xref: /openbmc/qemu/hw/net/lan9118.c (revision e452053097371880910c744a5d42ae2df058a4a7)
1 /*
2  * SMSC LAN9118 Ethernet interface emulation
3  *
4  * Copyright (c) 2009 CodeSourcery, LLC.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GNU GPL v2
8  *
9  * Contributions after 2012-01-13 are licensed under the terms of the
10  * GNU GPL, version 2 or (at your option) any later version.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "hw/sysbus.h"
15 #include "migration/vmstate.h"
16 #include "net/net.h"
17 #include "net/eth.h"
18 #include "hw/irq.h"
19 #include "hw/net/lan9118_phy.h"
20 #include "hw/net/lan9118.h"
21 #include "hw/ptimer.h"
22 #include "hw/qdev-properties.h"
23 #include "qapi/error.h"
24 #include "qemu/bswap.h"
25 #include "qemu/log.h"
26 #include "qemu/module.h"
27 #include <zlib.h> /* for crc32 */
28 #include "qom/object.h"
29 
30 //#define DEBUG_LAN9118
31 
32 #ifdef DEBUG_LAN9118
33 #define DPRINTF(fmt, ...) \
34 do { printf("lan9118: " fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define DPRINTF(fmt, ...) do {} while(0)
37 #endif
38 
39 /* The tx and rx fifo ports are a range of aliased 32-bit registers */
40 #define RX_DATA_FIFO_PORT_FIRST 0x00
41 #define RX_DATA_FIFO_PORT_LAST 0x1f
42 #define TX_DATA_FIFO_PORT_FIRST 0x20
43 #define TX_DATA_FIFO_PORT_LAST 0x3f
44 
45 #define RX_STATUS_FIFO_PORT 0x40
46 #define RX_STATUS_FIFO_PEEK 0x44
47 #define TX_STATUS_FIFO_PORT 0x48
48 #define TX_STATUS_FIFO_PEEK 0x4c
49 
50 #define CSR_ID_REV      0x50
51 #define CSR_IRQ_CFG     0x54
52 #define CSR_INT_STS     0x58
53 #define CSR_INT_EN      0x5c
54 #define CSR_BYTE_TEST   0x64
55 #define CSR_FIFO_INT    0x68
56 #define CSR_RX_CFG      0x6c
57 #define CSR_TX_CFG      0x70
58 #define CSR_HW_CFG      0x74
59 #define CSR_RX_DP_CTRL  0x78
60 #define CSR_RX_FIFO_INF 0x7c
61 #define CSR_TX_FIFO_INF 0x80
62 #define CSR_PMT_CTRL    0x84
63 #define CSR_GPIO_CFG    0x88
64 #define CSR_GPT_CFG     0x8c
65 #define CSR_GPT_CNT     0x90
66 #define CSR_WORD_SWAP   0x98
67 #define CSR_FREE_RUN    0x9c
68 #define CSR_RX_DROP     0xa0
69 #define CSR_MAC_CSR_CMD 0xa4
70 #define CSR_MAC_CSR_DATA 0xa8
71 #define CSR_AFC_CFG     0xac
72 #define CSR_E2P_CMD     0xb0
73 #define CSR_E2P_DATA    0xb4
74 
75 #define E2P_CMD_MAC_ADDR_LOADED 0x100
76 
77 /* IRQ_CFG */
78 #define IRQ_INT         0x00001000
79 #define IRQ_EN          0x00000100
80 #define IRQ_POL         0x00000010
81 #define IRQ_TYPE        0x00000001
82 
83 /* INT_STS/INT_EN */
84 #define SW_INT          0x80000000
85 #define TXSTOP_INT      0x02000000
86 #define RXSTOP_INT      0x01000000
87 #define RXDFH_INT       0x00800000
88 #define TX_IOC_INT      0x00200000
89 #define RXD_INT         0x00100000
90 #define GPT_INT         0x00080000
91 #define PHY_INT         0x00040000
92 #define PME_INT         0x00020000
93 #define TXSO_INT        0x00010000
94 #define RWT_INT         0x00008000
95 #define RXE_INT         0x00004000
96 #define TXE_INT         0x00002000
97 #define TDFU_INT        0x00000800
98 #define TDFO_INT        0x00000400
99 #define TDFA_INT        0x00000200
100 #define TSFF_INT        0x00000100
101 #define TSFL_INT        0x00000080
102 #define RXDF_INT        0x00000040
103 #define RDFL_INT        0x00000020
104 #define RSFF_INT        0x00000010
105 #define RSFL_INT        0x00000008
106 #define GPIO2_INT       0x00000004
107 #define GPIO1_INT       0x00000002
108 #define GPIO0_INT       0x00000001
109 #define RESERVED_INT    0x7c001000
110 
111 #define MAC_CR          1
112 #define MAC_ADDRH       2
113 #define MAC_ADDRL       3
114 #define MAC_HASHH       4
115 #define MAC_HASHL       5
116 #define MAC_MII_ACC     6
117 #define MAC_MII_DATA    7
118 #define MAC_FLOW        8
119 #define MAC_VLAN1       9 /* TODO */
120 #define MAC_VLAN2       10 /* TODO */
121 #define MAC_WUFF        11 /* TODO */
122 #define MAC_WUCSR       12 /* TODO */
123 
124 #define MAC_CR_RXALL    0x80000000
125 #define MAC_CR_RCVOWN   0x00800000
126 #define MAC_CR_LOOPBK   0x00200000
127 #define MAC_CR_FDPX     0x00100000
128 #define MAC_CR_MCPAS    0x00080000
129 #define MAC_CR_PRMS     0x00040000
130 #define MAC_CR_INVFILT  0x00020000
131 #define MAC_CR_PASSBAD  0x00010000
132 #define MAC_CR_HO       0x00008000
133 #define MAC_CR_HPFILT   0x00002000
134 #define MAC_CR_LCOLL    0x00001000
135 #define MAC_CR_BCAST    0x00000800
136 #define MAC_CR_DISRTY   0x00000400
137 #define MAC_CR_PADSTR   0x00000100
138 #define MAC_CR_BOLMT    0x000000c0
139 #define MAC_CR_DFCHK    0x00000020
140 #define MAC_CR_TXEN     0x00000008
141 #define MAC_CR_RXEN     0x00000004
142 #define MAC_CR_RESERVED 0x7f404213
143 
144 #define GPT_TIMER_EN    0x20000000
145 
146 /*
147  * The MAC Interface Layer (MIL), within the MAC, contains a 2K Byte transmit
148  * and a 128 Byte receive FIFO which is separate from the TX and RX FIFOs.
