDED,
1143 	CP_NON_REGULAR,
1144 	CP_COMPRESSED,
1145 	CP_HARDLINK,
1146 	CP_SB_NEED_CP,
1147 	CP_WRONG_PINO,
1148 	CP_NO_SPC_ROLL,
1149 	CP_NODE_NEED_CP,
1150 	CP_FASTBOOT_MODE,
1151 	CP_SPEC_LOG_NUM,
1152 	CP_RECOVER_DIR,
1153 	CP_XATTR_DIR,
1154 };
1155 
1156 enum iostat_type {
1157 	/* WRITE IO */
1158 	APP_DIRECT_IO,			/* app direct write IOs */
1159 	APP_BUFFERED_IO,		/* app buffered write IOs */
1160 	APP_WRITE_IO,			/* app write IOs */
1161 	APP_MAPPED_IO,			/* app mapped IOs */
1162 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1163 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1164 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1165 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1166 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1167 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1168 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1169 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1170 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1171 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1172 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1173 
1174 	/* READ IO */
1175 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1176 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1177 	APP_READ_IO,			/* app read IOs */
1178 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1179 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1180 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1181 	FS_DATA_READ_IO,		/* data read IOs */
1182 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1183 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1184 	FS_NODE_READ_IO,		/* node read IOs */
1185 	FS_META_READ_IO,		/* meta read IOs */
1186 
1187 	/* other */
1188 	FS_DISCARD_IO,			/* discard */
1189 	FS_FLUSH_IO,			/* flush */
1190 	FS_ZONE_RESET_IO,		/* zone reset */
1191 	NR_IO_TYPE,
1192 };
1193 
1194 struct f2fs_io_info {
1195 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1196 	nid_t ino;		/* inode number */
1197 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1198 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1199 	enum req_op op;		/* contains REQ_OP_ */
1200 	blk_opf_t op_flags;	/* req_flag_bits */
1201 	block_t new_blkaddr;	/* new block address to be written */
1202 	block_t old_blkaddr;	/* old block address before Cow */
1203 	struct page *page;	/* page to be written */
1204 	struct page *encrypted_page;	/* encrypted page */
1205 	struct page *compressed_page;	/* compressed page */
1206 	struct list_head list;		/* serialize IOs */
1207 	unsigned int compr_blocks;	/* # of compressed block addresses */
1208 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1209 	unsigned int version:8;		/* version of the node */
1210 	unsigned int submitted:1;	/* indicate IO submission */
1211 	unsigned int in_list:1;		/* indicate fio is in io_list */
1212 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1213 	unsigned int encrypted:1;	/* indicate file is encrypted */
1214 	unsigned int meta_gc:1;		/* require meta inode GC */
1215 	enum iostat_type io_type;	/* io type */
1216 	struct writeback_control *io_wbc; /* writeback control */
1217 	struct bio **bio;		/* bio for ipu */
1218 	sector_t *last_block;		/* last block number in bio */
1219 };
1220 
1221 struct bio_entry {
1222 	struct bio *bio;
1223 	struct list_head list;
1224 };
1225 
1226 #define is_read_io(rw) ((rw) == READ)
1227 struct f2fs_bio_info {
1228 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1229 	struct bio *bio;		/* bios to merge */
1230 	sector_t last_block_in_bio;	/* last block number */
1231 	struct f2fs_io_info fio;	/* store buffered io info. */
1232 #ifdef CONFIG_BLK_DEV_ZONED
1233 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1234 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1235 	void *bi_private;		/* previous bi_private for pending bio */
1236 #endif
1237 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1238 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1239 	struct list_head io_list;	/* track fios */
1240 	struct list_head bio_list;	/* bio entry list head */
1241 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1242 };
1243 
1244 #define FDEV(i)				(sbi->devs[i])
1245 #define RDEV(i)				(raw_super->devs[i])
1246 struct f2fs_dev_info {
1247 	struct block_device *bdev;
1248 	char path[MAX_PATH_LEN];
1249 	unsigned int total_segments;
1250 	block_t start_blk;
1251 	block_t end_blk;
1252 #ifdef CONFIG_BLK_DEV_ZONED
1253 	unsigned int nr_blkz;		/* Total number of zones */
1254 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1255 #endif
1256 };
1257 
1258 enum inode_type {
1259 	DIR_INODE,			/* for dirty dir inode */
1260 	FILE_INODE,			/* for dirty regular/symlink inode */
1261 	DIRTY_META,			/* for all dirtied inode metadata */
1262 	NR_INODE_TYPE,
1263 };
1264 
1265 /* for inner inode cache management */
1266 struct inode_management {
1267 	struct radix_tree_root ino_root;	/* ino entry array */
1268 	spinlock_t ino_lock;			/* for ino entry lock */
1269 	struct list_head ino_list;		/* inode list head */
1270 	unsigned long ino_num;			/* number of entries */
1271 };
1272 
1273 /* for GC_AT */
1274 struct atgc_management {
1275 	bool atgc_enabled;			/* ATGC is enabled or not */
1276 	struct rb_root_cached root;		/* root of victim rb-tree */
1277 	struct list_head victim_list;		/* linked with all victim entries */
1278 	unsigned int victim_count;		/* victim count in rb-tree */
1279 	unsigned int candidate_ratio;		/* candidate ratio */
1280 	unsigned int max_candidate_count;	/* max candidate count */
1281 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1282 	unsigned long long age_threshold;	/* age threshold */
1283 };
1284 
1285 struct f2fs_gc_control {
1286 	unsigned int victim_segno;	/* target victim segment number */
1287 	int init_gc_type;		/* FG_GC or BG_GC */
1288 	bool no_bg_gc;			/* check the space and stop bg_gc */
1289 	bool should_migrate_blocks;	/* should migrate blocks */
1290 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1291 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1292 };
1293 
1294 /*
1295  * For s_flag in struct f2fs_sb_info
1296  * Modification on enum should be synchronized with s_flag array
1297  */
1298 enum {
1299 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1300 	SBI_IS_CLOSE,				/* specify unmounting */
1301 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1302 	SBI_POR_DOING,				/* recovery is doing or not */
1303 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1304 	SBI_NEED_CP,				/* need to checkpoint */
1305 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1306 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1307 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1308 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1309 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1310 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1311 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1312 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1313 	SBI_IS_FREEZING,			/* freezefs is in process */
1314 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1315 	MAX_SBI_FLAG,
1316 };
1317 
1318 enum {
1319 	CP_TIME,
1320 	REQ_TIME,
1321 	DISCARD_TIME,
1322 	GC_TIME,
1323 	DISABLE_TIME,
1324 	UMOUNT_DISCARD_TIMEOUT,
1325 	MAX_TIME,
1326 };
1327 
1328 /* Note that you need to keep synchronization with this gc_mode_names array */
1329 enum {
1330 	GC_NORMAL,
1331 	GC_IDLE_CB,
1332 	GC_IDLE_GREEDY,
1333 	GC_IDLE_AT,
1334 	GC_URGENT_HIGH,
1335 	GC_URGENT_LOW,
1336 	GC_URGENT_MID,
1337 	MAX_GC_MODE,
1338 };
1339 
1340 enum {
1341 	BGGC_MODE_ON,		/* background gc is on */
1342 	BGGC_MODE_OFF,		/* background gc is off */
1343 	BGGC_MODE_SYNC,		/*
1344 				 * background gc is on, migrating blocks
1345 				 * like foreground gc
1346 				 */
1347 };
1348 
1349 enum {
1350 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1351 	FS_MODE_LFS,			/* use lfs allocation only */
1352 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1353 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1354 };
1355 
1356 enum {
1357 	ALLOC_MODE_DEFAULT,	/* stay default */
1358 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1359 };
1360 
1361 enum fsync_mode {
1362 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1363 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1364 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1365 };
1366 
1367 enum {
1368 	COMPR_MODE_FS,		/*
1369 				 * automatically compress compression
1370 				 * enabled files
1371 				 */
1372 	COMPR_MODE_USER,	/*
1373 				 * automatical compression is disabled.
1374 				 * user can control the file compression
1375 				 * using ioctls
1376 				 */
1377 };
1378 
1379 enum {
1380 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1381 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1382 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1383 };
1384 
1385 enum {
1386 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1387 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1388 };
1389 
1390 enum errors_option {
1391 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1392 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1393 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1394 };
1395 
1396 enum {
1397 	BACKGROUND,
1398 	FOREGROUND,
1399 	MAX_CALL_TYPE,
1400 	TOTAL_CALL = FOREGROUND,
1401 };
1402 
1403 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1404 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1405 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1406 
1407 /*
1408  * Layout of f2fs page.private:
1409  *
1410  * Layout A: lowest bit should be 1
1411  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1412  * bit 0	PAGE_PRIVATE_NOT_POINTER
1413  * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1414  * bit 2	PAGE_PRIVATE_INLINE_INODE
1415  * bit 3	PAGE_PRIVATE_REF_RESOURCE
1416  * bit 4	PAGE_PRIVATE_ATOMIC_WRITE
1417  * bit 5-	f2fs private data
1418  *
1419  * Layout B: lowest bit should be 0
1420  * page.private is a wrapped pointer.
1421  */
1422 enum {
1423 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1424 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1425 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1426 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1427 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1428 	PAGE_PRIVATE_MAX
1429 };
1430 
1431 /* For compression */
1432 enum compress_algorithm_type {
1433 	COMPRESS_LZO,
1434 	COMPRESS_LZ4,
1435 	COMPRESS_ZSTD,
1436 	COMPRESS_LZORLE,
1437 	COMPRESS_MAX,
1438 };
1439 
1440 enum compress_flag {
1441 	COMPRESS_CHKSUM,
1442 	COMPRESS_MAX_FLAG,
1443 };
1444 
1445 #define	COMPRESS_WATERMARK			20
1446 #define	COMPRESS_PERCENT			20
1447 
1448 #define COMPRESS_DATA_RESERVED_SIZE		4
1449 struct compress_data {
1450 	__le32 clen;			/* compressed data size */
1451 	__le32 chksum;			/* compressed data chksum */
1452 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1453 	u8 cdata[];			/* compressed data */
1454 };
1455 
1456 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1457 
1458 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1459 
1460 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1461 
1462 #define	COMPRESS_LEVEL_OFFSET	8
1463 
1464 /* compress context */
1465 struct compress_ctx {
1466 	struct inode *inode;		/* inode the context belong to */
1467 	pgoff_t cluster_idx;		/* cluster index number */
1468 	unsigned int cluster_size;	/* page count in cluster */
1469 	unsigned int log_cluster_size;	/* log of cluster size */
1470 	struct page **rpages;		/* pages store raw data in cluster */
1471 	unsigned int nr_rpages;		/* total page number in rpages */
1472 	struct page **cpages;		/* pages store compressed data in cluster */
1473 	unsigned int nr_cpages;		/* total page number in cpages */
1474 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1475 	void *rbuf;			/* virtual mapped address on rpages */
1476 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1477 	size_t rlen;			/* valid data length in rbuf */
1478 	size_t clen;			/* valid data length in cbuf */
1479 	void *private;			/* payload buffer for specified compression algorithm */
1480 	void *private2;			/* extra payload buffer */
1481 };
1482 
1483 /* compress context for write IO path */
1484 struct compress_io_ctx {
1485 	u32 magic;			/* magic number to indicate page is compressed */
1486 	struct inode *inode;		/* inode the context belong to */
1487 	struct page **rpages;		/* pages store raw data in cluster */
1488 	unsigned int nr_rpages;		/* total page number in rpages */
1489 	atomic_t pending_pages;		/* in-flight compressed page count */
1490 };
1491 
1492 /* Context for decompressing one cluster on the read IO path */
1493 struct decompress_io_ctx {
1494 	u32 magic;			/* magic number to indicate page is compressed */
1495 	struct inode *inode;		/* inode the context belong to */
1496 	pgoff_t cluster_idx;		/* cluster index number */
1497 	unsigned int cluster_size;	/* page count in cluster */
1498 	unsigned int log_cluster_size;	/* log of cluster size */
1499 	struct page **rpages;		/* pages store raw data in cluster */
1500 	unsigned int nr_rpages;		/* total page number in rpages */
1501 	struct page **cpages;		/* pages store compressed data in cluster */
1502 	unsigned int nr_cpages;		/* total page number in cpages */
1503 	struct page **tpages;		/* temp pages to pad holes in cluster */
1504 	void *rbuf;			/* virtual mapped address on rpages */
1505 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1506 	size_t rlen;			/* valid data length in rbuf */
1507 	size_t clen;			/* valid data length in cbuf */
1508 
1509 	/*
1510 	 * The number of compressed pages remaining to be read in this cluster.
1511 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1512 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1513 	 * is decompressed (or an error is reported).
1514 	 *
1515 	 * If an error occurs before all the pages have been submitted for I/O,
1516 	 * then this will never reach 0.  In this case the I/O submitter is
1517 	 * responsible for calling f2fs_decompress_end_io() instead.
1518 	 */
1519 	atomic_t remaining_pages;
1520 
1521 	/*
1522 	 * Number of references to this decompress_io_ctx.
