xref: /openbmc/linux/drivers/pci/controller/vmd.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19 
20 #include <xen/xen.h>
21 
22 #include <asm/irqdomain.h>
23 
24 #define VMD_CFGBAR	0
25 #define VMD_MEMBAR1	2
26 #define VMD_MEMBAR2	4
27 
28 #define PCI_REG_VMCAP		0x40
29 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
30 #define PCI_REG_VMCONFIG	0x44
31 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
32 #define VMCONFIG_MSI_REMAP	0x2
33 #define PCI_REG_VMLOCK		0x70
34 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
35 
36 #define MB2_SHADOW_OFFSET	0x2000
37 #define MB2_SHADOW_SIZE		16
38 
39 enum vmd_features {
40 	/*
41 	 * Device may contain registers which hint the physical location of the
42 	 * membars, in order to allow proper address translation during
43 	 * resource assignment to enable guest virtualization
44 	 */
45 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
46 
47 	/*
48 	 * Device may provide root port configuration information which limits
49 	 * bus numbering
50 	 */
51 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
52 
53 	/*
54 	 * Device contains physical location shadow registers in
55 	 * vendor-specific capability space
56 	 */
57 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
58 
59 	/*
60 	 * Device may use MSI-X vector 0 for software triggering and will not
61 	 * be used for MSI remapping
62 	 */
63 	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
64 
65 	/*
66 	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
67 	 * avoiding the requirement of a VMD MSI domain for child device
68 	 * interrupt handling.
69 	 */
70 	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
71 
72 	/*
73 	 * Enable ASPM on the PCIE root ports and set the default LTR of the
74 	 * storage devices on platforms where these values are not configured by
75 	 * BIOS. This is needed for laptops, which require these settings for
76 	 * proper power management of the SoC.
77 	 */
78 	VMD_FEAT_BIOS_PM_QUIRK		= (1 << 5),
79 };
80 
81 #define VMD_BIOS_PM_QUIRK_LTR	0x1003	/* 3145728 ns */
82 
83 #define VMD_FEATS_CLIENT	(VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |	\
84 				 VMD_FEAT_HAS_BUS_RESTRICTIONS |	\
85 				 VMD_FEAT_OFFSET_FIRST_VECTOR |		\
86 				 VMD_FEAT_BIOS_PM_QUIRK)
87 
88 static DEFINE_IDA(vmd_instance_ida);
89 
90 /*
91  * Lock for manipulating VMD IRQ lists.
92  */
93 static DEFINE_RAW_SPINLOCK(list_lock);
94 
95 /**
96  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
97  * @node:	list item for parent traversal.
98  * @irq:	back pointer to parent.
99  * @enabled:	true if driver enabled IRQ
100  * @virq:	the virtual IRQ value provided to the requesting driver.
101  *
102  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
103  * a VMD IRQ using this structure.
104  */
105 struct vmd_irq {
106 	struct list_head	node;
107 	struct vmd_irq_list	*irq;
108 	bool			enabled;
109 	unsigned int		virq;
110 };
111 
112 /**
113  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
114  * @irq_list:	the list of irq's the VMD one demuxes to.
115  * @srcu:	SRCU struct for local synchronization.
116  * @count:	number of child IRQs assigned to this vector; used to track
117  *		sharing.
118  * @virq:	The underlying VMD Linux interrupt number
119  */
120 struct vmd_irq_list {
121 	struct list_head	irq_list;
122 	struct srcu_struct	srcu;
123 	unsigned int		count;
124 	unsigned int		virq;
125 };
126 
127 struct vmd_dev {
128 	struct pci_dev		*dev;
129 
130 	raw_spinlock_t		cfg_lock;
131 	void __iomem		*cfgbar;
132 
133 	int msix_count;
134 	struct vmd_irq_list	*irqs;
135 
136 	struct pci_sysdata	sysdata;
137 	struct resource		resources[3];
138 	struct irq_domain	*irq_domain;
139 	struct pci_bus		*bus;
140 	u8			busn_start;
141 	u8			first_vec;
142 	char			*name;
143 	int			instance;
144 };
145 
vmd_from_bus(struct pci_bus * bus)146 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
147 {
148 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
149 }
150 
index_from_irqs(struct vmd_dev * vmd,struct vmd_irq_list * irqs)151 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
152 					   struct vmd_irq_list *irqs)
153 {
154 	return irqs - vmd->irqs;
155 }
156 
157 /*
158  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
159  * but the MSI entry for the hardware it's driving will be programmed with a
160  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
161  * domain into one of its own, and the VMD driver de-muxes these for the
162  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
163  * and irq_chip to set this up.