149  */
150 #define MIL_TXFIFO_SIZE         2048
151 
152 enum tx_state {
153     TX_IDLE,
154     TX_B,
155     TX_DATA
156 };
157 
158 typedef struct {
159     /* state is a tx_state but we can't put enums in VMStateDescriptions. */
160     uint32_t state;
161     uint32_t cmd_a;
162     uint32_t cmd_b;
163     int32_t buffer_size;
164     int32_t offset;
165     int32_t pad;
166     int32_t fifo_used;
167     int32_t len;
168     uint8_t data[MIL_TXFIFO_SIZE];
169 } LAN9118Packet;
170 
171 static const VMStateDescription vmstate_lan9118_packet = {
172     .name = "lan9118_packet",
173     .version_id = 1,
174     .minimum_version_id = 1,
175     .fields = (const VMStateField[]) {
176         VMSTATE_UINT32(state, LAN9118Packet),
177         VMSTATE_UINT32(cmd_a, LAN9118Packet),
178         VMSTATE_UINT32(cmd_b, LAN9118Packet),
179         VMSTATE_INT32(buffer_size, LAN9118Packet),
180         VMSTATE_INT32(offset, LAN9118Packet),
181         VMSTATE_INT32(pad, LAN9118Packet),
182         VMSTATE_INT32(fifo_used, LAN9118Packet),
183         VMSTATE_INT32(len, LAN9118Packet),
184         VMSTATE_UINT8_ARRAY(data, LAN9118Packet, MIL_TXFIFO_SIZE),
185         VMSTATE_END_OF_LIST()
186     }
187 };
188 
189 OBJECT_DECLARE_SIMPLE_TYPE(lan9118_state, LAN9118)
190 
191 struct lan9118_state {
192     SysBusDevice parent_obj;
193 
194     NICState *nic;
195     NICConf conf;
196     qemu_irq irq;
197     MemoryRegion mmio;
198     ptimer_state *timer;
199 
200     uint32_t irq_cfg;
201     uint32_t int_sts;
202     uint32_t int_en;
203     uint32_t fifo_int;
204     uint32_t rx_cfg;
205     uint32_t tx_cfg;
206     uint32_t hw_cfg;
207     uint32_t pmt_ctrl;
208     uint32_t gpio_cfg;
209     uint32_t gpt_cfg;
210     uint32_t word_swap;
211     uint32_t free_timer_start;
212     uint32_t mac_cmd;
213     uint32_t mac_data;
214     uint32_t afc_cfg;
215     uint32_t e2p_cmd;
216     uint32_t e2p_data;
217 
218     uint32_t mac_cr;
219     uint32_t mac_hashh;
220     uint32_t mac_hashl;
221     uint32_t mac_mii_acc;
222     uint32_t mac_mii_data;
223     uint32_t mac_flow;
224 
225     Lan9118PhyState mii;
226     IRQState mii_irq;
227 
228     int32_t eeprom_writable;
229     uint8_t eeprom[128];
230 
231     int32_t tx_fifo_size;
232     LAN9118Packet *txp;
233     LAN9118Packet tx_packet;
234 
235     int32_t tx_status_fifo_used;
236     int32_t tx_status_fifo_head;
237     uint32_t tx_status_fifo[512];
238 
239     int32_t rx_status_fifo_size;
240     int32_t rx_status_fifo_used;
241     int32_t rx_status_fifo_head;
242     uint32_t rx_status_fifo[896];
243     int32_t rx_fifo_size;
244     int32_t rx_fifo_used;
245     int32_t rx_fifo_head;
246     uint32_t rx_fifo[3360];
247     int32_t rx_packet_size_head;
248     int32_t rx_packet_size_tail;
249     int32_t rx_packet_size[1024];
250 
251     int32_t rxp_offset;
252     int32_t rxp_size;
253     int32_t rxp_pad;
254 
255     uint32_t write_word_prev_offset;
256     uint32_t write_word_n;
257     uint16_t write_word_l;
258     uint16_t write_word_h;
259     uint32_t read_word_prev_offset;
260     uint32_t read_word_n;
261     uint32_t read_long;
262 
263     uint32_t mode_16bit;
264 };
265 
266 static const VMStateDescription vmstate_lan9118 = {
267     .name = "lan9118",
268     .version_id = 3,
269     .minimum_version_id = 3,
270     .fields = (const VMStateField[]) {
271         VMSTATE_PTIMER(timer, lan9118_state),
272         VMSTATE_UINT32(irq_cfg, lan9118_state),
273         VMSTATE_UINT32(int_sts, lan9118_state),
274         VMSTATE_UINT32(int_en, lan9118_state),
275         VMSTATE_UINT32(fifo_int, lan9118_state),
276         VMSTATE_UINT32(rx_cfg, lan9118_state),
277         VMSTATE_UINT32(tx_cfg, lan9118_state),
278         VMSTATE_UINT32(hw_cfg, lan9118_state),
279         VMSTATE_UINT32(pmt_ctrl, lan9118_state),
280         VMSTATE_UINT32(gpio_cfg, lan9118_state),
281         VMSTATE_UINT32(gpt_cfg, lan9118_state),
282         VMSTATE_UINT32(word_swap, lan9118_state),
283         VMSTATE_UINT32(free_timer_start, lan9118_state),
284         VMSTATE_UINT32(mac_cmd, lan9118_state),
285         VMSTATE_UINT32(mac_data, lan9118_state),
286         VMSTATE_UINT32(afc_cfg, lan9118_state),
287         VMSTATE_UINT32(e2p_cmd, lan9118_state),
288         VMSTATE_UINT32(e2p_data, lan9118_state),
289         VMSTATE_UINT32(mac_cr, lan9118_state),
290         VMSTATE_UINT32(mac_hashh, lan9118_state),
291         VMSTATE_UINT32(mac_hashl, lan9118_state),
292         VMSTATE_UINT32(mac_mii_acc, lan9118_state),
293         VMSTATE_UINT32(mac_mii_data, lan9118_state),
294         VMSTATE_UINT32(mac_flow, lan9118_state),
295         VMSTATE_INT32(eeprom_writable, lan9118_state),
296         VMSTATE_UINT8_ARRAY(eeprom, lan9118_state, 128),
297         VMSTATE_INT32(tx_fifo_size, lan9118_state),
298         /* txp always points at tx_packet so need not be saved */
299         VMSTATE_STRUCT(tx_packet, lan9118_state, 0,
300                        vmstate_lan9118_packet, LAN9118Packet),
301         VMSTATE_INT32(tx_status_fifo_used, lan9118_state),
302         VMSTATE_INT32(tx_status_fifo_head, lan9118_state),
303         VMSTATE_UINT32_ARRAY(tx_status_fifo, lan9118_state, 512),
304         VMSTATE_INT32(rx_status_fifo_size, lan9118_state),
305         VMSTATE_INT32(rx_status_fifo_used, lan9118_state),
306         VMSTATE_INT32(rx_status_fifo_head, lan9118_state),
307         VMSTATE_UINT32_ARRAY(rx_status_fifo, lan9118_state, 896),
308         VMSTATE_INT32(rx_fifo_size, lan9118_state),
309         VMSTATE_INT32(rx_fifo_used, lan9118_state),
310         VMSTATE_INT32(rx_fifo_head, lan9118_state),
311         VMSTATE_UINT32_ARRAY(rx_fifo, lan9118_state, 3360),
312         VMSTATE_INT32(rx_packet_size_head, lan9118_state),
313         VMSTATE_INT32(rx_packet_size_tail, lan9118_state),
314         VMSTATE_INT32_ARRAY(rx_packet_size, lan9118_state, 1024),
315         VMSTATE_INT32(rxp_offset, lan9118_state),
316         VMSTATE_INT32(rxp_size, lan9118_state),
317         VMSTATE_INT32(rxp_pad, lan9118_state),
318         VMSTATE_UINT32_V(write_word_prev_offset, lan9118_state, 2),
319         VMSTATE_UINT32_V(write_word_n, lan9118_state, 2),
320         VMSTATE_UINT16_V(write_word_l, lan9118_state, 2),
321         VMSTATE_UINT16_V(write_word_h, lan9118_state, 2),
322         VMSTATE_UINT32_V(read_word_prev_offset, lan9118_state, 2),
323         VMSTATE_UINT32_V(read_word_n, lan9118_state, 2),
324         VMSTATE_UINT32_V(read_long, lan9118_state, 2),
325         VMSTATE_UINT32_V(mode_16bit, lan9118_state, 2),
326         VMSTATE_END_OF_LIST()
327     }
328 };
329 
lan9118_update(lan9118_state * s)330 static void lan9118_update(lan9118_state *s)
331 {
332     int level;
333 
334     /* TODO: Implement FIFO level IRQs.  */
335     level = (s->int_sts & s->int_en) != 0;
336     if (level) {
337         s->irq_cfg |= IRQ_INT;
338     } else {
339         s->irq_cfg &= ~IRQ_INT;
340     }
341     if ((s->irq_cfg & IRQ_EN) == 0) {
342         level = 0;
343     }
344     if ((s->irq_cfg & (IRQ_TYPE | IRQ_POL)) != (IRQ_TYPE | IRQ_POL)) {
345         /* Interrupt is active low unless we're configured as
346          * active-high polarity, push-pull type.