1523 	 *
1524 	 * One reference is held for I/O completion.  This reference is dropped
1525 	 * after the pagecache pages are updated and unlocked -- either after
1526 	 * decompression (and verity if enabled), or after an error.
1527 	 *
1528 	 * In addition, each compressed page holds a reference while it is in a
1529 	 * bio.  These references are necessary prevent compressed pages from
1530 	 * being freed while they are still in a bio.
1531 	 */
1532 	refcount_t refcnt;
1533 
1534 	bool failed;			/* IO error occurred before decompression? */
1535 	bool need_verity;		/* need fs-verity verification after decompression? */
1536 	void *private;			/* payload buffer for specified decompression algorithm */
1537 	void *private2;			/* extra payload buffer */
1538 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1539 	struct work_struct free_work;	/* work for late free this structure itself */
1540 };
1541 
1542 #define NULL_CLUSTER			((unsigned int)(~0))
1543 #define MIN_COMPRESS_LOG_SIZE		2
1544 #define MAX_COMPRESS_LOG_SIZE		8
1545 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1546 
1547 struct f2fs_sb_info {
1548 	struct super_block *sb;			/* pointer to VFS super block */
1549 	struct proc_dir_entry *s_proc;		/* proc entry */
1550 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1551 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1552 	int valid_super_block;			/* valid super block no */
1553 	unsigned long s_flag;				/* flags for sbi */
1554 	struct mutex writepages;		/* mutex for writepages() */
1555 
1556 #ifdef CONFIG_BLK_DEV_ZONED
1557 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1558 #endif
1559 
1560 	/* for node-related operations */
1561 	struct f2fs_nm_info *nm_info;		/* node manager */
1562 	struct inode *node_inode;		/* cache node blocks */
1563 
1564 	/* for segment-related operations */
1565 	struct f2fs_sm_info *sm_info;		/* segment manager */
1566 
1567 	/* for bio operations */
1568 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1569 	/* keep migration IO order for LFS mode */
1570 	struct f2fs_rwsem io_order_lock;
1571 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1572 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1573 
1574 	/* for checkpoint */
1575 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1576 	int cur_cp_pack;			/* remain current cp pack */
1577 	spinlock_t cp_lock;			/* for flag in ckpt */
1578 	struct inode *meta_inode;		/* cache meta blocks */
1579 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1580 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1581 	struct f2fs_rwsem node_write;		/* locking node writes */
1582 	struct f2fs_rwsem node_change;	/* locking node change */
1583 	wait_queue_head_t cp_wait;
1584 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1585 	long interval_time[MAX_TIME];		/* to store thresholds */
1586 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1587 
1588 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1589 
1590 	spinlock_t fsync_node_lock;		/* for node entry lock */
1591 	struct list_head fsync_node_list;	/* node list head */
1592 	unsigned int fsync_seg_id;		/* sequence id */
1593 	unsigned int fsync_node_num;		/* number of node entries */
1594 
1595 	/* for orphan inode, use 0'th array */
1596 	unsigned int max_orphans;		/* max orphan inodes */
1597 
1598 	/* for inode management */
1599 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1600 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1601 	struct mutex flush_lock;		/* for flush exclusion */
1602 
1603 	/* for extent tree cache */
1604 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1605 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1606 
1607 	/* The threshold used for hot and warm data seperation*/
1608 	unsigned int hot_data_age_threshold;
1609 	unsigned int warm_data_age_threshold;
1610 	unsigned int last_age_weight;
1611 
1612 	/* basic filesystem units */
1613 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1614 	unsigned int log_blocksize;		/* log2 block size */
1615 	unsigned int blocksize;			/* block size */
1616 	unsigned int root_ino_num;		/* root inode number*/
1617 	unsigned int node_ino_num;		/* node inode number*/
1618 	unsigned int meta_ino_num;		/* meta inode number*/
1619 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1620 	unsigned int blocks_per_seg;		/* blocks per segment */
1621 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1622 	unsigned int segs_per_sec;		/* segments per section */
1623 	unsigned int secs_per_zone;		/* sections per zone */
1624 	unsigned int total_sections;		/* total section count */
1625 	unsigned int total_node_count;		/* total node block count */
1626 	unsigned int total_valid_node_count;	/* valid node block count */
1627 	int dir_level;				/* directory level */
1628 	bool readdir_ra;			/* readahead inode in readdir */
1629 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1630 
1631 	block_t user_block_count;		/* # of user blocks */
1632 	block_t total_valid_block_count;	/* # of valid blocks */
1633 	block_t discard_blks;			/* discard command candidats */
1634 	block_t last_valid_block_count;		/* for recovery */
1635 	block_t reserved_blocks;		/* configurable reserved blocks */
1636 	block_t current_reserved_blocks;	/* current reserved blocks */
1637 
1638 	/* Additional tracking for no checkpoint mode */
1639 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1640 
1641 	unsigned int nquota_files;		/* # of quota sysfile */
1642 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1643 
1644 	/* # of pages, see count_type */
1645 	atomic_t nr_pages[NR_COUNT_TYPE];
1646 	/* # of allocated blocks */
1647 	struct percpu_counter alloc_valid_block_count;
1648 	/* # of node block writes as roll forward recovery */
1649 	struct percpu_counter rf_node_block_count;
1650 
1651 	/* writeback control */
1652 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1653 
1654 	/* valid inode count */
1655 	struct percpu_counter total_valid_inode_count;
1656 
1657 	struct f2fs_mount_info mount_opt;	/* mount options */
1658 
1659 	/* for cleaning operations */
1660 	struct f2fs_rwsem gc_lock;		/*
1661 						 * semaphore for GC, avoid
1662 						 * race between GC and GC or CP
1663 						 */
1664 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1665 	struct atgc_management am;		/* atgc management */
1666 	unsigned int cur_victim_sec;		/* current victim section num */
1667 	unsigned int gc_mode;			/* current GC state */
1668 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1669 	spinlock_t gc_remaining_trials_lock;
1670 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1671 	unsigned int gc_remaining_trials;
1672 
1673 	/* for skip statistic */
1674 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1675 
1676 	/* threshold for gc trials on pinned files */
1677 	u64 gc_pin_file_threshold;
1678 	struct f2fs_rwsem pin_sem;
1679 
1680 	/* maximum # of trials to find a victim segment for SSR and GC */
1681 	unsigned int max_victim_search;
1682 	/* migration granularity of garbage collection, unit: segment */
1683 	unsigned int migration_granularity;
1684 
1685 	/*
1686 	 * for stat information.
1687 	 * one is for the LFS mode, and the other is for the SSR mode.
1688 	 */
1689 #ifdef CONFIG_F2FS_STAT_FS
1690 	struct f2fs_stat_info *stat_info;	/* FS status information */
1691 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1692 	unsigned int segment_count[2];		/* # of allocated segments */
1693 	unsigned int block_count[2];		/* # of allocated blocks */
1694 	atomic_t inplace_count;		/* # of inplace update */
1695 	/* # of lookup extent cache */
1696 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1697 	/* # of hit rbtree extent node */
1698 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1699 	/* # of hit cached extent node */
1700 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1701 	/* # of hit largest extent node in read extent cache */
1702 	atomic64_t read_hit_largest;
1703 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1704 	atomic_t inline_inode;			/* # of inline_data inodes */
1705 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1706 	atomic_t compr_inode;			/* # of compressed inodes */
1707 	atomic64_t compr_blocks;		/* # of compressed blocks */
1708 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1709 	atomic_t atomic_files;			/* # of opened atomic file */
1710 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1711 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1712 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1713 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1714 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1715 #endif
1716 	spinlock_t stat_lock;			/* lock for stat operations */
1717 
1718 	/* to attach REQ_META|REQ_FUA flags */
1719 	unsigned int data_io_flag;
1720 	unsigned int node_io_flag;
1721 
1722 	/* For sysfs support */
1723 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1724 	struct completion s_kobj_unregister;
1725 
1726 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1727 	struct completion s_stat_kobj_unregister;
1728 
1729 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1730 	struct completion s_feature_list_kobj_unregister;
1731 
1732 	/* For shrinker support */
1733 	struct list_head s_list;
1734 	struct mutex umount_mutex;
1735 	unsigned int shrinker_run_no;
1736 
1737 	/* For multi devices */
1738 	int s_ndevs;				/* number of devices */
1739 	struct f2fs_dev_info *devs;		/* for device list */
1740 	unsigned int dirty_device;		/* for checkpoint data flush */
1741 	spinlock_t dev_lock;			/* protect dirty_device */
1742 	bool aligned_blksize;			/* all devices has the same logical blksize */
1743 
1744 	/* For write statistics */
1745 	u64 sectors_written_start;
1746 	u64 kbytes_written;
1747 
1748 	/* Reference to checksum algorithm driver via cryptoapi */
1749 	struct crypto_shash *s_chksum_driver;
1750 
1751 	/* Precomputed FS UUID checksum for seeding other checksums */
1752 	__u32 s_chksum_seed;
1753 
1754 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1755 
1756 	/*
1757 	 * If we are in irq context, let's update error information into
1758 	 * on-disk superblock in the work.
1759 	 */
1760 	struct work_struct s_error_work;
1761 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1762 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1763 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1764 	bool error_dirty;			/* errors of sb is dirty */
1765 
1766 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1767 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1768 
1769 	/* For reclaimed segs statistics per each GC mode */
1770 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1771 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1772 
1773 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1774 
1775 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1776 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1777 
1778 	/* For atomic write statistics */
1779 	atomic64_t current_atomic_write;
1780 	s64 peak_atomic_write;
1781 	u64 committed_atomic_block;
1782 	u64 revoked_atomic_block;
1783 
1784 #ifdef CONFIG_F2FS_FS_COMPRESSION
1785 	struct kmem_cache *page_array_slab;	/* page array entry */
1786 	unsigned int page_array_slab_size;	/* default page array slab size */
1787 
1788 	/* For runtime compression statistics */
1789 	u64 compr_written_block;
1790 	u64 compr_saved_block;
1791 	u32 compr_new_inode;
1792 
1793 	/* For compressed block cache */
1794 	struct inode *compress_inode;		/* cache compressed blocks */
1795 	unsigned int compress_percent;		/* cache page percentage */
1796 	unsigned int compress_watermark;	/* cache page watermark */
1797 	atomic_t compress_page_hit;		/* cache hit count */
1798 #endif
1799 
1800 #ifdef CONFIG_F2FS_IOSTAT
1801 	/* For app/fs IO statistics */
1802 	spinlock_t iostat_lock;
1803 	unsigned long long iostat_count[NR_IO_TYPE];
1804 	unsigned long long iostat_bytes[NR_IO_TYPE];
1805 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1806 	bool iostat_enable;
1807 	unsigned long iostat_next_period;
1808 	unsigned int iostat_period_ms;
1809 
1810 	/* For io latency related statistics info in one iostat period */
1811 	spinlock_t iostat_lat_lock;
1812 	struct iostat_lat_info *iostat_io_lat;
1813 #endif
1814 };
1815 
1816 /* Definitions to access f2fs_sb_info */
1817 #define BLKS_PER_SEG(sbi)					\
1818 	((sbi)->blocks_per_seg)
1819 #define BLKS_PER_SEC(sbi)					\
1820 	((sbi)->segs_per_sec << (sbi)->log_blocks_per_seg)
1821 #define SEGS_PER_SEC(sbi)					\
1822 	((sbi)->segs_per_sec)
1823 
1824 __printf(3, 4)
1825 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1826 
1827 #define f2fs_err(sbi, fmt, ...)						\
1828 	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1829 #define f2fs_warn(sbi, fmt, ...)					\
1830 	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1831 #define f2fs_notice(sbi, fmt, ...)					\
1832 	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1833 #define f2fs_info(sbi, fmt, ...)					\
1834 	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1835 #define f2fs_debug(sbi, fmt, ...)					\
1836 	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1837 
1838 #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1839 	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1840 #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1841 	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1842 #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1843 	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1844 
1845 #ifdef CONFIG_F2FS_FAULT_INJECTION
1846 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1847 									__builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1848 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1849 				const char *func, const char *parent_func)
1850 {
1851 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1852 
1853 	if (!ffi->inject_rate)
1854 		return false;
1855 
1856 	if (!IS_FAULT_SET(ffi, type))
1857 		return false;
1858 
1859 	atomic_inc(&ffi->inject_ops);
1860 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1861 		atomic_set(&ffi->inject_ops, 0);
1862 		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1863 				f2fs_fault_name[type], func, parent_func);
1864 		return true;
1865 	}
1866 	return false;
1867 }
1868 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1869 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1870 {
1871 	return false;
1872 }
1873 #endif
1874 
1875 /*
1876  * Test if the mounted volume is a multi-device volume.