164  */
vmd_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)165 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
166 {
167 	struct vmd_irq *vmdirq = data->chip_data;
168 	struct vmd_irq_list *irq = vmdirq->irq;
169 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
170 
171 	memset(msg, 0, sizeof(*msg));
172 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
173 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
174 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
175 }
176 
177 /*
178  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
179  */
vmd_irq_enable(struct irq_data * data)180 static void vmd_irq_enable(struct irq_data *data)
181 {
182 	struct vmd_irq *vmdirq = data->chip_data;
183 	unsigned long flags;
184 
185 	raw_spin_lock_irqsave(&list_lock, flags);
186 	WARN_ON(vmdirq->enabled);
187 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
188 	vmdirq->enabled = true;
189 	raw_spin_unlock_irqrestore(&list_lock, flags);
190 
191 	data->chip->irq_unmask(data);
192 }
193 
vmd_irq_disable(struct irq_data * data)194 static void vmd_irq_disable(struct irq_data *data)
195 {
196 	struct vmd_irq *vmdirq = data->chip_data;
197 	unsigned long flags;
198 
199 	data->chip->irq_mask(data);
200 
201 	raw_spin_lock_irqsave(&list_lock, flags);
202 	if (vmdirq->enabled) {
203 		list_del_rcu(&vmdirq->node);
204 		vmdirq->enabled = false;
205 	}
206 	raw_spin_unlock_irqrestore(&list_lock, flags);
207 }
208 
209 /*
210  * XXX: Stubbed until we develop acceptable way to not create conflicts with
211  * other devices sharing the same vector.
212  */
vmd_irq_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)213 static int vmd_irq_set_affinity(struct irq_data *data,
214 				const struct cpumask *dest, bool force)
215 {
216 	return -EINVAL;
217 }
218 
219 static struct irq_chip vmd_msi_controller = {
220 	.name			= "VMD-MSI",
221 	.irq_enable		= vmd_irq_enable,
222 	.irq_disable		= vmd_irq_disable,
223 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
224 	.irq_set_affinity	= vmd_irq_set_affinity,
225 };
226 
vmd_get_hwirq(struct msi_domain_info * info,msi_alloc_info_t * arg)227 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
228 				     msi_alloc_info_t *arg)
229 {
230 	return 0;
231 }
232 
233 /*
234  * XXX: We can be even smarter selecting the best IRQ once we solve the
235  * affinity problem.
236  */
vmd_next_irq(struct vmd_dev * vmd,struct msi_desc * desc)237 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
238 {
239 	unsigned long flags;
240 	int i, best;
241 
242 	if (vmd->msix_count == 1 + vmd->first_vec)
243 		return &vmd->irqs[vmd->first_vec];
244 
245 	/*
246 	 * White list for fast-interrupt handlers. All others will share the
247 	 * "slow" interrupt vector.
248 	 */
249 	switch (msi_desc_to_pci_dev(desc)->class) {
250 	case PCI_CLASS_STORAGE_EXPRESS:
251 		break;
252 	default:
253 		return &vmd->irqs[vmd->first_vec];
254 	}
255 
256 	raw_spin_lock_irqsave(&list_lock, flags);
257 	best = vmd->first_vec + 1;
258 	for (i = best; i < vmd->msix_count; i++)
259 		if (vmd->irqs[i].count < vmd->irqs[best].count)
260 			best = i;
261 	vmd->irqs[best].count++;
262 	raw_spin_unlock_irqrestore(&list_lock, flags);
263 
264 	return &vmd->irqs[best];
265 }
266 
vmd_msi_init(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq,irq_hw_number_t hwirq,msi_alloc_info_t * arg)267 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
268 			unsigned int virq, irq_hw_number_t hwirq,
269 			msi_alloc_info_t *arg)
270 {
271 	struct msi_desc *desc = arg->desc;
272 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
273 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
274 
275 	if (!vmdirq)
276 		return -ENOMEM;
277 
278 	INIT_LIST_HEAD(&vmdirq->node);
279 	vmdirq->irq = vmd_next_irq(vmd, desc);
280 	vmdirq->virq = virq;
281 
282 	irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
283 			    handle_untracked_irq, vmd, NULL);
284 	return 0;
285 }
286 
vmd_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq)287 static void vmd_msi_free(struct irq_domain *domain,
288 			struct msi_domain_info *info, unsigned int virq)
289 {
290 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
291 	unsigned long flags;
292 
293 	synchronize_srcu(&vmdirq->irq->srcu);
294 
295 	/* XXX: Potential optimization to rebalance */
296 	raw_spin_lock_irqsave(&list_lock, flags);
297 	vmdirq->irq->count--;
298 	raw_spin_unlock_irqrestore(&list_lock, flags);
299 
300 	kfree(vmdirq);
301 }
302 
vmd_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * arg)303 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
304 			   int nvec, msi_alloc_info_t *arg)
305 {
306 	struct pci_dev *pdev = to_pci_dev(dev);
307 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
308 
309 	if (nvec > vmd->msix_count)
310 		return vmd->msix_count;
311 
312 	memset(arg, 0, sizeof(*arg));
313 	return 0;
314 }