347          */
348         level = !level;
349     }
350     qemu_set_irq(s->irq, level);
351 }
352 
lan9118_mac_changed(lan9118_state * s)353 static void lan9118_mac_changed(lan9118_state *s)
354 {
355     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
356 }
357 
lan9118_reload_eeprom(lan9118_state * s)358 static void lan9118_reload_eeprom(lan9118_state *s)
359 {
360     int i;
361     if (s->eeprom[0] != 0xa5) {
362         s->e2p_cmd &= ~E2P_CMD_MAC_ADDR_LOADED;
363         DPRINTF("MACADDR load failed\n");
364         return;
365     }
366     for (i = 0; i < 6; i++) {
367         s->conf.macaddr.a[i] = s->eeprom[i + 1];
368     }
369     s->e2p_cmd |= E2P_CMD_MAC_ADDR_LOADED;
370     DPRINTF("MACADDR loaded from eeprom\n");
371     lan9118_mac_changed(s);
372 }
373 
lan9118_update_irq(void * opaque,int n,int level)374 static void lan9118_update_irq(void *opaque, int n, int level)
375 {
376     lan9118_state *s = opaque;
377 
378     if (level) {
379         s->int_sts |= PHY_INT;
380     } else {
381         s->int_sts &= ~PHY_INT;
382     }
383     lan9118_update(s);
384 }
385 
lan9118_set_link(NetClientState * nc)386 static void lan9118_set_link(NetClientState *nc)
387 {
388     lan9118_phy_update_link(&LAN9118(qemu_get_nic_opaque(nc))->mii,
389                             nc->link_down);
390 }
391 
lan9118_reset(DeviceState * d)392 static void lan9118_reset(DeviceState *d)
393 {
394     lan9118_state *s = LAN9118(d);
395 
396     s->irq_cfg &= (IRQ_TYPE | IRQ_POL);
397     s->int_sts = 0;
398     s->int_en = 0;
399     s->fifo_int = 0x48000000;
400     s->rx_cfg = 0;
401     s->tx_cfg = 0;
402     s->hw_cfg = s->mode_16bit ? 0x00050000 : 0x00050004;
403     s->pmt_ctrl &= 0x45;
404     s->gpio_cfg = 0;
405     s->txp->fifo_used = 0;
406     s->txp->state = TX_IDLE;
407     s->txp->cmd_a = 0xffffffffu;
408     s->txp->cmd_b = 0xffffffffu;
409     s->txp->len = 0;
410     s->txp->fifo_used = 0;
411     s->tx_fifo_size = 4608;
412     s->tx_status_fifo_used = 0;
413     s->rx_status_fifo_size = 704;
414     s->rx_fifo_size = 2640;
415     s->rx_fifo_used = 0;
416     s->rx_status_fifo_size = 176;
417     s->rx_status_fifo_used = 0;
418     s->rxp_offset = 0;
419     s->rxp_size = 0;
420     s->rxp_pad = 0;
421     s->rx_packet_size_tail = s->rx_packet_size_head;
422     s->rx_packet_size[s->rx_packet_size_head] = 0;
423     s->mac_cmd = 0;
424     s->mac_data = 0;
425     s->afc_cfg = 0;
426     s->e2p_cmd = 0;
427     s->e2p_data = 0;
428     s->free_timer_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40;
429 
430     ptimer_transaction_begin(s->timer);
431     ptimer_stop(s->timer);
432     ptimer_set_count(s->timer, 0xffff);
433     ptimer_transaction_commit(s->timer);
434     s->gpt_cfg = 0xffff;
435 
436     s->mac_cr = MAC_CR_PRMS;
437     s->mac_hashh = 0;
438     s->mac_hashl = 0;
439     s->mac_mii_acc = 0;
440     s->mac_mii_data = 0;
441     s->mac_flow = 0;
442 
443     s->read_word_n = 0;
444     s->write_word_n = 0;
445 
446     s->eeprom_writable = 0;
447     lan9118_reload_eeprom(s);
448 }
449 
rx_fifo_push(lan9118_state * s,uint32_t val)450 static void rx_fifo_push(lan9118_state *s, uint32_t val)
451 {
452     int fifo_pos;
453     fifo_pos = s->rx_fifo_head + s->rx_fifo_used;
454     if (fifo_pos >= s->rx_fifo_size)
455       fifo_pos -= s->rx_fifo_size;
456     s->rx_fifo[fifo_pos] = val;
457     s->rx_fifo_used++;
458 }
459 
460 /* Return nonzero if the packet is accepted by the filter.  */
lan9118_filter(lan9118_state * s,const uint8_t * addr)461 static int lan9118_filter(lan9118_state *s, const uint8_t *addr)
462 {
463     int multicast;
464     uint32_t hash;
465 
466     if (s->mac_cr & MAC_CR_PRMS) {
467         return 1;
468     }
469     if (addr[0] == 0xff && addr[1] == 0xff && addr[2] == 0xff &&
470         addr[3] == 0xff && addr[4] == 0xff && addr[5] == 0xff) {
471         return (s->mac_cr & MAC_CR_BCAST) == 0;
472     }
473 
474     multicast = addr[0] & 1;
475     if (multicast &&s->mac_cr & MAC_CR_MCPAS) {
476         return 1;
477     }
478     if (multicast ? (s->mac_cr & MAC_CR_HPFILT) == 0
479                   : (s->mac_cr & MAC_CR_HO) == 0) {
480         /* Exact matching.  */
481         hash = memcmp(addr, s->conf.macaddr.a, 6);
482         if (s->mac_cr & MAC_CR_INVFILT) {
483             return hash != 0;
484         } else {
485             return hash == 0;
486         }
487     } else {
488         /* Hash matching  */
489         hash = net_crc32(addr, ETH_ALEN) >> 26;
490         if (hash & 0x20) {
491             return (s->mac_hashh >> (hash & 0x1f)) & 1;
492         } else {
493             return (s->mac_hashl >> (hash & 0x1f)) & 1;
494         }
495     }
496 }
497 
lan9118_receive(NetClientState * nc,const uint8_t * buf,size_t size)498 static ssize_t lan9118_receive(NetClientState *nc, const uint8_t *buf,
499                                size_t size)
500 {
501     lan9118_state *s = qemu_get_nic_opaque(nc);
502     int fifo_len;
503     int offset;
504     int src_pos;
505     int n;
506     int filter;
507     uint32_t val;
508     uint32_t crc;