1877  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1878  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1879  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1880  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1881 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1882 {
1883 	return sbi->s_ndevs > 1;
1884 }
1885 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1886 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1887 {
1888 	unsigned long now = jiffies;
1889 
1890 	sbi->last_time[type] = now;
1891 
1892 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1893 	if (type == REQ_TIME) {
1894 		sbi->last_time[DISCARD_TIME] = now;
1895 		sbi->last_time[GC_TIME] = now;
1896 	}
1897 }
1898 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1899 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1900 {
1901 	unsigned long interval = sbi->interval_time[type] * HZ;
1902 
1903 	return time_after(jiffies, sbi->last_time[type] + interval);
1904 }
1905 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1906 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1907 						int type)
1908 {
1909 	unsigned long interval = sbi->interval_time[type] * HZ;
1910 	unsigned int wait_ms = 0;
1911 	long delta;
1912 
1913 	delta = (sbi->last_time[type] + interval) - jiffies;
1914 	if (delta > 0)
1915 		wait_ms = jiffies_to_msecs(delta);
1916 
1917 	return wait_ms;
1918 }
1919 
1920 /*
1921  * Inline functions
1922  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1923 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1924 			      const void *address, unsigned int length)
1925 {
1926 	struct {
1927 		struct shash_desc shash;
1928 		char ctx[4];
1929 	} desc;
1930 	int err;
1931 
1932 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1933 
1934 	desc.shash.tfm = sbi->s_chksum_driver;
1935 	*(u32 *)desc.ctx = crc;
1936 
1937 	err = crypto_shash_update(&desc.shash, address, length);
1938 	BUG_ON(err);
1939 
1940 	return *(u32 *)desc.ctx;
1941 }
1942 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1943 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1944 			   unsigned int length)
1945 {
1946 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1947 }
1948 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1949 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1950 				  void *buf, size_t buf_size)
1951 {
1952 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1953 }
1954 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1955 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1956 			      const void *address, unsigned int length)
1957 {
1958 	return __f2fs_crc32(sbi, crc, address, length);
1959 }
1960 
F2FS_I(struct inode * inode)1961 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1962 {
1963 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1964 }
1965 
F2FS_SB(struct super_block * sb)1966 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1967 {
1968 	return sb->s_fs_info;
1969 }
1970 
F2FS_I_SB(struct inode * inode)1971 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1972 {
1973 	return F2FS_SB(inode->i_sb);
1974 }
1975 
F2FS_M_SB(struct address_space * mapping)1976 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1977 {
1978 	return F2FS_I_SB(mapping->host);
1979 }
1980 
F2FS_P_SB(struct page * page)1981 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1982 {
1983 	return F2FS_M_SB(page_file_mapping(page));
1984 }
1985 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1986 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1987 {
1988 	return (struct f2fs_super_block *)(sbi->raw_super);
1989 }
1990 
F2FS_CKPT(struct f2fs_sb_info * sbi)1991 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1992 {
1993 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1994 }
1995 
F2FS_NODE(struct page * page)1996 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1997 {
1998 	return (struct f2fs_node *)page_address(page);
1999 }
2000 
F2FS_INODE(struct page * page)2001 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2002 {
2003 	return &((struct f2fs_node *)page_address(page))->i;
2004 }
2005 
NM_I(struct f2fs_sb_info * sbi)2006 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2007 {
2008 	return (struct f2fs_nm_info *)(sbi->nm_info);
2009 }
2010 
SM_I(struct f2fs_sb_info * sbi)2011 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2012 {
2013 	return (struct f2fs_sm_info *)(sbi->sm_info);
2014 }
2015 
SIT_I(struct f2fs_sb_info * sbi)2016 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2017 {
2018 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2019 }
2020 
FREE_I(struct f2fs_sb_info * sbi)2021 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2022 {
2023 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2024 }
2025 
DIRTY_I(struct f2fs_sb_info * sbi)2026 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2027 {
2028 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2029 }
2030 
META_MAPPING(struct f2fs_sb_info * sbi)2031 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2032 {
2033 	return sbi->meta_inode->i_mapping;
2034 }
2035 
NODE_MAPPING(struct f2fs_sb_info * sbi)2036 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2037 {
2038 	return sbi->node_inode->i_mapping;
2039 }
2040 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2041 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2042 {
2043 	return test_bit(type, &sbi->s_flag);
2044 }
2045 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2046 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2047 {
2048 	set_bit(type, &sbi->s_flag);
2049 }
2050 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2051 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2052 {
2053 	clear_bit(type, &sbi->s_flag);
2054 }
2055 
cur_cp_version(struct f2fs_checkpoint * cp)2056 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2057 {
2058 	return le64_to_cpu(cp->checkpoint_ver);
2059 }
2060 
f2fs_qf_ino(struct super_block * sb,int type)2061 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2062 {
2063 	if (type < F2FS_MAX_QUOTAS)
2064 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2065 	return 0;
2066 }
2067 
cur_cp_crc(struct f2fs_checkpoint * cp)2068 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2069 {
2070 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2071 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2072 }
2073 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2074 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2075 {
2076 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2077 
2078 	return ckpt_flags & f;
2079 }
2080 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2081 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2082 {
2083 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2084 }
2085 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2086 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2087 {
2088 	unsigned int ckpt_flags;
2089 
2090 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2091 	ckpt_flags |= f;
2092 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2093 }
2094 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2095 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2096 {
2097 	unsigned long flags;
2098 
2099 	spin_lock_irqsave(&sbi->cp_lock, flags);
2100 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2101 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2102 }
2103 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2104 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2105 {
2106 	unsigned int ckpt_flags;
2107 
2108 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2109 	ckpt_flags &= (~f);
2110 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2111 }
2112 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2113 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2114 {
2115 	unsigned long flags;
2116 
2117 	spin_lock_irqsave(&sbi->cp_lock, flags);
2118 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2119 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2120 }
2121 
2122 #define init_f2fs_rwsem(sem)					\
2123 do {								\
2124 	static struct lock_class_key __key;			\
2125 								\
2126 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2127 } while (0)
2128 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2129 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2130 		const char *sem_name, struct lock_class_key *key)
2131 {
2132 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2133 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2134 	init_waitqueue_head(&sem->read_waiters);
2135 #endif
2136 }
2137 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2138 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2139 {
2140 	return rwsem_is_locked(&sem->internal_rwsem);
2141 }
2142 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2143 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2144 {
2145 	return rwsem_is_contended(&sem->internal_rwsem);
2146 }
2147 
f2fs_down_read(struct f2fs_rwsem * sem)2148 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2149 {
2150 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2151 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2152 #else
2153 	down_read(&sem->internal_rwsem);
2154 #endif
2155 }
2156 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2157 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2158 {
2159 	return down_read_trylock(&sem->internal_rwsem);
2160 }
2161 
f2fs_up_read(struct f2fs_rwsem * sem)2162 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2163 {
2164 	up_read(&sem->internal_rwsem);
2165 }
2166 
f2fs_down_write(struct f2fs_rwsem * sem)2167 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2168 {
2169 	down_write(&sem->internal_rwsem);
2170 }
2171 
2172 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2173 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2174 {
2175 	down_read_nested(&sem->internal_rwsem, subclass);
2176 }
2177 
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2178 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2179 {
2180 	down_write_nested(&sem->internal_rwsem, subclass);
2181 }
2182 #else
2183 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2184 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2185 #endif
2186 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2187 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2188 {
2189 	return down_write_trylock(&sem->internal_rwsem);
2190 }
2191 
f2fs_up_write(struct f2fs_rwsem * sem)2192 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2193 {
2194 	up_write(&sem->internal_rwsem);
2195 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2196 	wake_up_all(&sem->read_waiters);
2197 #endif
2198 }
2199 
f2fs_lock_op(struct f2fs_sb_info * sbi)2200 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2201 {
2202 	f2fs_down_read(&sbi->cp_rwsem);
2203 }
2204 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2205 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2206 {
2207 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2208 		return 0;
2209 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2210 }
2211 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2212 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2213 {
2214 	f2fs_up_read(&sbi->cp_rwsem);
2215 }
2216 
f2fs_lock_all(struct f2fs_sb_info * sbi)2217 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2218 {
2219 	f2fs_down_write(&sbi->cp_rwsem);
2220 }
2221 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2222 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2223 {
2224 	f2fs_up_write(&sbi->cp_rwsem);
2225 }
2226 
__get_cp_reason(struct f2fs_sb_info * sbi)2227 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2228 {
2229 	int reason = CP_SYNC;
2230 
2231 	if (test_opt(sbi, FASTBOOT))
2232 		reason = CP_FASTBOOT;
2233 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2234 		reason = CP_UMOUNT;
2235 	return reason;
2236 }
2237 
__remain_node_summaries(int reason)2238 static inline bool __remain_node_summaries(int reason)
2239 {
2240 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2241 }
2242 
__exist_node_summaries(struct f2fs_sb_info * sbi)2243 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2244 {
2245 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2246 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2247 }
2248 
2249 /*
2250  * Check whether the inode has blocks or not
2251  */
F2FS_HAS_BLOCKS(struct inode * inode)2252 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2253 {
2254 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2255 
2256 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2257 }
2258 
f2fs_has_xattr_block(unsigned int ofs)2259 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2260 {
2261 	return ofs == XATTR_NODE_OFFSET;
2262 }
2263 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2264 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2265 					struct inode *inode, bool cap)
2266 {
2267 	if (!inode)
2268 		return true;
2269 	if (!test_opt(sbi, RESERVE_ROOT))
2270 		return false;
2271 	if (IS_NOQUOTA(inode))
2272 		return true;
2273 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2274 		return true;
2275 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2276 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2277 		return true;
2278 	if (cap && capable(CAP_SYS_RESOURCE))
2279 		return true;
2280 	return false;
2281 }
2282 
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2283 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2284 						struct inode *inode, bool cap)
2285 {
2286 	block_t avail_user_block_count;
2287 
2288 	avail_user_block_count = sbi->user_block_count -
2289 					sbi->current_reserved_blocks;
2290 
2291 	if (!__allow_reserved_blocks(sbi, inode, cap))
2292 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2293 
2294 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2295 		if (avail_user_block_count > sbi->unusable_block_count)
2296 			avail_user_block_count -= sbi->unusable_block_count;
2297 		else
2298 			avail_user_block_count = 0;
2299 	}
2300 
2301 	return avail_user_block_count;
2302 }
2303 
2304 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2305 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2306 				 struct inode *inode, blkcnt_t *count, bool partial)
2307 {
2308 	long long diff = 0, release = 0;
2309 	block_t avail_user_block_count;
2310 	int ret;
2311 
2312 	ret = dquot_reserve_block(inode, *count);
2313 	if (ret)
2314 		return ret;
2315 
2316 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2317 		release = *count;
2318 		goto release_quota;
2319 	}
2320 
2321 	/*
2322 	 * let's increase this in prior to actual block count change in order
2323 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2324 	 */
2325 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2326 
2327 	spin_lock(&sbi->stat_lock);
2328 
2329 	avail_user_block_count = get_available_block_count(sbi, inode, true);
2330 	diff = (long long)sbi->total_valid_block_count + *count -
2331 						avail_user_block_count;
2332 	if (unlikely(diff > 0)) {
2333 		if (!partial) {
2334 			spin_unlock(&sbi->stat_lock);
2335 			release = *count;
2336 			goto enospc;
2337 		}
2338 		if (diff > *count)
2339 			diff = *count;
2340 		*count -= diff;
2341 		release = diff;
2342 		if (!*count) {