315 
vmd_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)316 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
317 {
318 	arg->desc = desc;
319 }
320 
321 static struct msi_domain_ops vmd_msi_domain_ops = {
322 	.get_hwirq	= vmd_get_hwirq,
323 	.msi_init	= vmd_msi_init,
324 	.msi_free	= vmd_msi_free,
325 	.msi_prepare	= vmd_msi_prepare,
326 	.set_desc	= vmd_set_desc,
327 };
328 
329 static struct msi_domain_info vmd_msi_domain_info = {
330 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
331 			  MSI_FLAG_PCI_MSIX,
332 	.ops		= &vmd_msi_domain_ops,
333 	.chip		= &vmd_msi_controller,
334 };
335 
vmd_set_msi_remapping(struct vmd_dev * vmd,bool enable)336 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
337 {
338 	u16 reg;
339 
340 	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
341 	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
342 		       (reg | VMCONFIG_MSI_REMAP);
343 	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
344 }
345 
vmd_create_irq_domain(struct vmd_dev * vmd)346 static int vmd_create_irq_domain(struct vmd_dev *vmd)
347 {
348 	struct fwnode_handle *fn;
349 
350 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
351 	if (!fn)
352 		return -ENODEV;
353 
354 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
355 	if (!vmd->irq_domain) {
356 		irq_domain_free_fwnode(fn);
357 		return -ENODEV;
358 	}
359 
360 	return 0;
361 }
362 
vmd_remove_irq_domain(struct vmd_dev * vmd)363 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
364 {
365 	/*
366 	 * Some production BIOS won't enable remapping between soft reboots.
367 	 * Ensure remapping is restored before unloading the driver.
368 	 */
369 	if (!vmd->msix_count)
370 		vmd_set_msi_remapping(vmd, true);
371 
372 	if (vmd->irq_domain) {
373 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
374 
375 		irq_domain_remove(vmd->irq_domain);
376 		irq_domain_free_fwnode(fn);
377 	}
378 }
379 
vmd_cfg_addr(struct vmd_dev * vmd,struct pci_bus * bus,unsigned int devfn,int reg,int len)380 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
381 				  unsigned int devfn, int reg, int len)
382 {
383 	unsigned int busnr_ecam = bus->number - vmd->busn_start;
384 	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
385 
386 	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
387 		return NULL;
388 
389 	return vmd->cfgbar + offset;
390 }
391 
392 /*
393  * CPU may deadlock if config space is not serialized on some versions of this
394  * hardware, so all config space access is done under a spinlock.
395  */
vmd_pci_read(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 * value)396 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
397 			int len, u32 *value)
398 {
399 	struct vmd_dev *vmd = vmd_from_bus(bus);
400 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
401 	unsigned long flags;
402 	int ret = 0;
403 
404 	if (!addr)
405 		return -EFAULT;
406 
407 	raw_spin_lock_irqsave(&vmd->cfg_lock, flags);
408 	switch (len) {
409 	case 1:
410 		*value = readb(addr);
411 		break;
412 	case 2:
413 		*value = readw(addr);
414 		break;
415 	case 4:
416 		*value = readl(addr);
417 		break;
418 	default:
419 		ret = -EINVAL;
420 		break;
421 	}
422 	raw_spin_unlock_irqrestore(&vmd->cfg_lock, flags);
423 	return ret;
424 }
425 
426 /*
427  * VMD h/w converts non-posted config writes to posted memory writes. The
428  * read-back in this function forces the completion so it returns only after
429  * the config space was written, as expected.
430  */
vmd_pci_write(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 value)431 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
432 			 int len, u32 value)
433 {
434 	struct vmd_dev *vmd = vmd_from_bus(bus);
435 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
436 	unsigned long flags;
437 	int ret = 0;
438 
439 	if (!addr)
440 		return -EFAULT;
441 
442 	raw_spin_lock_irqsave(&vmd->cfg_lock, flags);
443 	switch (len) {
444 	case 1:
445 		writeb(value, addr);
446 		readb(addr);
447 		break;
448 	case 2:
449 		writew(value, addr);
450 		readw(addr);
451 		break;
452 	case 4:
453 		writel(value, addr);
454 		readl(addr);
455 		break;
456 	default:
457 		ret = -EINVAL;
458 		break;
459 	}
460 	raw_spin_unlock_irqrestore(&vmd->cfg_lock, flags);
461 	return ret;
462 }
463 
464 static struct pci_ops vmd_ops = {
465 	.read		= vmd_pci_read,
466 	.write		= vmd_pci_write,
467 };
468 
469 #ifdef CONFIG_ACPI
vmd_acpi_find_companion(struct pci_dev * pci_dev)470 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
471 {
472 	struct pci_host_bridge *bridge;
473 	u32 busnr, addr;
474 
475 	if (pci_dev->bus->ops != &vmd_ops)
476 		return NULL;
477 
478 	bridge = pci_find_host_bridge(pci_dev->bus);
479 	busnr = pci_dev->bus->number - bridge->bus->number;
480 	/*
481 	 * The address computation below is only applicable to relative bus
482 	 * numbers below 32.