509     uint32_t status;
510 
511     if ((s->mac_cr & MAC_CR_RXEN) == 0) {
512         return -1;
513     }
514 
515     if (size >= MIL_TXFIFO_SIZE || size < 14) {
516         return -1;
517     }
518 
519     /* TODO: Implement FIFO overflow notification.  */
520     if (s->rx_status_fifo_used == s->rx_status_fifo_size) {
521         return -1;
522     }
523 
524     filter = lan9118_filter(s, buf);
525     if (!filter && (s->mac_cr & MAC_CR_RXALL) == 0) {
526         return size;
527     }
528 
529     offset = (s->rx_cfg >> 8) & 0x1f;
530     n = offset & 3;
531     fifo_len = (size + n + 3) >> 2;
532     /* Add a word for the CRC.  */
533     fifo_len++;
534     if (s->rx_fifo_size - s->rx_fifo_used < fifo_len) {
535         return -1;
536     }
537 
538     DPRINTF("Got packet len:%d fifo:%d filter:%s\n",
539             (int)size, fifo_len, filter ? "pass" : "fail");
540     val = 0;
541     crc = bswap32(crc32(~0, buf, size));
542     for (src_pos = 0; src_pos < size; src_pos++) {
543         val = (val >> 8) | ((uint32_t)buf[src_pos] << 24);
544         n++;
545         if (n == 4) {
546             n = 0;
547             rx_fifo_push(s, val);
548             val = 0;
549         }
550     }
551     if (n) {
552         val >>= ((4 - n) * 8);
553         val |= crc << (n * 8);
554         rx_fifo_push(s, val);
555         val = crc >> ((4 - n) * 8);
556         rx_fifo_push(s, val);
557     } else {
558         rx_fifo_push(s, crc);
559     }
560     n = s->rx_status_fifo_head + s->rx_status_fifo_used;
561     if (n >= s->rx_status_fifo_size) {
562         n -= s->rx_status_fifo_size;
563     }
564     s->rx_packet_size[s->rx_packet_size_tail] = fifo_len;
565     s->rx_packet_size_tail = (s->rx_packet_size_tail + 1023) & 1023;
566     s->rx_status_fifo_used++;
567 
568     status = (size + 4) << 16;
569     if (buf[0] == 0xff && buf[1] == 0xff && buf[2] == 0xff &&
570         buf[3] == 0xff && buf[4] == 0xff && buf[5] == 0xff) {
571         status |= 0x00002000;
572     } else if (buf[0] & 1) {
573         status |= 0x00000400;
574     }
575     if (!filter) {
576         status |= 0x40000000;
577     }
578     s->rx_status_fifo[n] = status;
579 
580     if (s->rx_status_fifo_used > (s->fifo_int & 0xff)) {
581         s->int_sts |= RSFL_INT;
582     }
583     lan9118_update(s);
584 
585     return size;
586 }
587 
rx_fifo_pop(lan9118_state * s)588 static uint32_t rx_fifo_pop(lan9118_state *s)
589 {
590     int n;
591     uint32_t val;
592 
593     if (s->rxp_size == 0 && s->rxp_pad == 0) {
594         s->rxp_size = s->rx_packet_size[s->rx_packet_size_head];
595         s->rx_packet_size[s->rx_packet_size_head] = 0;
596         if (s->rxp_size != 0) {
597             s->rx_packet_size_head = (s->rx_packet_size_head + 1023) & 1023;
598             s->rxp_offset = (s->rx_cfg >> 10) & 7;
599             n = s->rxp_offset + s->rxp_size;
600             switch (s->rx_cfg >> 30) {
601             case 1:
602                 n = (-n) & 3;
603                 break;
604             case 2:
605                 n = (-n) & 7;
606                 break;
607             default:
608                 n = 0;
609                 break;
610             }
611             s->rxp_pad = n;
612             DPRINTF("Pop packet size:%d offset:%d pad: %d\n",
613                     s->rxp_size, s->rxp_offset, s->rxp_pad);
614         }
615     }
616     if (s->rxp_offset > 0) {
617         s->rxp_offset--;
618         val = 0;
619     } else if (s->rxp_size > 0) {
620         s->rxp_size--;
621         val = s->rx_fifo[s->rx_fifo_head++];
622         if (s->rx_fifo_head >= s->rx_fifo_size) {
623             s->rx_fifo_head -= s->rx_fifo_size;
624         }
625         s->rx_fifo_used--;
626     } else if (s->rxp_pad > 0) {
627         s->rxp_pad--;
628         val =  0;
629     } else {
630         DPRINTF("RX underflow\n");
631         s->int_sts |= RXE_INT;
632         val =  0;
633     }
634     lan9118_update(s);
635     return val;
636 }
637 
do_tx_packet(lan9118_state * s)638 static void do_tx_packet(lan9118_state *s)
639 {
640     int n;
641     uint32_t status;
642 
643     /* FIXME: Honor TX disable, and allow queueing of packets.  */
644     if (s->mii.control & 0x4000) {
645         /* This assumes the receive routine doesn't touch the VLANClient.  */
646         qemu_receive_packet(qemu_get_queue(s->nic), s->txp->data, s->txp->len);
647     } else {
648         qemu_send_packet(qemu_get_queue(s->nic), s->txp->data, s->txp->len);
649     }
650     s->txp->fifo_used = 0;
651 
652     if (s->tx_status_fifo_used == 512) {
653         /* Status FIFO full */
654         return;
655     }
656     /* Add entry to status FIFO.  */
657     status = s->txp->cmd_b & 0xffff0000u;
658     DPRINTF("Sent packet tag:%04x len %d\n", status >> 16, s->txp->len);
659     n = (s->tx_status_fifo_head + s->tx_status_fifo_used) & 511;
660     s->tx_status_fifo[n] = status;
661     s->tx_status_fifo_used++;
662 
663     /*
664      * Generate TSFL interrupt if TX FIFO level exceeds the level
665      * specified in the FIFO_INT TX Status Level field.