2343 			spin_unlock(&sbi->stat_lock);
2344 			goto enospc;
2345 		}
2346 	}
2347 	sbi->total_valid_block_count += (block_t)(*count);
2348 
2349 	spin_unlock(&sbi->stat_lock);
2350 
2351 	if (unlikely(release)) {
2352 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2353 		dquot_release_reservation_block(inode, release);
2354 	}
2355 	f2fs_i_blocks_write(inode, *count, true, true);
2356 	return 0;
2357 
2358 enospc:
2359 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2360 release_quota:
2361 	dquot_release_reservation_block(inode, release);
2362 	return -ENOSPC;
2363 }
2364 
2365 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2366 static inline bool page_private_##name(struct page *page) \
2367 { \
2368 	return PagePrivate(page) && \
2369 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2370 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2371 }
2372 
2373 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2374 static inline void set_page_private_##name(struct page *page) \
2375 { \
2376 	if (!PagePrivate(page)) \
2377 		attach_page_private(page, (void *)0); \
2378 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2379 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2380 }
2381 
2382 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2383 static inline void clear_page_private_##name(struct page *page) \
2384 { \
2385 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2386 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2387 		detach_page_private(page); \
2388 }
2389 
2390 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2391 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2392 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2393 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2394 
2395 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2396 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2397 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2398 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2399 
2400 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2401 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2402 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2403 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2404 
get_page_private_data(struct page * page)2405 static inline unsigned long get_page_private_data(struct page *page)
2406 {
2407 	unsigned long data = page_private(page);
2408 
2409 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2410 		return 0;
2411 	return data >> PAGE_PRIVATE_MAX;
2412 }
2413 
set_page_private_data(struct page * page,unsigned long data)2414 static inline void set_page_private_data(struct page *page, unsigned long data)
2415 {
2416 	if (!PagePrivate(page))
2417 		attach_page_private(page, (void *)0);
2418 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2419 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2420 }
2421 
clear_page_private_data(struct page * page)2422 static inline void clear_page_private_data(struct page *page)
2423 {
2424 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2425 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2426 		detach_page_private(page);
2427 }
2428 
clear_page_private_all(struct page * page)2429 static inline void clear_page_private_all(struct page *page)
2430 {
2431 	clear_page_private_data(page);
2432 	clear_page_private_reference(page);
2433 	clear_page_private_gcing(page);
2434 	clear_page_private_inline(page);
2435 	clear_page_private_atomic(page);
2436 
2437 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2438 }
2439 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2440 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2441 						struct inode *inode,
2442 						block_t count)
2443 {
2444 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2445 
2446 	spin_lock(&sbi->stat_lock);
2447 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2448 	sbi->total_valid_block_count -= (block_t)count;
2449 	if (sbi->reserved_blocks &&
2450 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2451 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2452 					sbi->current_reserved_blocks + count);
2453 	spin_unlock(&sbi->stat_lock);
2454 	if (unlikely(inode->i_blocks < sectors)) {
2455 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2456 			  inode->i_ino,
2457 			  (unsigned long long)inode->i_blocks,
2458 			  (unsigned long long)sectors);
2459 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2460 		return;
2461 	}
2462 	f2fs_i_blocks_write(inode, count, false, true);
2463 }
2464 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2465 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2466 {
2467 	atomic_inc(&sbi->nr_pages[count_type]);
2468 
2469 	if (count_type == F2FS_DIRTY_DENTS ||
2470 			count_type == F2FS_DIRTY_NODES ||
2471 			count_type == F2FS_DIRTY_META ||
2472 			count_type == F2FS_DIRTY_QDATA ||
2473 			count_type == F2FS_DIRTY_IMETA)
2474 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2475 }
2476 
inode_inc_dirty_pages(struct inode * inode)2477 static inline void inode_inc_dirty_pages(struct inode *inode)
2478 {
2479 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2480 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2481 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2482 	if (IS_NOQUOTA(inode))
2483 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2484 }
2485 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2486 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2487 {
2488 	atomic_dec(&sbi->nr_pages[count_type]);
2489 }
2490 
inode_dec_dirty_pages(struct inode * inode)2491 static inline void inode_dec_dirty_pages(struct inode *inode)
2492 {
2493 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2494 			!S_ISLNK(inode->i_mode))
2495 		return;
2496 
2497 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2498 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2499 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2500 	if (IS_NOQUOTA(inode))
2501 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2502 }
2503 
inc_atomic_write_cnt(struct inode * inode)2504 static inline void inc_atomic_write_cnt(struct inode *inode)
2505 {
2506 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2507 	struct f2fs_inode_info *fi = F2FS_I(inode);
2508 	u64 current_write;
2509 
2510 	fi->atomic_write_cnt++;
2511 	atomic64_inc(&sbi->current_atomic_write);
2512 	current_write = atomic64_read(&sbi->current_atomic_write);
2513 	if (current_write > sbi->peak_atomic_write)
2514 		sbi->peak_atomic_write = current_write;
2515 }
2516 
release_atomic_write_cnt(struct inode * inode)2517 static inline void release_atomic_write_cnt(struct inode *inode)
2518 {
2519 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2520 	struct f2fs_inode_info *fi = F2FS_I(inode);
2521 
2522 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2523 	fi->atomic_write_cnt = 0;
2524 }
2525 
get_pages(struct f2fs_sb_info * sbi,int count_type)2526 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2527 {
2528 	return atomic_read(&sbi->nr_pages[count_type]);
2529 }
2530 
get_dirty_pages(struct inode * inode)2531 static inline int get_dirty_pages(struct inode *inode)
2532 {
2533 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2534 }
2535 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2536 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2537 {
2538 	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2539 							BLKS_PER_SEC(sbi));
2540 }
2541 
valid_user_blocks(struct f2fs_sb_info * sbi)2542 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2543 {
2544 	return sbi->total_valid_block_count;
2545 }
2546 
discard_blocks(struct f2fs_sb_info * sbi)2547 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2548 {
2549 	return sbi->discard_blks;
2550 }
2551 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2552 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2553 {
2554 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2555 
2556 	/* return NAT or SIT bitmap */
2557 	if (flag == NAT_BITMAP)
2558 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2559 	else if (flag == SIT_BITMAP)
2560 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2561 
2562 	return 0;
2563 }
2564 
__cp_payload(struct f2fs_sb_info * sbi)2565 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2566 {
2567 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2568 }
2569 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2570 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2571 {
2572 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2573 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2574 	int offset;
2575 
2576 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2577 		offset = (flag == SIT_BITMAP) ?
2578 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2579 		/*
2580 		 * if large_nat_bitmap feature is enabled, leave checksum
2581 		 * protection for all nat/sit bitmaps.
2582 		 */
2583 		return tmp_ptr + offset + sizeof(__le32);
2584 	}
2585 
2586 	if (__cp_payload(sbi) > 0) {
2587 		if (flag == NAT_BITMAP)
2588 			return tmp_ptr;
2589 		else
2590 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2591 	} else {
2592 		offset = (flag == NAT_BITMAP) ?
2593 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2594 		return tmp_ptr + offset;
2595 	}
2596 }
2597 
__start_cp_addr(struct f2fs_sb_info * sbi)2598 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2599 {
2600 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2601 
2602 	if (sbi->cur_cp_pack == 2)
2603 		start_addr += BLKS_PER_SEG(sbi);
2604 	return start_addr;
2605 }
2606 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2607 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2608 {
2609 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2610 
2611 	if (sbi->cur_cp_pack == 1)
2612 		start_addr += BLKS_PER_SEG(sbi);
2613 	return start_addr;
2614 }
2615 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2616 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2617 {
2618 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2619 }
2620 
__start_sum_addr(struct f2fs_sb_info * sbi)2621 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2622 {
2623 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2624 }
2625 
2626 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2627 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2628 					struct inode *inode, bool is_inode)
2629 {
2630 	block_t	valid_block_count;
2631 	unsigned int valid_node_count;
2632 	unsigned int avail_user_block_count;
2633 	int err;
2634 
2635 	if (is_inode) {
2636 		if (inode) {
2637 			err = dquot_alloc_inode(inode);
2638 			if (err)
2639 				return err;
2640 		}
2641 	} else {
2642 		err = dquot_reserve_block(inode, 1);
2643 		if (err)
2644 			return err;
2645 	}
2646 
2647 	if (time_to_inject(sbi, FAULT_BLOCK))
2648 		goto enospc;
2649 
2650 	spin_lock(&sbi->stat_lock);
2651 
2652 	valid_block_count = sbi->total_valid_block_count + 1;
2653 	avail_user_block_count = get_available_block_count(sbi, inode, false);
2654 
2655 	if (unlikely(valid_block_count > avail_user_block_count)) {
2656 		spin_unlock(&sbi->stat_lock);
2657 		goto enospc;
2658 	}
2659 
2660 	valid_node_count = sbi->total_valid_node_count + 1;
2661 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2662 		spin_unlock(&sbi->stat_lock);
2663 		goto enospc;
2664 	}
2665 
2666 	sbi->total_valid_node_count++;
2667 	sbi->total_valid_block_count++;
2668 	spin_unlock(&sbi->stat_lock);
2669 
2670 	if (inode) {
2671 		if (is_inode)
2672 			f2fs_mark_inode_dirty_sync(inode, true);
2673 		else
2674 			f2fs_i_blocks_write(inode, 1, true, true);
2675 	}
2676 
2677 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2678 	return 0;
2679 
2680 enospc:
2681 	if (is_inode) {
2682 		if (inode)
2683 			dquot_free_inode(inode);
2684 	} else {
2685 		dquot_release_reservation_block(inode, 1);
2686 	}
2687 	return -ENOSPC;
2688 }
2689 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2690 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2691 					struct inode *inode, bool is_inode)
2692 {
2693 	spin_lock(&sbi->stat_lock);
2694 
2695 	if (unlikely(!sbi->total_valid_block_count ||
2696 			!sbi->total_valid_node_count)) {
2697 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2698 			  sbi->total_valid_block_count,
2699 			  sbi->total_valid_node_count);
2700 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2701 	} else {
2702 		sbi->total_valid_block_count--;
2703 		sbi->total_valid_node_count--;
2704 	}
2705 
2706 	if (sbi->reserved_blocks &&
2707 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2708 		sbi->current_reserved_blocks++;
2709 
2710 	spin_unlock(&sbi->stat_lock);
2711 
2712 	if (is_inode) {
2713 		dquot_free_inode(inode);
2714 	} else {
2715 		if (unlikely(inode->i_blocks == 0)) {
2716 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2717 				  inode->i_ino,
2718 				  (unsigned long long)inode->i_blocks);
2719 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2720 			return;
2721 		}
2722 		f2fs_i_blocks_write(inode, 1, false, true);
2723 	}
2724 }
2725 
valid_node_count(struct f2fs_sb_info * sbi)2726 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2727 {
2728 	return sbi->total_valid_node_count;
2729 }
2730 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2731 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2732 {
2733 	percpu_counter_inc(&sbi->total_valid_inode_count);
2734 }
2735 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2736 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2737 {
2738 	percpu_counter_dec(&sbi->total_valid_inode_count);
2739 }
2740 
valid_inode_count(struct f2fs_sb_info * sbi)2741 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2742 {
2743 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2744 }
2745 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2746 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2747 						pgoff_t index, bool for_write)
2748 {
2749 	struct page *page;
2750 	unsigned int flags;
2751 
2752 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2753 		if (!for_write)
2754 			page = find_get_page_flags(mapping, index,
2755 							FGP_LOCK | FGP_ACCESSED);
2756 		else
2757 			page = find_lock_page(mapping, index);
2758 		if (page)
2759 			return page;
2760 
2761 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2762 			return NULL;
2763 	}
2764 
2765 	if (!for_write)
2766 		return grab_cache_page(mapping, index);
2767 
2768 	flags = memalloc_nofs_save();
2769 	page = grab_cache_page_write_begin(mapping, index);
2770 	memalloc_nofs_restore(flags);
2771 
2772 	return page;
2773 }
2774 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2775 static inline struct page *f2fs_pagecache_get_page(
2776 				struct address_space *mapping, pgoff_t index,
2777 				fgf_t fgp_flags, gfp_t gfp_mask)
2778 {
2779 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2780 		return NULL;
2781 
2782 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2783 }
2784 
f2fs_put_page(struct page * page,int unlock)2785 static inline void f2fs_put_page(struct page *page, int unlock)
2786 {
2787 	if (!page)
2788 		return;
2789 
2790 	if (unlock) {
2791 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2792 		unlock_page(page);
2793 	}
2794 	put_page(page);
2795 }
2796 