483 	 */
484 	if (busnr > 31)
485 		return NULL;
486 
487 	addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
488 
489 	dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
490 		addr);
491 
492 	return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
493 				      false);
494 }
495 
496 static bool hook_installed;
497 
vmd_acpi_begin(void)498 static void vmd_acpi_begin(void)
499 {
500 	if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
501 		return;
502 
503 	hook_installed = true;
504 }
505 
vmd_acpi_end(void)506 static void vmd_acpi_end(void)
507 {
508 	if (!hook_installed)
509 		return;
510 
511 	pci_acpi_clear_companion_lookup_hook();
512 	hook_installed = false;
513 }
514 #else
vmd_acpi_begin(void)515 static inline void vmd_acpi_begin(void) { }
vmd_acpi_end(void)516 static inline void vmd_acpi_end(void) { }
517 #endif /* CONFIG_ACPI */
518 
vmd_domain_reset(struct vmd_dev * vmd)519 static void vmd_domain_reset(struct vmd_dev *vmd)
520 {
521 	u16 bus, max_buses = resource_size(&vmd->resources[0]);
522 	u8 dev, functions, fn, hdr_type;
523 	char __iomem *base;
524 
525 	for (bus = 0; bus < max_buses; bus++) {
526 		for (dev = 0; dev < 32; dev++) {
527 			base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
528 						PCI_DEVFN(dev, 0), 0);
529 
530 			hdr_type = readb(base + PCI_HEADER_TYPE);
531 
532 			functions = (hdr_type & 0x80) ? 8 : 1;
533 			for (fn = 0; fn < functions; fn++) {
534 				base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
535 						PCI_DEVFN(dev, fn), 0);
536 
537 				hdr_type = readb(base + PCI_HEADER_TYPE) &
538 						PCI_HEADER_TYPE_MASK;
539 
540 				if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
541 				    (readw(base + PCI_CLASS_DEVICE) !=
542 				     PCI_CLASS_BRIDGE_PCI))
543 					continue;
544 
545 				/*
546 				 * Temporarily disable the I/O range before updating
547 				 * PCI_IO_BASE.
548 				 */
549 				writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
550 				/* Update lower 16 bits of I/O base/limit */
551 				writew(0x00f0, base + PCI_IO_BASE);
552 				/* Update upper 16 bits of I/O base/limit */
553 				writel(0, base + PCI_IO_BASE_UPPER16);
554 
555 				/* MMIO Base/Limit */
556 				writel(0x0000fff0, base + PCI_MEMORY_BASE);
557 
558 				/* Prefetchable MMIO Base/Limit */
559 				writel(0, base + PCI_PREF_LIMIT_UPPER32);
560 				writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
561 				writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
562 			}
563 		}
564 	}
565 }
566 
vmd_attach_resources(struct vmd_dev * vmd)567 static void vmd_attach_resources(struct vmd_dev *vmd)
568 {
569 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
570 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
571 }
572 
vmd_detach_resources(struct vmd_dev * vmd)573 static void vmd_detach_resources(struct vmd_dev *vmd)
574 {
575 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
576 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
577 }
578 
579 /*
580  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
581  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
582  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
583  * currently reserved.