666      */
667     if (s->tx_status_fifo_used > ((s->fifo_int >> 16) & 0xff)) {
668         s->int_sts |= TSFL_INT;
669     }
670     if (s->tx_status_fifo_used == 512) {
671         s->int_sts |= TSFF_INT;
672         /* TODO: Stop transmission.  */
673     }
674 }
675 
rx_status_fifo_pop(lan9118_state * s)676 static uint32_t rx_status_fifo_pop(lan9118_state *s)
677 {
678     uint32_t val;
679 
680     val = s->rx_status_fifo[s->rx_status_fifo_head];
681     if (s->rx_status_fifo_used != 0) {
682         s->rx_status_fifo_used--;
683         s->rx_status_fifo_head++;
684         if (s->rx_status_fifo_head >= s->rx_status_fifo_size) {
685             s->rx_status_fifo_head -= s->rx_status_fifo_size;
686         }
687         /* ??? What value should be returned when the FIFO is empty?  */
688         DPRINTF("RX status pop 0x%08x\n", val);
689     }
690     return val;
691 }
692 
tx_status_fifo_pop(lan9118_state * s)693 static uint32_t tx_status_fifo_pop(lan9118_state *s)
694 {
695     uint32_t val;
696 
697     val = s->tx_status_fifo[s->tx_status_fifo_head];
698     if (s->tx_status_fifo_used != 0) {
699         s->tx_status_fifo_used--;
700         s->tx_status_fifo_head = (s->tx_status_fifo_head + 1) & 511;
701         /* ??? What value should be returned when the FIFO is empty?  */
702     }
703     return val;
704 }
705 
tx_fifo_push(lan9118_state * s,uint32_t val)706 static void tx_fifo_push(lan9118_state *s, uint32_t val)
707 {
708     int n;
709 
710     if (s->txp->fifo_used == s->tx_fifo_size) {
711         s->int_sts |= TDFO_INT;
712         return;
713     }
714     switch (s->txp->state) {
715     case TX_IDLE:
716         s->txp->cmd_a = val & 0x831f37ff;
717         s->txp->fifo_used++;
718         s->txp->state = TX_B;
719         s->txp->buffer_size = extract32(s->txp->cmd_a, 0, 11);
720         s->txp->offset = extract32(s->txp->cmd_a, 16, 5);
721         break;
722     case TX_B:
723         if (s->txp->cmd_a & 0x2000) {
724             /* First segment */
725             s->txp->cmd_b = val;
726             s->txp->fifo_used++;
727             /* End alignment does not include command words.  */
728             n = (s->txp->buffer_size + s->txp->offset + 3) >> 2;
729             switch ((n >> 24) & 3) {
730             case 1:
731                 n = (-n) & 3;
732                 break;
733             case 2:
734                 n = (-n) & 7;
735                 break;
736             default:
737                 n = 0;
738             }
739             s->txp->pad = n;
740             s->txp->len = 0;
741         }
742         DPRINTF("Block len:%d offset:%d pad:%d cmd %08x\n",
743                 s->txp->buffer_size, s->txp->offset, s->txp->pad,
744                 s->txp->cmd_a);
745         s->txp->state = TX_DATA;
746         break;
747     case TX_DATA:
748         if (s->txp->offset >= 4) {
749             s->txp->offset -= 4;
750             break;
751         }
752         if (s->txp->buffer_size <= 0 && s->txp->pad != 0) {
753             s->txp->pad--;
754         } else {
755             n = MIN(4, s->txp->buffer_size + s->txp->offset);
756             while (s->txp->offset) {
757                 val >>= 8;
758                 n--;
759                 s->txp->offset--;
760             }
761             /* Documentation is somewhat unclear on the ordering of bytes
762                in FIFO words.  Empirical results show it to be little-endian.
763                */
764             while (n--) {
765                 if (s->txp->len == MIL_TXFIFO_SIZE) {
766                     /*
767                      * No more space in the FIFO. The datasheet is not
768                      * precise about this case. We choose what is easiest
769                      * to model: the packet is truncated, and TXE is raised.
770                      *
771                      * Note, it could be a fragmented packet, but we currently
772                      * do not handle that (see earlier TX_B case).
773                      */
774                     qemu_log_mask(LOG_GUEST_ERROR,
775                                   "MIL TX FIFO overrun, discarding %u byte%s\n",
776                                   n, n > 1 ? "s" : "");
777                     s->int_sts |= TXE_INT;
778                     break;
779                 }
780                 s->txp->data[s->txp->len] = val & 0xff;
781                 s->txp->len++;
782                 val >>= 8;
783                 s->txp->buffer_size--;
784             }
785             s->txp->fifo_used++;
786         }
787         if (s->txp->buffer_size <= 0 && s->txp->pad == 0) {
788             if (s->txp->cmd_a & 0x1000) {
789                 do_tx_packet(s);
790             }
791             if (s->txp->cmd_a & 0x80000000) {
792                 s->int_sts |= TX_IOC_INT;
793             }
794             s->txp->state = TX_IDLE;
795         }
796         break;
797     }
798 }
799 
do_mac_write(lan9118_state * s,int reg,uint32_t val)800 static void do_mac_write(lan9118_state *s, int reg, uint32_t val)
801 {
802     switch (reg) {
803     case MAC_CR:
804         if ((s->mac_cr & MAC_CR_RXEN) != 0 && (val & MAC_CR_RXEN) == 0) {
805             s->int_sts |= RXSTOP_INT;
806         }
807         s->mac_cr = val & ~MAC_CR_RESERVED;
808         DPRINTF("MAC_CR: %08x\n", val);
809         break;
810     case MAC_ADDRH:
811         s->conf.macaddr.a[4] = val & 0xff;
812         s->conf.macaddr.a[5] = (val >> 8) & 0xff;
813         lan9118_mac_changed(s);
814         break;
815     case MAC_ADDRL:
816         s->conf.macaddr.a[0] = val & 0xff;
817         s->conf.macaddr.a[1] = (val >> 8) & 0xff;
818         s->conf.macaddr.a[2] = (val >> 16) & 0xff;
819         s->conf.macaddr.a[3] = (val >> 24) & 0xff;
820         lan9118_mac_changed(s);
821         break;
822     case MAC_HASHH:
823         s->mac_hashh = val;
824         break;
825     case MAC_HASHL:
826         s->mac_hashl = val;
827         break;
828     case MAC_MII_ACC:
829         s->mac_mii_acc = val & 0xffc2;
830         if (val & 2) {
831             DPRINTF("PHY write %d = 0x%04x\n",
832                     (val >> 6) & 0x1f, s->mac_mii_data);
833             lan9118_phy_write(&s->mii, (val >> 6) & 0x1f, s->mac_mii_data);
834         } else {
835             s->mac_mii_data = lan9118_phy_read(&s->mii, (val >> 6) & 0x1f);
836             DPRINTF("PHY read %d = 0x%04x\n",
837                     (val >> 6) & 0x1f, s->mac_mii_data);
838         }
839         break;
840     case MAC_MII_DATA:
841         s->mac_mii_data = val & 0xffff;
842         break;
843     case MAC_FLOW:
844         s->mac_flow = val & 0xffff0000;
845         break;
846     case MAC_VLAN1:
847         /* Writing to this register changes a condition for
848          * FrameTooLong bit in rx_status.  Since we do not set
849          * FrameTooLong anyway, just ignore write to this.