f2fs_put_dnode(struct dnode_of_data * dn)2797 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2798 {
2799 	if (dn->node_page)
2800 		f2fs_put_page(dn->node_page, 1);
2801 	if (dn->inode_page && dn->node_page != dn->inode_page)
2802 		f2fs_put_page(dn->inode_page, 0);
2803 	dn->node_page = NULL;
2804 	dn->inode_page = NULL;
2805 }
2806 
f2fs_kmem_cache_create(const char * name,size_t size)2807 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2808 					size_t size)
2809 {
2810 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2811 }
2812 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2813 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2814 						gfp_t flags)
2815 {
2816 	void *entry;
2817 
2818 	entry = kmem_cache_alloc(cachep, flags);
2819 	if (!entry)
2820 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2821 	return entry;
2822 }
2823 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2824 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2825 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2826 {
2827 	if (nofail)
2828 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2829 
2830 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2831 		return NULL;
2832 
2833 	return kmem_cache_alloc(cachep, flags);
2834 }
2835 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2836 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2837 {
2838 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2839 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2840 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2841 		get_pages(sbi, F2FS_DIO_READ) ||
2842 		get_pages(sbi, F2FS_DIO_WRITE))
2843 		return true;
2844 
2845 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2846 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2847 		return true;
2848 
2849 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2850 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2851 		return true;
2852 	return false;
2853 }
2854 
is_idle(struct f2fs_sb_info * sbi,int type)2855 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2856 {
2857 	if (sbi->gc_mode == GC_URGENT_HIGH)
2858 		return true;
2859 
2860 	if (is_inflight_io(sbi, type))
2861 		return false;
2862 
2863 	if (sbi->gc_mode == GC_URGENT_MID)
2864 		return true;
2865 
2866 	if (sbi->gc_mode == GC_URGENT_LOW &&
2867 			(type == DISCARD_TIME || type == GC_TIME))
2868 		return true;
2869 
2870 	return f2fs_time_over(sbi, type);
2871 }
2872 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2873 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2874 				unsigned long index, void *item)
2875 {
2876 	while (radix_tree_insert(root, index, item))
2877 		cond_resched();
2878 }
2879 
2880 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2881 
IS_INODE(struct page * page)2882 static inline bool IS_INODE(struct page *page)
2883 {
2884 	struct f2fs_node *p = F2FS_NODE(page);
2885 
2886 	return RAW_IS_INODE(p);
2887 }
2888 
offset_in_addr(struct f2fs_inode * i)2889 static inline int offset_in_addr(struct f2fs_inode *i)
2890 {
2891 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2892 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2893 }
2894 
blkaddr_in_node(struct f2fs_node * node)2895 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2896 {
2897 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2898 }
2899 
2900 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2901 static inline block_t data_blkaddr(struct inode *inode,
2902 			struct page *node_page, unsigned int offset)
2903 {
2904 	struct f2fs_node *raw_node;
2905 	__le32 *addr_array;
2906 	int base = 0;
2907 	bool is_inode = IS_INODE(node_page);
2908 
2909 	raw_node = F2FS_NODE(node_page);
2910 
2911 	if (is_inode) {
2912 		if (!inode)
2913 			/* from GC path only */
2914 			base = offset_in_addr(&raw_node->i);
2915 		else if (f2fs_has_extra_attr(inode))
2916 			base = get_extra_isize(inode);
2917 	}
2918 
2919 	addr_array = blkaddr_in_node(raw_node);
2920 	return le32_to_cpu(addr_array[base + offset]);
2921 }
2922 
f2fs_data_blkaddr(struct dnode_of_data * dn)2923 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2924 {
2925 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2926 }
2927 
f2fs_test_bit(unsigned int nr,char * addr)2928 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2929 {
2930 	int mask;
2931 
2932 	addr += (nr >> 3);
2933 	mask = BIT(7 - (nr & 0x07));
2934 	return mask & *addr;
2935 }
2936 
f2fs_set_bit(unsigned int nr,char * addr)2937 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2938 {
2939 	int mask;
2940 
2941 	addr += (nr >> 3);
2942 	mask = BIT(7 - (nr & 0x07));
2943 	*addr |= mask;
2944 }
2945 
f2fs_clear_bit(unsigned int nr,char * addr)2946 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2947 {
2948 	int mask;
2949 
2950 	addr += (nr >> 3);
2951 	mask = BIT(7 - (nr & 0x07));
2952 	*addr &= ~mask;
2953 }
2954 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2955 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2956 {
2957 	int mask;
2958 	int ret;
2959 
2960 	addr += (nr >> 3);
2961 	mask = BIT(7 - (nr & 0x07));
2962 	ret = mask & *addr;
2963 	*addr |= mask;
2964 	return ret;
2965 }
2966 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2967 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2968 {
2969 	int mask;
2970 	int ret;
2971 
2972 	addr += (nr >> 3);
2973 	mask = BIT(7 - (nr & 0x07));
2974 	ret = mask & *addr;
2975 	*addr &= ~mask;
2976 	return ret;
2977 }
2978 
f2fs_change_bit(unsigned int nr,char * addr)2979 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2980 {
2981 	int mask;
2982 
2983 	addr += (nr >> 3);
2984 	mask = BIT(7 - (nr & 0x07));
2985 	*addr ^= mask;
2986 }
2987 
2988 /*
2989  * On-disk inode flags (f2fs_inode::i_flags)
2990  */
2991 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2992 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2993 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2994 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2995 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2996 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2997 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2998 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2999 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
3000 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
3001 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
3002 
3003 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3004 
3005 /* Flags that should be inherited by new inodes from their parent. */
3006 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3007 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3008 			   F2FS_CASEFOLD_FL)
3009 
3010 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3011 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3012 				F2FS_CASEFOLD_FL))
3013 
3014 /* Flags that are appropriate for non-directories/regular files. */
3015 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3016 
f2fs_mask_flags(umode_t mode,__u32 flags)3017 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3018 {
3019 	if (S_ISDIR(mode))
3020 		return flags;
3021 	else if (S_ISREG(mode))
3022 		return flags & F2FS_REG_FLMASK;
3023 	else
3024 		return flags & F2FS_OTHER_FLMASK;
3025 }
3026 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3027 static inline void __mark_inode_dirty_flag(struct inode *inode,
3028 						int flag, bool set)
3029 {
3030 	switch (flag) {
3031 	case FI_INLINE_XATTR:
3032 	case FI_INLINE_DATA:
3033 	case FI_INLINE_DENTRY:
3034 	case FI_NEW_INODE:
3035 		if (set)
3036 			return;
3037 		fallthrough;
3038 	case FI_DATA_EXIST:
3039 	case FI_PIN_FILE:
3040 	case FI_COMPRESS_RELEASED:
3041 		f2fs_mark_inode_dirty_sync(inode, true);
3042 	}
3043 }
3044 
set_inode_flag(struct inode * inode,int flag)3045 static inline void set_inode_flag(struct inode *inode, int flag)
3046 {
3047 	set_bit(flag, F2FS_I(inode)->flags);
3048 	__mark_inode_dirty_flag(inode, flag, true);
3049 }
3050 
is_inode_flag_set(struct inode * inode,int flag)3051 static inline int is_inode_flag_set(struct inode *inode, int flag)
3052 {
3053 	return test_bit(flag, F2FS_I(inode)->flags);
3054 }
3055 
clear_inode_flag(struct inode * inode,int flag)3056 static inline void clear_inode_flag(struct inode *inode, int flag)
3057 {
3058 	clear_bit(flag, F2FS_I(inode)->flags);
3059 	__mark_inode_dirty_flag(inode, flag, false);
3060 }
3061 
f2fs_verity_in_progress(struct inode * inode)3062 static inline bool f2fs_verity_in_progress(struct inode *inode)
3063 {
3064 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3065 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3066 }
3067 
set_acl_inode(struct inode * inode,umode_t mode)3068 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3069 {
3070 	F2FS_I(inode)->i_acl_mode = mode;
3071 	set_inode_flag(inode, FI_ACL_MODE);
3072 	f2fs_mark_inode_dirty_sync(inode, false);
3073 }
3074 
f2fs_i_links_write(struct inode * inode,bool inc)3075 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3076 {
3077 	if (inc)
3078 		inc_nlink(inode);
3079 	else
3080 		drop_nlink(inode);
3081 	f2fs_mark_inode_dirty_sync(inode, true);
3082 }
3083 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3084 static inline void f2fs_i_blocks_write(struct inode *inode,
3085 					block_t diff, bool add, bool claim)
3086 {
3087 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3088 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3089 
3090 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3091 	if (add) {
3092 		if (claim)
3093 			dquot_claim_block(inode, diff);
3094 		else
3095 			dquot_alloc_block_nofail(inode, diff);
3096 	} else {
3097 		dquot_free_block(inode, diff);
3098 	}
3099 
3100 	f2fs_mark_inode_dirty_sync(inode, true);
3101 	if (clean || recover)
3102 		set_inode_flag(inode, FI_AUTO_RECOVER);
3103 }
3104 
3105 static inline bool f2fs_is_atomic_file(struct inode *inode);
3106 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3107 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3108 {
3109 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3110 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3111 
3112 	if (i_size_read(inode) == i_size)
3113 		return;
3114 
3115 	i_size_write(inode, i_size);
3116 
3117 	if (f2fs_is_atomic_file(inode))
3118 		return;
3119 
3120 	f2fs_mark_inode_dirty_sync(inode, true);
3121 	if (clean || recover)
3122 		set_inode_flag(inode, FI_AUTO_RECOVER);
3123 }
3124 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3125 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3126 {
3127 	F2FS_I(inode)->i_current_depth = depth;
3128 	f2fs_mark_inode_dirty_sync(inode, true);
3129 }
3130 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3131 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3132 					unsigned int count)
3133 {
3134 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3135 	f2fs_mark_inode_dirty_sync(inode, true);
3136 }
3137 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3138 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3139 {
3140 	F2FS_I(inode)->i_xattr_nid = xnid;
3141 	f2fs_mark_inode_dirty_sync(inode, true);
3142 }
3143 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3144 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3145 {
3146 	F2FS_I(inode)->i_pino = pino;
3147 	f2fs_mark_inode_dirty_sync(inode, true);
3148 }
3149 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3150 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3151 {
3152 	struct f2fs_inode_info *fi = F2FS_I(inode);
3153 
3154 	if (ri->i_inline & F2FS_INLINE_XATTR)
3155 		set_bit(FI_INLINE_XATTR, fi->flags);
3156 	if (ri->i_inline & F2FS_INLINE_DATA)
3157 		set_bit(FI_INLINE_DATA, fi->flags);
3158 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3159 		set_bit(FI_INLINE_DENTRY, fi->flags);
3160 	if (ri->i_inline & F2FS_DATA_EXIST)
3161 		set_bit(FI_DATA_EXIST, fi->flags);
3162 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3163 		set_bit(FI_EXTRA_ATTR, fi->flags);
3164 	if (ri->i_inline & F2FS_PIN_FILE)
3165 		set_bit(FI_PIN_FILE, fi->flags);
3166 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3167 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3168 }
3169 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3170 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3171 {
3172 	ri->i_inline = 0;
3173 
3174 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3175 		ri->i_inline |= F2FS_INLINE_XATTR;
3176 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3177 		ri->i_inline |= F2FS_INLINE_DATA;
3178 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3179 		ri->i_inline |= F2FS_INLINE_DENTRY;
3180 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3181 		ri->i_inline |= F2FS_DATA_EXIST;
3182 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3183 		ri->i_inline |= F2FS_EXTRA_ATTR;
3184 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3185 		ri->i_inline |= F2FS_PIN_FILE;
3186 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3187 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3188 }
3189 
f2fs_has_extra_attr(struct inode * inode)3190 static inline int f2fs_has_extra_attr(struct inode *inode)
3191 {
3192 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3193 }
3194 
f2fs_has_inline_xattr(struct inode * inode)3195 static inline int f2fs_has_inline_xattr(struct inode *inode)
3196 {
3197 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3198 }
3199 
f2fs_compressed_file(struct inode * inode)3200 static inline int f2fs_compressed_file(struct inode *inode)
3201 {
3202 	return S_ISREG(inode->i_mode) &&
3203 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3204 }
3205 
f2fs_need_compress_data(struct inode * inode)3206 static inline bool f2fs_need_compress_data(struct inode *inode)
3207 {
3208 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3209 
3210 	if (!f2fs_compressed_file(inode))
3211 		return false;
3212 
3213 	if (compress_mode == COMPR_MODE_FS)
3214 		return true;
3215 	else if (compress_mode == COMPR_MODE_USER &&
3216 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3217 		return true;
3218 
3219 	return false;
3220 }
3221 
addrs_per_inode(struct inode * inode)3222 static inline unsigned int addrs_per_inode(struct inode *inode)
3223 {
3224 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3225 				get_inline_xattr_addrs(inode);
3226 
3227 	if (!f2fs_compressed_file(inode))
3228 		return addrs;
3229 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3230 }
3231 
addrs_per_block(struct inode * inode)3232 static inline unsigned int addrs_per_block(struct inode *inode)
3233 {
3234 	if (!f2fs_compressed_file(inode))
3235 		return DEF_ADDRS_PER_BLOCK;
3236 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3237 }
3238 
inline_xattr_addr(struct inode * inode,struct page * page)3239 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3240 {
3241 	struct f2fs_inode *ri = F2FS_INODE(page);
3242 
3243 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3244 					get_inline_xattr_addrs(inode)]);
3245 }
3246 
inline_xattr_size(struct inode * inode)3247 static inline int inline_xattr_size(struct inode *inode)
3248 {
3249 	if (f2fs_has_inline_xattr(inode))
3250 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3251 	return 0;
3252 }
3253 
3254 /*
3255  * Notice: check inline_data flag without inode page lock is unsafe.
3256  * It could change at any time by f2fs_convert_inline_page().