584  */
vmd_find_free_domain(void)585 static int vmd_find_free_domain(void)
586 {
587 	int domain = 0xffff;
588 	struct pci_bus *bus = NULL;
589 
590 	while ((bus = pci_find_next_bus(bus)) != NULL)
591 		domain = max_t(int, domain, pci_domain_nr(bus));
592 	return domain + 1;
593 }
594 
vmd_get_phys_offsets(struct vmd_dev * vmd,bool native_hint,resource_size_t * offset1,resource_size_t * offset2)595 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
596 				resource_size_t *offset1,
597 				resource_size_t *offset2)
598 {
599 	struct pci_dev *dev = vmd->dev;
600 	u64 phys1, phys2;
601 
602 	if (native_hint) {
603 		u32 vmlock;
604 		int ret;
605 
606 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
607 		if (ret || PCI_POSSIBLE_ERROR(vmlock))
608 			return -ENODEV;
609 
610 		if (MB2_SHADOW_EN(vmlock)) {
611 			void __iomem *membar2;
612 
613 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
614 			if (!membar2)
615 				return -ENOMEM;
616 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
617 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
618 			pci_iounmap(dev, membar2);
619 		} else
620 			return 0;
621 	} else {
622 		/* Hypervisor-Emulated Vendor-Specific Capability */
623 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
624 		u32 reg, regu;
625 
626 		pci_read_config_dword(dev, pos + 4, &reg);
627 
628 		/* "SHDW" */
629 		if (pos && reg == 0x53484457) {
630 			pci_read_config_dword(dev, pos + 8, &reg);
631 			pci_read_config_dword(dev, pos + 12, &regu);
632 			phys1 = (u64) regu << 32 | reg;
633 
634 			pci_read_config_dword(dev, pos + 16, &reg);
635 			pci_read_config_dword(dev, pos + 20, &regu);
636 			phys2 = (u64) regu << 32 | reg;
637 		} else
638 			return 0;
639 	}
640 
641 	*offset1 = dev->resource[VMD_MEMBAR1].start -
642 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
643 	*offset2 = dev->resource[VMD_MEMBAR2].start -
644 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
645 
646 	return 0;
647 }
648 
vmd_get_bus_number_start(struct vmd_dev * vmd)649 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
650 {
651 	struct pci_dev *dev = vmd->dev;
652 	u16 reg;
653 
654 	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
655 	if (BUS_RESTRICT_CAP(reg)) {
656 		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
657 
658 		switch (BUS_RESTRICT_CFG(reg)) {
659 		case 0:
660 			vmd->busn_start = 0;
661 			break;
662 		case 1:
663 			vmd->busn_start = 128;
664 			break;
665 		case 2:
666 			vmd->busn_start = 224;
667 			break;
668 		default:
669 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
670 				BUS_RESTRICT_CFG(reg));
671 			return -ENODEV;
672 		}
673 	}
674 
675 	return 0;
676 }
677 
vmd_irq(int irq,void * data)678 static irqreturn_t vmd_irq(int irq, void *data)
679 {
680 	struct vmd_irq_list *irqs = data;
681 	struct vmd_irq *vmdirq;
682 	int idx;
683 
684 	idx = srcu_read_lock(&irqs->srcu);
685 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
686 		generic_handle_irq(vmdirq->virq);
687 	srcu_read_unlock(&irqs->srcu, idx);
688 
689 	return IRQ_HANDLED;
690 }
691 
vmd_alloc_irqs(struct vmd_dev * vmd)692 static int vmd_alloc_irqs(struct vmd_dev *vmd)
693 {
694 	struct pci_dev *dev = vmd->dev;
695 	int i, err;
696 
697 	vmd->msix_count = pci_msix_vec_count(dev);
698 	if (vmd->msix_count < 0)
699 		return -ENODEV;
700 
701 	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
702 						vmd->msix_count, PCI_IRQ_MSIX);
703 	if (vmd->msix_count < 0)
704 		return vmd->msix_count;
705 
706 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
707 				 GFP_KERNEL);
708 	if (!vmd->irqs)
709 		return -ENOMEM;
710 
711 	for (i = 0; i < vmd->msix_count; i++) {
712 		err = init_srcu_struct(&vmd->irqs[i].srcu);
713 		if (err)
714 			return err;
715 
716 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
717 		vmd->irqs[i].virq = pci_irq_vector(dev, i);
718 		err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
719 				       vmd_irq, IRQF_NO_THREAD,
720 				       vmd->name, &vmd->irqs[i]);
721 		if (err)
722 			return err;
723 	}
724 
725 	return 0;
726 }
727 
728 /*
729  * Since VMD is an aperture to regular PCIe root ports, only allow it to
730  * control features that the OS is allowed to control on the physical PCI bus.
731  */
vmd_copy_host_bridge_flags(struct pci_host_bridge * root_bridge,struct pci_host_bridge * vmd_bridge)732 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
733 				       struct pci_host_bridge *vmd_bridge)
734 {
735 	vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
736 	vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
737 	vmd_bridge->native_aer = root_bridge->native_aer;
738 	vmd_bridge->native_pme = root_bridge->native_pme;
739 	vmd_bridge->native_ltr = root_bridge->native_ltr;
740 	vmd_bridge->native_dpc = root_bridge->native_dpc;
741 }
742 
743 /*
744  * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
745  */
vmd_pm_enable_quirk(struct pci_dev * pdev,void * userdata)746 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
747 {
748 	unsigned long features = *(unsigned long *)userdata;
749 	u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
750 	u32 ltr_reg;
751 	int pos;
752 
753 	if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
754 		return 0;
755 
756 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
757 	if (!pos)
758 		goto out_state_change;
759 
760 	/*
761 	 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
762 	 * so the LTR quirk is not needed.