850          */
851         break;
852     default:
853         qemu_log_mask(LOG_GUEST_ERROR,
854                       "lan9118: Unimplemented MAC register write: %d = 0x%x\n",
855                  s->mac_cmd & 0xf, val);
856     }
857 }
858 
do_mac_read(lan9118_state * s,int reg)859 static uint32_t do_mac_read(lan9118_state *s, int reg)
860 {
861     switch (reg) {
862     case MAC_CR:
863         return s->mac_cr;
864     case MAC_ADDRH:
865         return s->conf.macaddr.a[4] | (s->conf.macaddr.a[5] << 8);
866     case MAC_ADDRL:
867         return s->conf.macaddr.a[0] | (s->conf.macaddr.a[1] << 8)
868                | (s->conf.macaddr.a[2] << 16) | (s->conf.macaddr.a[3] << 24);
869     case MAC_HASHH:
870         return s->mac_hashh;
871     case MAC_HASHL:
872         return s->mac_hashl;
873     case MAC_MII_ACC:
874         return s->mac_mii_acc;
875     case MAC_MII_DATA:
876         return s->mac_mii_data;
877     case MAC_FLOW:
878         return s->mac_flow;
879     default:
880         qemu_log_mask(LOG_GUEST_ERROR,
881                       "lan9118: Unimplemented MAC register read: %d\n",
882                  s->mac_cmd & 0xf);
883         return 0;
884     }
885 }
886 
lan9118_eeprom_cmd(lan9118_state * s,int cmd,int addr)887 static void lan9118_eeprom_cmd(lan9118_state *s, int cmd, int addr)
888 {
889     s->e2p_cmd = (s->e2p_cmd & E2P_CMD_MAC_ADDR_LOADED) | (cmd << 28) | addr;
890     switch (cmd) {
891     case 0:
892         s->e2p_data = s->eeprom[addr];
893         DPRINTF("EEPROM Read %d = 0x%02x\n", addr, s->e2p_data);
894         break;
895     case 1:
896         s->eeprom_writable = 0;
897         DPRINTF("EEPROM Write Disable\n");
898         break;
899     case 2: /* EWEN */
900         s->eeprom_writable = 1;
901         DPRINTF("EEPROM Write Enable\n");
902         break;
903     case 3: /* WRITE */
904         if (s->eeprom_writable) {
905             s->eeprom[addr] &= s->e2p_data;
906             DPRINTF("EEPROM Write %d = 0x%02x\n", addr, s->e2p_data);
907         } else {
908             DPRINTF("EEPROM Write %d (ignored)\n", addr);
909         }
910         break;
911     case 4: /* WRAL */
912         if (s->eeprom_writable) {
913             for (addr = 0; addr < 128; addr++) {
914                 s->eeprom[addr] &= s->e2p_data;
915             }
916             DPRINTF("EEPROM Write All 0x%02x\n", s->e2p_data);
917         } else {
918             DPRINTF("EEPROM Write All (ignored)\n");
919         }
920         break;
921     case 5: /* ERASE */
922         if (s->eeprom_writable) {
923             s->eeprom[addr] = 0xff;
924             DPRINTF("EEPROM Erase %d\n", addr);
925         } else {
926             DPRINTF("EEPROM Erase %d (ignored)\n", addr);
927         }
928         break;
929     case 6: /* ERAL */
930         if (s->eeprom_writable) {
931             memset(s->eeprom, 0xff, 128);
932             DPRINTF("EEPROM Erase All\n");
933         } else {
934             DPRINTF("EEPROM Erase All (ignored)\n");
935         }
936         break;
937     case 7: /* RELOAD */
938         lan9118_reload_eeprom(s);
939         break;
940     }
941 }
942 
lan9118_tick(void * opaque)943 static void lan9118_tick(void *opaque)
944 {
945     lan9118_state *s = (lan9118_state *)opaque;
946     if (s->int_en & GPT_INT) {
947         s->int_sts |= GPT_INT;
948     }
949     lan9118_update(s);
950 }
951 
lan9118_writel(void * opaque,hwaddr offset,uint64_t val,unsigned size)952 static void lan9118_writel(void *opaque, hwaddr offset,
953                            uint64_t val, unsigned size)
954 {
955     lan9118_state *s = (lan9118_state *)opaque;
956     offset &= 0xff;
957 
958     //DPRINTF("Write reg 0x%02x = 0x%08x\n", (int)offset, val);
959     if (offset >= TX_DATA_FIFO_PORT_FIRST &&
960         offset <= TX_DATA_FIFO_PORT_LAST) {
961         /* TX FIFO */
962         tx_fifo_push(s, val);
963         return;
964     }
965     switch (offset) {
966     case CSR_IRQ_CFG:
967         /* TODO: Implement interrupt deassertion intervals.  */
968         val &= (IRQ_EN | IRQ_POL | IRQ_TYPE);
969         s->irq_cfg = (s->irq_cfg & IRQ_INT) | val;
970         break;
971     case CSR_INT_STS:
972         s->int_sts &= ~val;
973         break;
974     case CSR_INT_EN:
975         s->int_en = val & ~RESERVED_INT;
976         s->int_sts |= val & SW_INT;
977         break;
978     case CSR_FIFO_INT:
979         DPRINTF("FIFO INT levels %08x\n", val);
980         s->fifo_int = val;
981         break;
982     case CSR_RX_CFG:
983         if (val & 0x8000) {
984             /* RX_DUMP */
985             s->rx_fifo_used = 0;
986             s->rx_status_fifo_used = 0;
987             s->rx_packet_size_tail = s->rx_packet_size_head;
988             s->rx_packet_size[s->rx_packet_size_head] = 0;
989         }
990         s->rx_cfg = val & 0xcfff1ff0;
991         break;
992     case CSR_TX_CFG:
993         if (val & 0x8000) {
994             s->tx_status_fifo_used = 0;
995         }
996         if (val & 0x4000) {
997             s->txp->state = TX_IDLE;
998             s->txp->fifo_used = 0;
999             s->txp->cmd_a = 0xffffffff;
1000         }
1001         s->tx_cfg = val & 6;
1002         break;
1003     case CSR_HW_CFG:
1004         if (val & 1) {
1005             /* SRST */
1006             lan9118_reset(DEVICE(s));
1007         } else {
1008             s->hw_cfg = (val & 0x003f300) | (s->hw_cfg & 0x4);
1009         }
1010         break;
1011     case CSR_RX_DP_CTRL:
1012         if (val & 0x80000000) {
1013             /* Skip forward to next packet.  */
1014             s->rxp_pad = 0;
1015             s->rxp_offset = 0;
1016             if (s->rxp_size == 0) {
1017                 /* Pop a word to start the next packet.  */
1018                 rx_fifo_pop(s);
1019                 s->rxp_pad = 0;
1020                 s->rxp_offset = 0;