3257  */
f2fs_has_inline_data(struct inode * inode)3258 static inline int f2fs_has_inline_data(struct inode *inode)
3259 {
3260 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3261 }
3262 
f2fs_exist_data(struct inode * inode)3263 static inline int f2fs_exist_data(struct inode *inode)
3264 {
3265 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3266 }
3267 
f2fs_is_mmap_file(struct inode * inode)3268 static inline int f2fs_is_mmap_file(struct inode *inode)
3269 {
3270 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3271 }
3272 
f2fs_is_pinned_file(struct inode * inode)3273 static inline bool f2fs_is_pinned_file(struct inode *inode)
3274 {
3275 	return is_inode_flag_set(inode, FI_PIN_FILE);
3276 }
3277 
f2fs_is_atomic_file(struct inode * inode)3278 static inline bool f2fs_is_atomic_file(struct inode *inode)
3279 {
3280 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3281 }
3282 
f2fs_is_cow_file(struct inode * inode)3283 static inline bool f2fs_is_cow_file(struct inode *inode)
3284 {
3285 	return is_inode_flag_set(inode, FI_COW_FILE);
3286 }
3287 
3288 static inline __le32 *get_dnode_addr(struct inode *inode,
3289 					struct page *node_page);
inline_data_addr(struct inode * inode,struct page * page)3290 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3291 {
3292 	__le32 *addr = get_dnode_addr(inode, page);
3293 
3294 	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3295 }
3296 
f2fs_has_inline_dentry(struct inode * inode)3297 static inline int f2fs_has_inline_dentry(struct inode *inode)
3298 {
3299 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3300 }
3301 
is_file(struct inode * inode,int type)3302 static inline int is_file(struct inode *inode, int type)
3303 {
3304 	return F2FS_I(inode)->i_advise & type;
3305 }
3306 
set_file(struct inode * inode,int type)3307 static inline void set_file(struct inode *inode, int type)
3308 {
3309 	if (is_file(inode, type))
3310 		return;
3311 	F2FS_I(inode)->i_advise |= type;
3312 	f2fs_mark_inode_dirty_sync(inode, true);
3313 }
3314 
clear_file(struct inode * inode,int type)3315 static inline void clear_file(struct inode *inode, int type)
3316 {
3317 	if (!is_file(inode, type))
3318 		return;
3319 	F2FS_I(inode)->i_advise &= ~type;
3320 	f2fs_mark_inode_dirty_sync(inode, true);
3321 }
3322 
f2fs_is_time_consistent(struct inode * inode)3323 static inline bool f2fs_is_time_consistent(struct inode *inode)
3324 {
3325 	struct timespec64 ctime = inode_get_ctime(inode);
3326 
3327 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3328 		return false;
3329 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime))
3330 		return false;
3331 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3332 		return false;
3333 	return true;
3334 }
3335 
f2fs_skip_inode_update(struct inode * inode,int dsync)3336 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3337 {
3338 	bool ret;
3339 
3340 	if (dsync) {
3341 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3342 
3343 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3344 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3345 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3346 		return ret;
3347 	}
3348 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3349 			file_keep_isize(inode) ||
3350 			i_size_read(inode) & ~PAGE_MASK)
3351 		return false;
3352 
3353 	if (!f2fs_is_time_consistent(inode))
3354 		return false;
3355 
3356 	spin_lock(&F2FS_I(inode)->i_size_lock);
3357 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3358 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3359 
3360 	return ret;
3361 }
3362 
f2fs_readonly(struct super_block * sb)3363 static inline bool f2fs_readonly(struct super_block *sb)
3364 {
3365 	return sb_rdonly(sb);
3366 }
3367 
f2fs_cp_error(struct f2fs_sb_info * sbi)3368 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3369 {
3370 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3371 }
3372 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3373 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3374 					size_t size, gfp_t flags)
3375 {
3376 	if (time_to_inject(sbi, FAULT_KMALLOC))
3377 		return NULL;
3378 
3379 	return kmalloc(size, flags);
3380 }
3381 
f2fs_getname(struct f2fs_sb_info * sbi)3382 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3383 {
3384 	if (time_to_inject(sbi, FAULT_KMALLOC))
3385 		return NULL;
3386 
3387 	return __getname();
3388 }
3389 
f2fs_putname(char * buf)3390 static inline void f2fs_putname(char *buf)
3391 {
3392 	__putname(buf);
3393 }
3394 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3395 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3396 					size_t size, gfp_t flags)
3397 {
3398 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3399 }
3400 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3401 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3402 					size_t size, gfp_t flags)
3403 {
3404 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3405 		return NULL;
3406 
3407 	return kvmalloc(size, flags);
3408 }
3409 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3410 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3411 					size_t size, gfp_t flags)
3412 {
3413 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3414 }
3415 
get_extra_isize(struct inode * inode)3416 static inline int get_extra_isize(struct inode *inode)
3417 {
3418 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3419 }
3420 
get_inline_xattr_addrs(struct inode * inode)3421 static inline int get_inline_xattr_addrs(struct inode *inode)
3422 {
3423 	return F2FS_I(inode)->i_inline_xattr_size;
3424 }
3425 
get_dnode_addr(struct inode * inode,struct page * node_page)3426 static inline __le32 *get_dnode_addr(struct inode *inode,
3427 					struct page *node_page)
3428 {
3429 	int base = 0;
3430 
3431 	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3432 		base = get_extra_isize(inode);
3433 
3434 	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3435 }
3436 
3437 #define f2fs_get_inode_mode(i) \
3438 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3439 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3440 
3441 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3442 
3443 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3444 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3445 	offsetof(struct f2fs_inode, i_extra_isize))	\
3446 
3447 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3448 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3449 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3450 		sizeof((f2fs_inode)->field))			\
3451 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3452 
3453 #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3454 
3455 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3456 
3457 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3458 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3459 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3460 					block_t blkaddr, int type)
3461 {
3462 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3463 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3464 			 blkaddr, type);
3465 }
3466 
__is_valid_data_blkaddr(block_t blkaddr)3467 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3468 {
3469 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3470 			blkaddr == COMPRESS_ADDR)
3471 		return false;
3472 	return true;
3473 }
3474 
3475 /*
3476  * file.c
3477  */
3478 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3479 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3480 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3481 int f2fs_truncate(struct inode *inode);
3482 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3483 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3484 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3485 		 struct iattr *attr);
3486 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3487 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3488 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3489 						bool readonly, bool need_lock);
3490 int f2fs_precache_extents(struct inode *inode);
3491 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3492 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3493 		      struct dentry *dentry, struct fileattr *fa);
3494 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3495 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3496 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3497 int f2fs_pin_file_control(struct inode *inode, bool inc);
3498 
3499 /*
3500  * inode.c
3501  */
3502 void f2fs_set_inode_flags(struct inode *inode);
3503 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3504 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3505 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3506 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3507 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3508 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3509 void f2fs_update_inode_page(struct inode *inode);
3510 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3511 void f2fs_evict_inode(struct inode *inode);
3512 void f2fs_handle_failed_inode(struct inode *inode);
3513 
3514 /*
3515  * namei.c
3516  */
3517 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3518 							bool hot, bool set);
3519 struct dentry *f2fs_get_parent(struct dentry *child);
3520 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3521 		     struct inode **new_inode);
3522 
3523 /*
3524  * dir.c
3525  */
3526 int f2fs_init_casefolded_name(const struct inode *dir,
3527 			      struct f2fs_filename *fname);
3528 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3529 			int lookup, struct f2fs_filename *fname);
3530 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3531 			struct f2fs_filename *fname);
3532 void f2fs_free_filename(struct f2fs_filename *fname);
3533 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3534 			const struct f2fs_filename *fname, int *max_slots);
3535 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3536 			unsigned int start_pos, struct fscrypt_str *fstr);
3537 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3538 			struct f2fs_dentry_ptr *d);
3539 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3540 			const struct f2fs_filename *fname, struct page *dpage);
3541 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3542 			unsigned int current_depth);
3543 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3544 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3545 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3546 					 const struct f2fs_filename *fname,
3547 					 struct page **res_page);
3548 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3549 			const struct qstr *child, struct page **res_page);
3550 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3551 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3552 			struct page **page);
3553 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3554 			struct page *page, struct inode *inode);
3555 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3556 			  const struct f2fs_filename *fname);
3557 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3558 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3559 			unsigned int bit_pos);
3560 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3561 			struct inode *inode, nid_t ino, umode_t mode);
3562 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3563 			struct inode *inode, nid_t ino, umode_t mode);
3564 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3565 			struct inode *inode, nid_t ino, umode_t mode);
3566 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3567 			struct inode *dir, struct inode *inode);
3568 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3569 					struct f2fs_filename *fname);
3570 bool f2fs_empty_dir(struct inode *dir);
3571 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3572 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3573 {
3574 	if (fscrypt_is_nokey_name(dentry))
3575 		return -ENOKEY;
3576 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3577 				inode, inode->i_ino, inode->i_mode);
3578 }
3579 
3580 /*
3581  * super.c
3582  */
3583 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3584 void f2fs_inode_synced(struct inode *inode);
3585 int f2fs_dquot_initialize(struct inode *inode);
3586 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3587 int f2fs_quota_sync(struct super_block *sb, int type);
3588 loff_t max_file_blocks(struct inode *inode);
3589 void f2fs_quota_off_umount(struct super_block *sb);
3590 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3591 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3592 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3593 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3594 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3595 int f2fs_sync_fs(struct super_block *sb, int sync);
3596 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3597 
3598 /*
3599  * hash.c
3600  */
3601 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3602 
3603 /*
3604  * node.c
3605  */
3606 struct node_info;
3607 
3608 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3609 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3610 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3611 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3612 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3613 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3614 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3615 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3616 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3617 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3618 				struct node_info *ni, bool checkpoint_context);
3619 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3620 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3621 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3622 int f2fs_truncate_xattr_node(struct inode *inode);
3623 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3624 					unsigned int seq_id);
3625 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3626 int f2fs_remove_inode_page(struct inode *inode);
3627 struct page *f2fs_new_inode_page(struct inode *inode);
3628 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3629 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3630 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3631 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3632 int f2fs_move_node_page(struct page *node_page, int gc_type);
3633 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3634 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3635 			struct writeback_control *wbc, bool atomic,
3636 			unsigned int *seq_id);
3637 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3638 			struct writeback_control *wbc,
3639 			bool do_balance, enum iostat_type io_type);
3640 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3641 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3642 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3643 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3644 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3645 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3646 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3647 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3648 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3649 			unsigned int segno, struct f2fs_summary_block *sum);
3650 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3651 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3652 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3653 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3654 int __init f2fs_create_node_manager_caches(void);
3655 void f2fs_destroy_node_manager_caches(void);
3656 
3657 /*
3658  * segment.c
3659  */
3660 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3661 int f2fs_commit_atomic_write(struct inode *inode);
3662 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3663 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3664 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3665 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3666 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3667 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3668 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3669 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3670 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3671 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3672 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3673 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3674 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3675 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3676 					struct cp_control *cpc);
3677 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3678 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3679 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3680 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3681 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3682 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3683 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3684 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3685 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3686 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3687 			unsigned int *newseg, bool new_sec, int dir);
3688 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3689 					unsigned int start, unsigned int end);
3690 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3691 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3692 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3693 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3694 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3695 					struct cp_control *cpc);
3696 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3697 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3698 					block_t blk_addr);
3699 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3700 						enum iostat_type io_type);
3701 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3702 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3703 			struct f2fs_io_info *fio);
3704 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3705 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3706 			block_t old_blkaddr, block_t new_blkaddr,
3707 			bool recover_curseg, bool recover_newaddr,
3708 			bool from_gc);
3709 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3710 			block_t old_addr, block_t new_addr,
3711 			unsigned char version, bool recover_curseg,
3712 			bool recover_newaddr);
3713 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3714 			block_t old_blkaddr, block_t *new_blkaddr,
3715 			struct f2fs_summary *sum, int type,
3716 			struct f2fs_io_info *fio);
3717 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3718 					block_t blkaddr, unsigned int blkcnt);
3719 void f2fs_wait_on_page_writeback(struct page *page,
3720 			enum page_type type, bool ordered, bool locked);
3721 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3722 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3723 								block_t len);
3724 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3725 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3726 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3727 			unsigned int val, int alloc);
3728 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3729 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3730 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3731 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3732 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3733 int __init f2fs_create_segment_manager_caches(void);
3734 void f2fs_destroy_segment_manager_caches(void);
3735 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3736 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3737 			unsigned int segno);
3738 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3739 			unsigned int segno);
3740 
3741 #define DEF_FRAGMENT_SIZE	4
3742 #define MIN_FRAGMENT_SIZE	1
3743 #define MAX_FRAGMENT_SIZE	512
3744 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3745 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3746 {
3747 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3748 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3749 }
3750 
3751 /*
3752  * checkpoint.c
3753  */
3754 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3755 							unsigned char reason);
3756 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3757 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3758 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3759 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3760 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3761 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3762 					block_t blkaddr, int type);
3763 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3764 			int type, bool sync);
3765 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3766 							unsigned int ra_blocks);
3767 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3768 			long nr_to_write, enum iostat_type io_type);