763 	 */
764 	pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, &ltr_reg);
765 	if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
766 		goto out_state_change;
767 
768 	/*
769 	 * Set the default values to the maximum required by the platform to
770 	 * allow the deepest power management savings. Write as a DWORD where
771 	 * the lower word is the max snoop latency and the upper word is the
772 	 * max non-snoop latency.
773 	 */
774 	ltr_reg = (ltr << 16) | ltr;
775 	pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
776 	pci_info(pdev, "VMD: Default LTR value set by driver\n");
777 
778 out_state_change:
779 	/*
780 	 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per
781 	 * PCIe r6.0, sec 5.5.4.
782 	 */
783 	pci_set_power_state_locked(pdev, PCI_D0);
784 	pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
785 	return 0;
786 }
787 
vmd_enable_domain(struct vmd_dev * vmd,unsigned long features)788 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
789 {
790 	struct pci_sysdata *sd = &vmd->sysdata;
791 	struct resource *res;
792 	u32 upper_bits;
793 	unsigned long flags;
794 	LIST_HEAD(resources);
795 	resource_size_t offset[2] = {0};
796 	resource_size_t membar2_offset = 0x2000;
797 	struct pci_bus *child;
798 	struct pci_dev *dev;
799 	int ret;
800 
801 	/*
802 	 * Shadow registers may exist in certain VMD device ids which allow
803 	 * guests to correctly assign host physical addresses to the root ports
804 	 * and child devices. These registers will either return the host value
805 	 * or 0, depending on an enable bit in the VMD device.
806 	 */
807 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
808 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
809 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
810 		if (ret)
811 			return ret;
812 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
813 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
814 		if (ret)
815 			return ret;
816 	}
817 
818 	/*
819 	 * Certain VMD devices may have a root port configuration option which
820 	 * limits the bus range to between 0-127, 128-255, or 224-255
821 	 */
822 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
823 		ret = vmd_get_bus_number_start(vmd);
824 		if (ret)
825 			return ret;
826 	}
827 
828 	res = &vmd->dev->resource[VMD_CFGBAR];
829 	vmd->resources[0] = (struct resource) {
830 		.name  = "VMD CFGBAR",
831 		.start = vmd->busn_start,
832 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
833 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
834 	};
835 
836 	/*
837 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
838 	 * put 32-bit resources in the window.
839 	 *
840 	 * There's no hardware reason why a 64-bit window *couldn't*
841 	 * contain a 32-bit resource, but pbus_size_mem() computes the
842 	 * bridge window size assuming a 64-bit window will contain no
843 	 * 32-bit resources.  __pci_assign_resource() enforces that
844 	 * artificial restriction to make sure everything will fit.
845 	 *
846 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
847 	 * if its address is <4GB so that we can convert it to a 32-bit
848 	 * resource.  To be visible to the host OS, all VMD endpoints must
849 	 * be initially configured by platform BIOS, which includes setting
850 	 * up these resources.  We can assume the device is configured
851 	 * according to the platform needs.
852 	 */
853 	res = &vmd->dev->resource[VMD_MEMBAR1];
854 	upper_bits = upper_32_bits(res->end);
855 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
856 	if (!upper_bits)
857 		flags &= ~IORESOURCE_MEM_64;
858 	vmd->resources[1] = (struct resource) {
859 		.name  = "VMD MEMBAR1",
860 		.start = res->start,
861 		.end   = res->end,
862 		.flags = flags,
863 		.parent = res,
864 	};
865 
866 	res = &vmd->dev->resource[VMD_MEMBAR2];
867 	upper_bits = upper_32_bits(res->end);
868 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
869 	if (!upper_bits)
870 		flags &= ~IORESOURCE_MEM_64;
871 	vmd->resources[2] = (struct resource) {
872 		.name  = "VMD MEMBAR2",
873 		.start = res->start + membar2_offset,
874 		.end   = res->end,
875 		.flags = flags,
876 		.parent = res,
877 	};
878 
879 	sd->vmd_dev = vmd->dev;
880 	sd->domain = vmd_find_free_domain();
881 	if (sd->domain < 0)
882 		return sd->domain;
883 
884 	sd->node = pcibus_to_node(vmd->dev->bus);
885 
886 	/*
887 	 * Currently MSI remapping must be enabled in guest passthrough mode
888 	 * due to some missing interrupt remapping plumbing. This is probably
889 	 * acceptable because the guest is usually CPU-limited and MSI
890 	 * remapping doesn't become a performance bottleneck.