1021             }
1022             s->rx_fifo_head += s->rxp_size;
1023             if (s->rx_fifo_head >= s->rx_fifo_size) {
1024                 s->rx_fifo_head -= s->rx_fifo_size;
1025             }
1026         }
1027         break;
1028     case CSR_PMT_CTRL:
1029         if (val & 0x400) {
1030             lan9118_phy_reset(&s->mii);
1031         }
1032         s->pmt_ctrl &= ~0x34e;
1033         s->pmt_ctrl |= (val & 0x34e);
1034         break;
1035     case CSR_GPIO_CFG:
1036         /* Probably just enabling LEDs.  */
1037         s->gpio_cfg = val & 0x7777071f;
1038         break;
1039     case CSR_GPT_CFG:
1040         if ((s->gpt_cfg ^ val) & GPT_TIMER_EN) {
1041             ptimer_transaction_begin(s->timer);
1042             if (val & GPT_TIMER_EN) {
1043                 ptimer_set_count(s->timer, val & 0xffff);
1044                 ptimer_run(s->timer, 0);
1045             } else {
1046                 ptimer_stop(s->timer);
1047                 ptimer_set_count(s->timer, 0xffff);
1048             }
1049             ptimer_transaction_commit(s->timer);
1050         }
1051         s->gpt_cfg = val & (GPT_TIMER_EN | 0xffff);
1052         break;
1053     case CSR_WORD_SWAP:
1054         /* Ignored because we're in 32-bit mode.  */
1055         s->word_swap = val;
1056         break;
1057     case CSR_MAC_CSR_CMD:
1058         s->mac_cmd = val & 0x4000000f;
1059         if (val & 0x80000000) {
1060             if (val & 0x40000000) {
1061                 s->mac_data = do_mac_read(s, val & 0xf);
1062                 DPRINTF("MAC read %d = 0x%08x\n", val & 0xf, s->mac_data);
1063             } else {
1064                 DPRINTF("MAC write %d = 0x%08x\n", val & 0xf, s->mac_data);
1065                 do_mac_write(s, val & 0xf, s->mac_data);
1066             }
1067         }
1068         break;
1069     case CSR_MAC_CSR_DATA:
1070         s->mac_data = val;
1071         break;
1072     case CSR_AFC_CFG:
1073         s->afc_cfg = val & 0x00ffffff;
1074         break;
1075     case CSR_E2P_CMD:
1076         lan9118_eeprom_cmd(s, (val >> 28) & 7, val & 0x7f);
1077         break;
1078     case CSR_E2P_DATA:
1079         s->e2p_data = val & 0xff;
1080         break;
1081 
1082     default:
1083         qemu_log_mask(LOG_GUEST_ERROR, "lan9118_write: Bad reg 0x%x = %x\n",
1084                       (int)offset, (int)val);
1085         break;
1086     }
1087     lan9118_update(s);
1088 }
1089 
lan9118_writew(void * opaque,hwaddr offset,uint32_t val)1090 static void lan9118_writew(void *opaque, hwaddr offset,
1091                            uint32_t val)
1092 {
1093     lan9118_state *s = (lan9118_state *)opaque;
1094     offset &= 0xff;
1095 
1096     if (s->write_word_prev_offset != (offset & ~0x3)) {
1097         /* New offset, reset word counter */
1098         s->write_word_n = 0;
1099         s->write_word_prev_offset = offset & ~0x3;
1100     }
1101 
1102     if (offset & 0x2) {
1103         s->write_word_h = val;
1104     } else {
1105         s->write_word_l = val;
1106     }
1107 
1108     //DPRINTF("Writew reg 0x%02x = 0x%08x\n", (int)offset, val);
1109     s->write_word_n++;
1110     if (s->write_word_n == 2) {
1111         s->write_word_n = 0;
1112         lan9118_writel(s, offset & ~3, s->write_word_l +
1113                 (s->write_word_h << 16), 4);
1114     }
1115 }
1116 
lan9118_16bit_mode_write(void * opaque,hwaddr offset,uint64_t val,unsigned size)1117 static void lan9118_16bit_mode_write(void *opaque, hwaddr offset,
1118                                      uint64_t val, unsigned size)
1119 {
1120     switch (size) {
1121     case 2:
1122         lan9118_writew(opaque, offset, (uint32_t)val);
1123         return;
1124     case 4:
1125         lan9118_writel(opaque, offset, val, size);
1126         return;
1127     }
1128 
1129     qemu_log_mask(LOG_GUEST_ERROR,
1130                   "lan9118_16bit_mode_write: Bad size 0x%x\n", size);
1131 }
1132 
lan9118_readl(void * opaque,hwaddr offset,unsigned size)1133 static uint64_t lan9118_readl(void *opaque, hwaddr offset,
1134                               unsigned size)
1135 {
1136     lan9118_state *s = (lan9118_state *)opaque;
1137 
1138     //DPRINTF("Read reg 0x%02x\n", (int)offset);
1139     if (offset <= RX_DATA_FIFO_PORT_LAST) {
1140         /* RX FIFO */
1141         return rx_fifo_pop(s);
1142     }
1143     switch (offset) {
1144     case RX_STATUS_FIFO_PORT:
1145         return rx_status_fifo_pop(s);
1146     case RX_STATUS_FIFO_PEEK:
1147         return s->rx_status_fifo[s->rx_status_fifo_head];
1148     case TX_STATUS_FIFO_PORT:
1149         return tx_status_fifo_pop(s);
1150     case TX_STATUS_FIFO_PEEK:
1151         return s->tx_status_fifo[s->tx_status_fifo_head];
1152     case CSR_ID_REV:
1153         return 0x01180001;
1154     case CSR_IRQ_CFG:
1155         return s->irq_cfg;
1156     case CSR_INT_STS:
1157         return s->int_sts;
1158     case CSR_INT_EN:
1159         return s->int_en;
1160     case CSR_BYTE_TEST:
1161         return 0x87654321;
1162     case CSR_FIFO_INT:
1163         return s->fifo_int;
1164     case CSR_RX_CFG:
1165         return s->rx_cfg;
1166     case CSR_TX_CFG:
1167         return s->tx_cfg;
1168     case CSR_HW_CFG:
1169         return s->hw_cfg;
1170     case CSR_RX_DP_CTRL:
1171         return 0;
1172     case CSR_RX_FIFO_INF:
1173         return (s->rx_status_fifo_used << 16) | (s->rx_fifo_used << 2);
1174     case CSR_TX_FIFO_INF:
1175         return (s->tx_status_fifo_used << 16)
1176                | (s->tx_fifo_size - s->txp->fifo_used);
1177     case CSR_PMT_CTRL:
1178         return s->pmt_ctrl;
1179     case CSR_GPIO_CFG:
1180         return s->gpio_cfg;
1181     case CSR_GPT_CFG:
1182         return s->gpt_cfg;
1183     case CSR_GPT_CNT:
1184         return ptimer_get_count(s->timer);
1185     case CSR_WORD_SWAP:
1186         return s->word_swap;