3769 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3770 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3771 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3772 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3773 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3774 					unsigned int devidx, int type);
3775 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3776 					unsigned int devidx, int type);
3777 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3778 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3779 void f2fs_add_orphan_inode(struct inode *inode);
3780 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3781 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3782 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3783 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3784 void f2fs_remove_dirty_inode(struct inode *inode);
3785 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3786 								bool from_cp);
3787 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3788 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3789 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3790 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3791 int __init f2fs_create_checkpoint_caches(void);
3792 void f2fs_destroy_checkpoint_caches(void);
3793 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3794 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3795 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3796 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3797 
3798 /*
3799  * data.c
3800  */
3801 int __init f2fs_init_bioset(void);
3802 void f2fs_destroy_bioset(void);
3803 bool f2fs_is_cp_guaranteed(struct page *page);
3804 int f2fs_init_bio_entry_cache(void);
3805 void f2fs_destroy_bio_entry_cache(void);
3806 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3807 			  enum page_type type);
3808 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3809 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3810 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3811 				struct inode *inode, struct page *page,
3812 				nid_t ino, enum page_type type);
3813 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3814 					struct bio **bio, struct page *page);
3815 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3816 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3817 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3818 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3819 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3820 		block_t blk_addr, sector_t *sector);
3821 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3822 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3823 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3824 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3825 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3826 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3827 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3828 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3829 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3830 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3831 							pgoff_t *next_pgofs);
3832 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3833 			bool for_write);
3834 struct page *f2fs_get_new_data_page(struct inode *inode,
3835 			struct page *ipage, pgoff_t index, bool new_i_size);
3836 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3837 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3838 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3839 			u64 start, u64 len);
3840 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3841 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3842 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3843 int f2fs_write_single_data_page(struct page *page, int *submitted,
3844 				struct bio **bio, sector_t *last_block,
3845 				struct writeback_control *wbc,
3846 				enum iostat_type io_type,
3847 				int compr_blocks, bool allow_balance);
3848 void f2fs_write_failed(struct inode *inode, loff_t to);
3849 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3850 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3851 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3852 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3853 int f2fs_init_post_read_processing(void);
3854 void f2fs_destroy_post_read_processing(void);
3855 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3856 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3857 extern const struct iomap_ops f2fs_iomap_ops;
3858 
3859 /*
3860  * gc.c
3861  */
3862 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3863 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3864 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3865 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3866 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3867 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3868 		unsigned int start_seg, unsigned int end_seg,
3869 		bool dry_run, unsigned int dry_run_sections);
3870 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3871 int __init f2fs_create_garbage_collection_cache(void);
3872 void f2fs_destroy_garbage_collection_cache(void);
3873 /* victim selection function for cleaning and SSR */
3874 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3875 			int gc_type, int type, char alloc_mode,
3876 			unsigned long long age);
3877 
3878 /*
3879  * recovery.c
3880  */
3881 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3882 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3883 int __init f2fs_create_recovery_cache(void);
3884 void f2fs_destroy_recovery_cache(void);
3885 
3886 /*
3887  * debug.c
3888  */
3889 #ifdef CONFIG_F2FS_STAT_FS
3890 struct f2fs_stat_info {
3891 	struct list_head stat_list;
3892 	struct f2fs_sb_info *sbi;
3893 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3894 	int main_area_segs, main_area_sections, main_area_zones;
3895 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3896 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3897 	unsigned long long total_ext[NR_EXTENT_CACHES];
3898 	unsigned long long hit_total[NR_EXTENT_CACHES];
3899 	int ext_tree[NR_EXTENT_CACHES];
3900 	int zombie_tree[NR_EXTENT_CACHES];
3901 	int ext_node[NR_EXTENT_CACHES];
3902 	/* to count memory footprint */
3903 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3904 	/* for read extent cache */
3905 	unsigned long long hit_largest;
3906 	/* for block age extent cache */
3907 	unsigned long long allocated_data_blocks;
3908 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3909 	int ndirty_data, ndirty_qdata;
3910 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3911 	int nats, dirty_nats, sits, dirty_sits;
3912 	int free_nids, avail_nids, alloc_nids;
3913 	int total_count, utilization;
3914 	int nr_wb_cp_data, nr_wb_data;
3915 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3916 	int nr_dio_read, nr_dio_write;
3917 	unsigned int io_skip_bggc, other_skip_bggc;
3918 	int nr_flushing, nr_flushed, flush_list_empty;
3919 	int nr_discarding, nr_discarded;
3920 	int nr_discard_cmd;
3921 	unsigned int undiscard_blks;
3922 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3923 	unsigned int cur_ckpt_time, peak_ckpt_time;
3924 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3925 	int compr_inode, swapfile_inode;
3926 	unsigned long long compr_blocks;
3927 	int aw_cnt, max_aw_cnt;
3928 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3929 	unsigned int bimodal, avg_vblocks;
3930 	int util_free, util_valid, util_invalid;
3931 	int rsvd_segs, overp_segs;
3932 	int dirty_count, node_pages, meta_pages, compress_pages;
3933 	int compress_page_hit;
3934 	int prefree_count, free_segs, free_secs;
3935 	int cp_call_count[MAX_CALL_TYPE], cp_count;
3936 	int gc_call_count[MAX_CALL_TYPE];
3937 	int gc_segs[2][2];
3938 	int gc_secs[2][2];
3939 	int tot_blks, data_blks, node_blks;
3940 	int bg_data_blks, bg_node_blks;
3941 	int curseg[NR_CURSEG_TYPE];
3942 	int cursec[NR_CURSEG_TYPE];
3943 	int curzone[NR_CURSEG_TYPE];
3944 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3945 	unsigned int full_seg[NR_CURSEG_TYPE];
3946 	unsigned int valid_blks[NR_CURSEG_TYPE];
3947 
3948 	unsigned int meta_count[META_MAX];
3949 	unsigned int segment_count[2];
3950 	unsigned int block_count[2];
3951 	unsigned int inplace_count;
3952 	unsigned long long base_mem, cache_mem, page_mem;
3953 };
3954 
F2FS_STAT(struct f2fs_sb_info * sbi)3955 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3956 {
3957 	return (struct f2fs_stat_info *)sbi->stat_info;
3958 }
3959 
3960 #define stat_inc_cp_call_count(sbi, foreground)				\
3961 		atomic_inc(&sbi->cp_call_count[(foreground)])
3962 #define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3963 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3964 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3965 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3966 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3967 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3968 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3969 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3970 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3971 #define stat_inc_inline_xattr(inode)					\
3972 	do {								\
3973 		if (f2fs_has_inline_xattr(inode))			\
3974 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3975 	} while (0)
3976 #define stat_dec_inline_xattr(inode)					\
3977 	do {								\
3978 		if (f2fs_has_inline_xattr(inode))			\
3979 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3980 	} while (0)
3981 #define stat_inc_inline_inode(inode)					\
3982 	do {								\
3983 		if (f2fs_has_inline_data(inode))			\
3984 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3985 	} while (0)
3986 #define stat_dec_inline_inode(inode)					\
3987 	do {								\
3988 		if (f2fs_has_inline_data(inode))			\
3989 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3990 	} while (0)
3991 #define stat_inc_inline_dir(inode)					\
3992 	do {								\
3993 		if (f2fs_has_inline_dentry(inode))			\
3994 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3995 	} while (0)
3996 #define stat_dec_inline_dir(inode)					\
3997 	do {								\
3998 		if (f2fs_has_inline_dentry(inode))			\
3999 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4000 	} while (0)
4001 #define stat_inc_compr_inode(inode)					\
4002 	do {								\
4003 		if (f2fs_compressed_file(inode))			\
4004 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4005 	} while (0)
4006 #define stat_dec_compr_inode(inode)					\
4007 	do {								\
4008 		if (f2fs_compressed_file(inode))			\
4009 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4010 	} while (0)
4011 #define stat_add_compr_blocks(inode, blocks)				\
4012 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4013 #define stat_sub_compr_blocks(inode, blocks)				\
4014 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4015 #define stat_inc_swapfile_inode(inode)					\
4016 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4017 #define stat_dec_swapfile_inode(inode)					\
4018 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4019 #define stat_inc_atomic_inode(inode)					\
4020 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4021 #define stat_dec_atomic_inode(inode)					\
4022 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4023 #define stat_inc_meta_count(sbi, blkaddr)				\
4024 	do {								\
4025 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4026 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4027 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4028 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4029 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4030 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4031 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4032 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4033 	} while (0)
4034 #define stat_inc_seg_type(sbi, curseg)					\
4035 		((sbi)->segment_count[(curseg)->alloc_type]++)
4036 #define stat_inc_block_count(sbi, curseg)				\
4037 		((sbi)->block_count[(curseg)->alloc_type]++)
4038 #define stat_inc_inplace_blocks(sbi)					\
4039 		(atomic_inc(&(sbi)->inplace_count))
4040 #define stat_update_max_atomic_write(inode)				\
4041 	do {								\
4042 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4043 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4044 		if (cur > max)						\
4045 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4046 	} while (0)
4047 #define stat_inc_gc_call_count(sbi, foreground)				\
4048 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4049 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4050 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4051 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4052 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4053 
4054 #define stat_inc_tot_blk_count(si, blks)				\
4055 	((si)->tot_blks += (blks))
4056 
4057 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4058 	do {								\
4059 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4060 		stat_inc_tot_blk_count(si, blks);			\
4061 		si->data_blks += (blks);				\
4062 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4063 	} while (0)
4064 
4065 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4066 	do {								\
4067 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4068 		stat_inc_tot_blk_count(si, blks);			\
4069 		si->node_blks += (blks);				\
4070 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4071 	} while (0)
4072 
4073 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4074 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4075 void __init f2fs_create_root_stats(void);
4076 void f2fs_destroy_root_stats(void);
4077 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4078 #else
4079 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4080 #define stat_inc_cp_count(sbi)				do { } while (0)
4081 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4082 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4083 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4084 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4085 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4086 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4087 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4088 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4089 #define stat_inc_inline_xattr(inode)			do { } while (0)
4090 #define stat_dec_inline_xattr(inode)			do { } while (0)
4091 #define stat_inc_inline_inode(inode)			do { } while (0)
4092 #define stat_dec_inline_inode(inode)			do { } while (0)
4093 #define stat_inc_inline_dir(inode)			do { } while (0)
4094 #define stat_dec_inline_dir(inode)			do { } while (0)
4095 #define stat_inc_compr_inode(inode)			do { } while (0)
4096 #define stat_dec_compr_inode(inode)			do { } while (0)
4097 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4098 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4099 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4100 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4101 #define stat_inc_atomic_inode(inode)			do { } while (0)
4102 #define stat_dec_atomic_inode(inode)			do { } while (0)
4103 #define stat_update_max_atomic_write(inode)		do { } while (0)
4104 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4105 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4106 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4107 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4108 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4109 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4110 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4111 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4112 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4113 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4114 
f2fs_build_stats(struct f2fs_sb_info * sbi)4115 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4116 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4117 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4118 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4119 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4120 #endif
4121 
4122 extern const struct file_operations f2fs_dir_operations;
4123 extern const struct file_operations f2fs_file_operations;
4124 extern const struct inode_operations f2fs_file_inode_operations;
4125 extern const struct address_space_operations f2fs_dblock_aops;
4126 extern const struct address_space_operations f2fs_node_aops;
4127 extern const struct address_space_operations f2fs_meta_aops;
4128 extern const struct inode_operations f2fs_dir_inode_operations;
4129 extern const struct inode_operations f2fs_symlink_inode_operations;
4130 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4131 extern const struct inode_operations f2fs_special_inode_operations;
4132 extern struct kmem_cache *f2fs_inode_entry_slab;
4133 
4134 /*
4135  * inline.c
4136  */
4137 bool f2fs_may_inline_data(struct inode *inode);
4138 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4139 bool f2fs_may_inline_dentry(struct inode *inode);
4140 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4141 void f2fs_truncate_inline_inode(struct inode *inode,
4142 						struct page *ipage, u64 from);
4143 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4144 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4145 int f2fs_convert_inline_inode(struct inode *inode);
4146 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4147 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4148 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4149 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4150 					const struct f2fs_filename *fname,
4151 					struct page **res_page);
4152 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4153 			struct page *ipage);
4154 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4155 			struct inode *inode, nid_t ino, umode_t mode);
4156 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4157 				struct page *page, struct inode *dir,
4158 				struct inode *inode);
4159 bool f2fs_empty_inline_dir(struct inode *dir);
4160 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4161 			struct fscrypt_str *fstr);
4162 int f2fs_inline_data_fiemap(struct inode *inode,
4163 			struct fiemap_extent_info *fieinfo,
4164 			__u64 start, __u64 len);
4165 
4166 /*
4167  * shrinker.c
4168  */
4169 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4170 			struct shrink_control *sc);
4171 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4172 			struct shrink_control *sc);
4173 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4174 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4175 
4176 /*
4177  * extent_cache.c
4178  */
4179 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4180 void f2fs_init_extent_tree(struct inode *inode);
4181 void f2fs_drop_extent_tree(struct inode *inode);
4182 void f2fs_destroy_extent_node(struct inode *inode);
4183 void f2fs_destroy_extent_tree(struct inode *inode);
4184 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4185 int __init f2fs_create_extent_cache(void);
4186 void f2fs_destroy_extent_cache(void);
4187 
4188 /* read extent cache ops */
4189 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4190 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4191 			struct extent_info *ei);
4192 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4193 			block_t *blkaddr);
4194 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4195 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4196 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4197 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4198 			int nr_shrink);
4199 
4200 /* block age extent cache ops */
4201 void f2fs_init_age_extent_tree(struct inode *inode);
4202 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4203 			struct extent_info *ei);
4204 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4205 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4206 			pgoff_t fofs, unsigned int len);
4207 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4208 			int nr_shrink);
4209 
4210 /*
4211  * sysfs.c
4212  */
4213 #define MIN_RA_MUL	2
4214 #define MAX_RA_MUL	256
4215 
4216 int __init f2fs_init_sysfs(void);
4217 void f2fs_exit_sysfs(void);
4218 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4219 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4220 
4221 /* verity.c */
4222 extern const struct fsverity_operations f2fs_verityops;
4223 
4224 /*
4225  * crypto support
4226  */
f2fs_encrypted_file(struct inode * inode)4227 static inline bool f2fs_encrypted_file(struct inode *inode)
4228 {
4229 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4230 }
4231 
f2fs_set_encrypted_inode(struct inode * inode)4232 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4233 {
4234 #ifdef CONFIG_FS_ENCRYPTION
4235 	file_set_encrypt(inode);
4236 	f2fs_set_inode_flags(inode);
4237 #endif
4238 }
4239 
4240 /*
4241  * Returns true if the reads of the inode's data need to undergo some
4242  * postprocessing step, like decryption or authenticity verification.