891 	 */
892 	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
893 	    offset[0] || offset[1]) {
894 		ret = vmd_alloc_irqs(vmd);
895 		if (ret)
896 			return ret;
897 
898 		vmd_set_msi_remapping(vmd, true);
899 
900 		ret = vmd_create_irq_domain(vmd);
901 		if (ret)
902 			return ret;
903 
904 		/*
905 		 * Override the IRQ domain bus token so the domain can be
906 		 * distinguished from a regular PCI/MSI domain.
907 		 */
908 		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
909 	} else {
910 		vmd_set_msi_remapping(vmd, false);
911 	}
912 
913 	pci_add_resource(&resources, &vmd->resources[0]);
914 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
915 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
916 
917 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
918 				       &vmd_ops, sd, &resources);
919 	if (!vmd->bus) {
920 		pci_free_resource_list(&resources);
921 		vmd_remove_irq_domain(vmd);
922 		return -ENODEV;
923 	}
924 
925 	vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
926 				   to_pci_host_bridge(vmd->bus->bridge));
927 
928 	vmd_attach_resources(vmd);
929 	if (vmd->irq_domain)
930 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
931 	else
932 		dev_set_msi_domain(&vmd->bus->dev,
933 				   dev_get_msi_domain(&vmd->dev->dev));
934 
935 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
936 			       "domain"), "Can't create symlink to domain\n");
937 
938 	vmd_acpi_begin();
939 
940 	pci_scan_child_bus(vmd->bus);
941 	vmd_domain_reset(vmd);
942 
943 	/* When Intel VMD is enabled, the OS does not discover the Root Ports
944 	 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
945 	 * a reset to the parent of the PCI device supplied as argument. This
946 	 * is why we pass a child device, so the reset can be triggered at
947 	 * the Intel bridge level and propagated to all the children in the
948 	 * hierarchy.
949 	 */
950 	list_for_each_entry(child, &vmd->bus->children, node) {
951 		if (!list_empty(&child->devices)) {
952 			dev = list_first_entry(&child->devices,
953 					       struct pci_dev, bus_list);
954 			ret = pci_reset_bus(dev);
955 			if (ret)
956 				pci_warn(dev, "can't reset device: %d\n", ret);
957 
958 			break;
959 		}
960 	}
961 
962 	pci_assign_unassigned_bus_resources(vmd->bus);
963 
964 	pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
965 
966 	/*
967 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
968 	 * and will fail pcie_bus_configure_settings() early. It can instead be
969 	 * run on each of the real root ports.
970 	 */
971 	list_for_each_entry(child, &vmd->bus->children, node)
972 		pcie_bus_configure_settings(child);
973 
974 	pci_bus_add_devices(vmd->bus);
975 
976 	vmd_acpi_end();
977 	return 0;
978 }
979 
vmd_probe(struct pci_dev * dev,const struct pci_device_id * id)980 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
981 {
982 	unsigned long features = (unsigned long) id->driver_data;
983 	struct vmd_dev *vmd;
984 	int err;
985 
986 	if (xen_domain()) {
987 		/*
988 		 * Xen doesn't have knowledge about devices in the VMD bus
989 		 * because the config space of devices behind the VMD bridge is
990 		 * not known to Xen, and hence Xen cannot discover or configure
991 		 * them in any way.
992 		 *
993 		 * Bypass of MSI remapping won't work in that case as direct
994 		 * write by Linux to the MSI entries won't result in functional
995 		 * interrupts, as Xen is the entity that manages the host
996 		 * interrupt controller and must configure interrupts.  However
997 		 * multiplexing of interrupts by the VMD bridge will work under
998 		 * Xen, so force the usage of that mode which must always be
999 		 * supported by VMD bridges.