1187     case CSR_FREE_RUN:
1188         return (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40) - s->free_timer_start;
1189     case CSR_RX_DROP:
1190         /* TODO: Implement dropped frames counter.  */
1191         return 0;
1192     case CSR_MAC_CSR_CMD:
1193         return s->mac_cmd;
1194     case CSR_MAC_CSR_DATA:
1195         return s->mac_data;
1196     case CSR_AFC_CFG:
1197         return s->afc_cfg;
1198     case CSR_E2P_CMD:
1199         return s->e2p_cmd;
1200     case CSR_E2P_DATA:
1201         return s->e2p_data;
1202     }
1203     qemu_log_mask(LOG_GUEST_ERROR, "lan9118_read: Bad reg 0x%x\n", (int)offset);
1204     return 0;
1205 }
1206 
lan9118_readw(void * opaque,hwaddr offset)1207 static uint32_t lan9118_readw(void *opaque, hwaddr offset)
1208 {
1209     lan9118_state *s = (lan9118_state *)opaque;
1210     uint32_t val;
1211 
1212     if (s->read_word_prev_offset != (offset & ~0x3)) {
1213         /* New offset, reset word counter */
1214         s->read_word_n = 0;
1215         s->read_word_prev_offset = offset & ~0x3;
1216     }
1217 
1218     s->read_word_n++;
1219     if (s->read_word_n == 1) {
1220         s->read_long = lan9118_readl(s, offset & ~3, 4);
1221     } else {
1222         s->read_word_n = 0;
1223     }
1224 
1225     if (offset & 2) {
1226         val = s->read_long >> 16;
1227     } else {
1228         val = s->read_long & 0xFFFF;
1229     }
1230 
1231     //DPRINTF("Readw reg 0x%02x, val 0x%x\n", (int)offset, val);
1232     return val;
1233 }
1234 
lan9118_16bit_mode_read(void * opaque,hwaddr offset,unsigned size)1235 static uint64_t lan9118_16bit_mode_read(void *opaque, hwaddr offset,
1236                                         unsigned size)
1237 {
1238     switch (size) {
1239     case 2:
1240         return lan9118_readw(opaque, offset);
1241     case 4:
1242         return lan9118_readl(opaque, offset, size);
1243     }
1244 
1245     qemu_log_mask(LOG_GUEST_ERROR,
1246                   "lan9118_16bit_mode_read: Bad size 0x%x\n", size);
1247     return 0;
1248 }
1249 
1250 static const MemoryRegionOps lan9118_mem_ops = {
1251     .read = lan9118_readl,
1252     .write = lan9118_writel,
1253     .endianness = DEVICE_NATIVE_ENDIAN,
1254 };
1255 
1256 static const MemoryRegionOps lan9118_16bit_mem_ops = {
1257     .read = lan9118_16bit_mode_read,
1258     .write = lan9118_16bit_mode_write,
1259     .endianness = DEVICE_NATIVE_ENDIAN,
1260 };
1261 
1262 static NetClientInfo net_lan9118_info = {
1263     .type = NET_CLIENT_DRIVER_NIC,
1264     .size = sizeof(NICState),
1265     .receive = lan9118_receive,
1266     .link_status_changed = lan9118_set_link,
1267 };
1268 
lan9118_realize(DeviceState * dev,Error ** errp)1269 static void lan9118_realize(DeviceState *dev, Error **errp)
1270 {
1271     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1272     lan9118_state *s = LAN9118(dev);
1273     int i;
1274     const MemoryRegionOps *mem_ops =
1275             s->mode_16bit ? &lan9118_16bit_mem_ops : &lan9118_mem_ops;
1276 
1277     qemu_init_irq(&s->mii_irq, lan9118_update_irq, s, 0);
1278     object_initialize_child(OBJECT(s), "mii", &s->mii, TYPE_LAN9118_PHY);
1279     if (!sysbus_realize_and_unref(SYS_BUS_DEVICE(&s->mii), errp)) {
1280         return;
1281     }
1282     qdev_connect_gpio_out(DEVICE(&s->mii), 0, &s->mii_irq);
1283 
1284     memory_region_init_io(&s->mmio, OBJECT(dev), mem_ops, s,
1285                           "lan9118-mmio", 0x100);
1286     sysbus_init_mmio(sbd, &s->mmio);
1287     sysbus_init_irq(sbd, &s->irq);
1288     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1289 
1290     s->nic = qemu_new_nic(&net_lan9118_info, &s->conf,
1291                           object_get_typename(OBJECT(dev)), dev->id,
1292                           &dev->mem_reentrancy_guard, s);
1293     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1294     s->eeprom[0] = 0xa5;
1295     for (i = 0; i < 6; i++) {
1296         s->eeprom[i + 1] = s->conf.macaddr.a[i];
1297     }
1298     s->pmt_ctrl = 1;
1299     s->txp = &s->tx_packet;
1300 
1301     s->timer = ptimer_init(lan9118_tick, s, PTIMER_POLICY_LEGACY);
1302     ptimer_transaction_begin(s->timer);
1303     ptimer_set_freq(s->timer, 10000);
1304     ptimer_set_limit(s->timer, 0xffff, 1);
1305     ptimer_transaction_commit(s->timer);
1306 }
1307 
1308 static const Property lan9118_properties[] = {
1309     DEFINE_NIC_PROPERTIES(lan9118_state, conf),
1310     DEFINE_PROP_UINT32("mode_16bit", lan9118_state, mode_16bit, 0),
1311 };
1312 
lan9118_class_init(ObjectClass * klass,const void * data)1313 static void lan9118_class_init(ObjectClass *klass, const void *data)
1314 {
1315     DeviceClass *dc = DEVICE_CLASS(klass);
1316 
1317     device_class_set_legacy_reset(dc, lan9118_reset);
1318     device_class_set_props(dc, lan9118_properties);
1319     dc->vmsd = &vmstate_lan9118;
1320     dc->realize = lan9118_realize;
1321 }
1322 
1323 static const TypeInfo lan9118_info = {
1324     .name          = TYPE_LAN9118,
1325     .parent        = TYPE_SYS_BUS_DEVICE,
1326     .instance_size = sizeof(lan9118_state),
1327     .class_init    = lan9118_class_init,
1328 };
1329 
lan9118_register_types(void)1330 static void lan9118_register_types(void)
1331 {
1332     type_register_static(&lan9118_info);
1333 }
1334 
1335 /* Legacy helper function.  Should go away when machine config files are
1336    implemented.  */
lan9118_init(uint32_t base,qemu_irq irq)1337 void lan9118_init(uint32_t base, qemu_irq irq)
1338 {
1339     DeviceState *dev;
1340     SysBusDevice *s;
1341 
1342     dev = qdev_new(TYPE_LAN9118);
1343     qemu_configure_nic_device(dev, true, NULL);
1344     s = SYS_BUS_DEVICE(dev);
1345     sysbus_realize_and_unref(s, &error_fatal);
1346     sysbus_mmio_map(s, 0, base);
1347     sysbus_connect_irq(s, 0, irq);
1348 }
1349 
1350 type_init(lan9118_register_types)
1351