4243  */
f2fs_post_read_required(struct inode * inode)4244 static inline bool f2fs_post_read_required(struct inode *inode)
4245 {
4246 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4247 		f2fs_compressed_file(inode);
4248 }
4249 
f2fs_used_in_atomic_write(struct inode * inode)4250 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4251 {
4252 	return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4253 }
4254 
f2fs_meta_inode_gc_required(struct inode * inode)4255 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4256 {
4257 	return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4258 }
4259 
4260 /*
4261  * compress.c
4262  */
4263 #ifdef CONFIG_F2FS_FS_COMPRESSION
4264 enum cluster_check_type {
4265 	CLUSTER_IS_COMPR,   /* check only if compressed cluster */
4266 	CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4267 	CLUSTER_RAW_BLKS    /* return # of raw blocks in a cluster */
4268 };
4269 bool f2fs_is_compressed_page(struct page *page);
4270 struct page *f2fs_compress_control_page(struct page *page);
4271 int f2fs_prepare_compress_overwrite(struct inode *inode,
4272 			struct page **pagep, pgoff_t index, void **fsdata);
4273 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4274 					pgoff_t index, unsigned copied);
4275 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4276 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4277 bool f2fs_is_compress_backend_ready(struct inode *inode);
4278 bool f2fs_is_compress_level_valid(int alg, int lvl);
4279 int __init f2fs_init_compress_mempool(void);
4280 void f2fs_destroy_compress_mempool(void);
4281 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4282 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4283 				block_t blkaddr, bool in_task);
4284 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4285 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4286 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4287 				int index, int nr_pages, bool uptodate);
4288 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4289 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4290 int f2fs_write_multi_pages(struct compress_ctx *cc,
4291 						int *submitted,
4292 						struct writeback_control *wbc,
4293 						enum iostat_type io_type);
4294 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4295 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4296 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4297 				pgoff_t fofs, block_t blkaddr,
4298 				unsigned int llen, unsigned int c_len);
4299 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4300 				unsigned nr_pages, sector_t *last_block_in_bio,
4301 				bool is_readahead, bool for_write);
4302 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4303 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4304 				bool in_task);
4305 void f2fs_put_page_dic(struct page *page, bool in_task);
4306 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4307 						unsigned int ofs_in_node);
4308 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4309 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4310 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4311 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4312 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4313 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4314 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4315 int __init f2fs_init_compress_cache(void);
4316 void f2fs_destroy_compress_cache(void);
4317 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4318 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4319 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4320 						nid_t ino, block_t blkaddr);
4321 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4322 								block_t blkaddr);
4323 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4324 #define inc_compr_inode_stat(inode)					\
4325 	do {								\
4326 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4327 		sbi->compr_new_inode++;					\
4328 	} while (0)
4329 #define add_compr_block_stat(inode, blocks)				\
4330 	do {								\
4331 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4332 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4333 		sbi->compr_written_block += blocks;			\
4334 		sbi->compr_saved_block += diff;				\
4335 	} while (0)
4336 #else
f2fs_is_compressed_page(struct page * page)4337 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4338 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4339 {
4340 	if (!f2fs_compressed_file(inode))
4341 		return true;
4342 	/* not support compression */
4343 	return false;
4344 }
f2fs_is_compress_level_valid(int alg,int lvl)4345 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4346 static inline struct page *f2fs_compress_control_page(struct page *page)
4347 {
4348 	WARN_ON_ONCE(1);
4349 	return ERR_PTR(-EINVAL);
4350 }
f2fs_init_compress_mempool(void)4351 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4352 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4353 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4354 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4355 static inline void f2fs_end_read_compressed_page(struct page *page,
4356 				bool failed, block_t blkaddr, bool in_task)
4357 {
4358 	WARN_ON_ONCE(1);
4359 }
f2fs_put_page_dic(struct page * page,bool in_task)4360 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4361 {
4362 	WARN_ON_ONCE(1);
4363 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4364 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4365 			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4366 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4367 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4368 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4369 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4370 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4371 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4372 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4373 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4374 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4375 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4376 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4377 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4378 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4379 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4380 							nid_t ino) { }
4381 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4382 static inline int f2fs_is_compressed_cluster(
4383 				struct inode *inode,
4384 				pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4385 static inline bool f2fs_is_sparse_cluster(
4386 				struct inode *inode,
4387 				pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4388 static inline void f2fs_update_read_extent_tree_range_compressed(
4389 				struct inode *inode,
4390 				pgoff_t fofs, block_t blkaddr,
4391 				unsigned int llen, unsigned int c_len) { }
4392 #endif
4393 
set_compress_context(struct inode * inode)4394 static inline int set_compress_context(struct inode *inode)
4395 {
4396 #ifdef CONFIG_F2FS_FS_COMPRESSION
4397 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4398 
4399 	F2FS_I(inode)->i_compress_algorithm =
4400 			F2FS_OPTION(sbi).compress_algorithm;
4401 	F2FS_I(inode)->i_log_cluster_size =
4402 			F2FS_OPTION(sbi).compress_log_size;
4403 	F2FS_I(inode)->i_compress_flag =
4404 			F2FS_OPTION(sbi).compress_chksum ?
4405 				BIT(COMPRESS_CHKSUM) : 0;
4406 	F2FS_I(inode)->i_cluster_size =
4407 			BIT(F2FS_I(inode)->i_log_cluster_size);
4408 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4409 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4410 			F2FS_OPTION(sbi).compress_level)
4411 		F2FS_I(inode)->i_compress_level =
4412 				F2FS_OPTION(sbi).compress_level;
4413 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4414 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4415 	stat_inc_compr_inode(inode);
4416 	inc_compr_inode_stat(inode);
4417 	f2fs_mark_inode_dirty_sync(inode, true);
4418 	return 0;
4419 #else
4420 	return -EOPNOTSUPP;
4421 #endif
4422 }
4423 
f2fs_disable_compressed_file(struct inode * inode)4424 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4425 {
4426 	struct f2fs_inode_info *fi = F2FS_I(inode);
4427 
4428 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4429 
4430 	if (!f2fs_compressed_file(inode)) {
4431 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4432 		return true;
4433 	}
4434 	if (f2fs_is_mmap_file(inode) ||
4435 		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4436 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4437 		return false;
4438 	}
4439 
4440 	fi->i_flags &= ~F2FS_COMPR_FL;
4441 	stat_dec_compr_inode(inode);
4442 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4443 	f2fs_mark_inode_dirty_sync(inode, true);
4444 
4445 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4446 	return true;
4447 }
4448 
4449 #define F2FS_FEATURE_FUNCS(name, flagname) \
4450 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4451 { \
4452 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4453 }
4454 
4455 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4456 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4457 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4458 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4459 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4460 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4461 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4462 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4463 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4464 F2FS_FEATURE_FUNCS(verity, VERITY);
4465 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4466 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4467 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4468 F2FS_FEATURE_FUNCS(readonly, RO);
4469 
4470 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4471 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4472 				    block_t blkaddr)
4473 {
4474 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4475 
4476 	return test_bit(zno, FDEV(devi).blkz_seq);
4477 }
4478 #endif
4479 
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4480 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4481 				  struct block_device *bdev)
4482 {
4483 	int i;
4484 
4485 	if (!f2fs_is_multi_device(sbi))
4486 		return 0;
4487 
4488 	for (i = 0; i < sbi->s_ndevs; i++)
4489 		if (FDEV(i).bdev == bdev)
4490 			return i;
4491 
4492 	WARN_ON(1);
4493 	return -1;
4494 }
4495 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4496 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4497 {
4498 	return f2fs_sb_has_blkzoned(sbi);
4499 }
4500 
f2fs_bdev_support_discard(struct block_device * bdev)4501 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4502 {
4503 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4504 }
4505 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4506 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4507 {
4508 	int i;
4509 
4510 	if (!f2fs_is_multi_device(sbi))
4511 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4512 
4513 	for (i = 0; i < sbi->s_ndevs; i++)
4514 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4515 			return true;
4516 	return false;
4517 }
4518 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4519 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4520 {
4521 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4522 					f2fs_hw_should_discard(sbi);
4523 }
4524 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4525 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4526 {
4527 	int i;
4528 
4529 	if (!f2fs_is_multi_device(sbi))
4530 		return bdev_read_only(sbi->sb->s_bdev);
4531 
4532 	for (i = 0; i < sbi->s_ndevs; i++)
4533 		if (bdev_read_only(FDEV(i).bdev))
4534 			return true;
4535 	return false;
4536 }
4537 
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4538 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4539 {
4540 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4541 }
4542 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4543 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4544 {
4545 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4546 }
4547 
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4548 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4549 					  block_t blkaddr)
4550 {
4551 	if (f2fs_sb_has_blkzoned(sbi)) {
4552 		int devi = f2fs_target_device_index(sbi, blkaddr);
4553 
4554 		return !bdev_is_zoned(FDEV(devi).bdev);
4555 	}
4556 	return true;
4557 }
4558 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4559 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4560 {
4561 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4562 }
4563 
f2fs_may_compress(struct inode * inode)4564 static inline bool f2fs_may_compress(struct inode *inode)
4565 {
4566 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4567 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4568 		f2fs_is_mmap_file(inode))
4569 		return false;
4570 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4571 }
4572 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4573 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4574 						u64 blocks, bool add)
4575 {
4576 	struct f2fs_inode_info *fi = F2FS_I(inode);
4577 	int diff = fi->i_cluster_size - blocks;
4578 
4579 	/* don't update i_compr_blocks if saved blocks were released */
4580 	if (!add && !atomic_read(&fi->i_compr_blocks))
4581 		return;
4582 
4583 	if (add) {
4584 		atomic_add(diff, &fi->i_compr_blocks);
4585 		stat_add_compr_blocks(inode, diff);
4586 	} else {
4587 		atomic_sub(diff, &fi->i_compr_blocks);
4588 		stat_sub_compr_blocks(inode, diff);
4589 	}
4590 	f2fs_mark_inode_dirty_sync(inode, true);
4591 }
4592 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4593 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4594 								int flag)
4595 {
4596 	if (!f2fs_is_multi_device(sbi))
4597 		return false;
4598 	if (flag != F2FS_GET_BLOCK_DIO)
4599 		return false;
4600 	return sbi->aligned_blksize;
4601 }
4602 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4603 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4604 {
4605 	return fsverity_active(inode) &&
4606 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4607 }
4608 
4609 #ifdef CONFIG_F2FS_FAULT_INJECTION
4610 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4611 							unsigned long type);
4612 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4613 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4614 					unsigned long rate, unsigned long type)
4615 {
4616 	return 0;
4617 }
4618 #endif
4619 
is_journalled_quota(struct f2fs_sb_info * sbi)4620 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4621 {
4622 #ifdef CONFIG_QUOTA
4623 	if (f2fs_sb_has_quota_ino(sbi))
4624 		return true;
4625 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4626 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4627 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4628 		return true;
4629 #endif
4630 	return false;
4631 }
4632 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4633 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4634 {
4635 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4636 }
4637 
f2fs_io_schedule_timeout(long timeout)4638 static inline void f2fs_io_schedule_timeout(long timeout)
4639 {
4640 	set_current_state(TASK_UNINTERRUPTIBLE);
4641 	io_schedule_timeout(timeout);
4642 }
4643 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4644 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4645 					enum page_type type)
4646 {
4647 	if (unlikely(f2fs_cp_error(sbi)))
4648 		return;
4649 
4650 	if (ofs == sbi->page_eio_ofs[type]) {
4651 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4652 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4653 	} else {
4654 		sbi->page_eio_ofs[type] = ofs;
4655 		sbi->page_eio_cnt[type] = 0;
4656 	}
4657 }
4658 
f2fs_is_readonly(struct f2fs_sb_info * sbi)4659 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4660 {
4661 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4662 }
4663 
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4664 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4665 					block_t blkaddr, unsigned int cnt)
4666 {
4667 	bool need_submit = false;
4668 	int i = 0;
4669 
4670 	do {
4671 		struct page *page;
4672 
4673 		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4674 		if (page) {
4675 			if (PageWriteback(page))
4676 				need_submit = true;
4677 			f2fs_put_page(page, 0);
4678 		}
4679 	} while (++i < cnt && !need_submit);
4680 
4681 	if (need_submit)
4682 		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4683 							NULL, 0, DATA);
4684 
4685 	truncate_inode_pages_range(META_MAPPING(sbi),
4686 			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4687 			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4688 }
4689 
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr)4690 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4691 								block_t blkaddr)
4692 {
4693 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4694 	f2fs_invalidate_compress_page(sbi, blkaddr);
4695 }
4696 
4697 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4698 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4699 
4700 #endif /* _LINUX_F2FS_H */
4701