1000 		 */
1001 		features &= ~VMD_FEAT_CAN_BYPASS_MSI_REMAP;
1002 	}
1003 
1004 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
1005 		return -ENOMEM;
1006 
1007 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
1008 	if (!vmd)
1009 		return -ENOMEM;
1010 
1011 	vmd->dev = dev;
1012 	vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
1013 	if (vmd->instance < 0)
1014 		return vmd->instance;
1015 
1016 	vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
1017 				   vmd->instance);
1018 	if (!vmd->name) {
1019 		err = -ENOMEM;
1020 		goto out_release_instance;
1021 	}
1022 
1023 	err = pcim_enable_device(dev);
1024 	if (err < 0)
1025 		goto out_release_instance;
1026 
1027 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
1028 	if (!vmd->cfgbar) {
1029 		err = -ENOMEM;
1030 		goto out_release_instance;
1031 	}
1032 
1033 	pci_set_master(dev);
1034 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1035 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1036 		err = -ENODEV;
1037 		goto out_release_instance;
1038 	}
1039 
1040 	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1041 		vmd->first_vec = 1;
1042 
1043 	raw_spin_lock_init(&vmd->cfg_lock);
1044 	pci_set_drvdata(dev, vmd);
1045 	err = vmd_enable_domain(vmd, features);
1046 	if (err)
1047 		goto out_release_instance;
1048 
1049 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1050 		 vmd->sysdata.domain);
1051 	return 0;
1052 
1053  out_release_instance:
1054 	ida_simple_remove(&vmd_instance_ida, vmd->instance);
1055 	return err;
1056 }
1057 
vmd_cleanup_srcu(struct vmd_dev * vmd)1058 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1059 {
1060 	int i;
1061 
1062 	for (i = 0; i < vmd->msix_count; i++)
1063 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
1064 }
1065 
vmd_remove(struct pci_dev * dev)1066 static void vmd_remove(struct pci_dev *dev)
1067 {
1068 	struct vmd_dev *vmd = pci_get_drvdata(dev);
1069 
1070 	pci_stop_root_bus(vmd->bus);
1071 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1072 	pci_remove_root_bus(vmd->bus);
1073 	vmd_cleanup_srcu(vmd);
1074 	vmd_detach_resources(vmd);
1075 	vmd_remove_irq_domain(vmd);
1076 	ida_simple_remove(&vmd_instance_ida, vmd->instance);
1077 }
1078 
vmd_shutdown(struct pci_dev * dev)1079 static void vmd_shutdown(struct pci_dev *dev)
1080 {
1081         struct vmd_dev *vmd = pci_get_drvdata(dev);
1082 
1083         vmd_remove_irq_domain(vmd);
1084 }
1085 
1086 #ifdef CONFIG_PM_SLEEP
vmd_suspend(struct device * dev)1087 static int vmd_suspend(struct device *dev)
1088 {
1089 	struct pci_dev *pdev = to_pci_dev(dev);
1090 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
1091 	int i;
1092 
1093 	for (i = 0; i < vmd->msix_count; i++)
1094 		devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1095 
1096 	return 0;
1097 }
1098 
vmd_resume(struct device * dev)1099 static int vmd_resume(struct device *dev)
1100 {
1101 	struct pci_dev *pdev = to_pci_dev(dev);
1102 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
1103 	int err, i;
1104 
1105        if (vmd->irq_domain)
1106                vmd_set_msi_remapping(vmd, true);
1107        else
1108                vmd_set_msi_remapping(vmd, false);
1109 
1110 	for (i = 0; i < vmd->msix_count; i++) {
1111 		err = devm_request_irq(dev, vmd->irqs[i].virq,
1112 				       vmd_irq, IRQF_NO_THREAD,
1113 				       vmd->name, &vmd->irqs[i]);
1114 		if (err)
1115 			return err;
1116 	}
1117 
1118 	return 0;
1119 }
1120 #endif
1121 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1122 
1123 static const struct pci_device_id vmd_ids[] = {
1124 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1125 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1126 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1127 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1128 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1129 				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1130 	{PCI_VDEVICE(INTEL, 0x467f),
1131 		.driver_data = VMD_FEATS_CLIENT,},
1132 	{PCI_VDEVICE(INTEL, 0x4c3d),
1133 		.driver_data = VMD_FEATS_CLIENT,},
1134 	{PCI_VDEVICE(INTEL, 0xa77f),
1135 		.driver_data = VMD_FEATS_CLIENT,},
1136 	{PCI_VDEVICE(INTEL, 0x7d0b),
1137 		.driver_data = VMD_FEATS_CLIENT,},
1138 	{PCI_VDEVICE(INTEL, 0xad0b),
1139 		.driver_data = VMD_FEATS_CLIENT,},
1140 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1141 		.driver_data = VMD_FEATS_CLIENT,},
1142 	{PCI_VDEVICE(INTEL, 0xb60b),
1143                 .driver_data = VMD_FEATS_CLIENT,},
1144 	{PCI_VDEVICE(INTEL, 0xb06f),
1145                 .driver_data = VMD_FEATS_CLIENT,},
1146 	{0,}
1147 };
1148 MODULE_DEVICE_TABLE(pci, vmd_ids);
1149 
1150 static struct pci_driver vmd_drv = {
1151 	.name		= "vmd",
1152 	.id_table	= vmd_ids,
1153 	.probe		= vmd_probe,
1154 	.remove		= vmd_remove,
1155 	.shutdown	= vmd_shutdown,
1156 	.driver		= {
1157 		.pm	= &vmd_dev_pm_ops,
1158 	},
1159 };
1160 module_pci_driver(vmd_drv);
1161 
1162 MODULE_AUTHOR("Intel Corporation");
1163 MODULE_LICENSE("GPL v2");
1164 MODULE_VERSION("0.6");
1165