1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017, Microsoft Corporation.
4 *
5 * Author(s): Long Li <longli@microsoft.com>
6 */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13
14 static struct smbd_response *get_empty_queue_buffer(
15 struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17 struct smbd_connection *info);
18 static void put_receive_buffer(
19 struct smbd_connection *info,
20 struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23
24 static void put_empty_packet(
25 struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27 struct smbd_connection *info,
28 struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30 struct smbd_connection *info);
31
32 static int smbd_post_recv(
33 struct smbd_connection *info,
34 struct smbd_response *response);
35
36 static int smbd_post_send_empty(struct smbd_connection *info);
37
38 static void destroy_mr_list(struct smbd_connection *info);
39 static int allocate_mr_list(struct smbd_connection *info);
40
41 struct smb_extract_to_rdma {
42 struct ib_sge *sge;
43 unsigned int nr_sge;
44 unsigned int max_sge;
45 struct ib_device *device;
46 u32 local_dma_lkey;
47 enum dma_data_direction direction;
48 };
49 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
50 struct smb_extract_to_rdma *rdma);
51
52 /* SMBD version number */
53 #define SMBD_V1 0x0100
54
55 /* Port numbers for SMBD transport */
56 #define SMB_PORT 445
57 #define SMBD_PORT 5445
58
59 /* Address lookup and resolve timeout in ms */
60 #define RDMA_RESOLVE_TIMEOUT 5000
61
62 /* SMBD negotiation timeout in seconds */
63 #define SMBD_NEGOTIATE_TIMEOUT 120
64
65 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
66 #define SMBD_MIN_RECEIVE_SIZE 128
67 #define SMBD_MIN_FRAGMENTED_SIZE 131072
68
69 /*
70 * Default maximum number of RDMA read/write outstanding on this connection
71 * This value is possibly decreased during QP creation on hardware limit
72 */
73 #define SMBD_CM_RESPONDER_RESOURCES 32
74
75 /* Maximum number of retries on data transfer operations */
76 #define SMBD_CM_RETRY 6
77 /* No need to retry on Receiver Not Ready since SMBD manages credits */
78 #define SMBD_CM_RNR_RETRY 0
79
80 /*
81 * User configurable initial values per SMBD transport connection
82 * as defined in [MS-SMBD] 3.1.1.1
83 * Those may change after a SMBD negotiation
84 */
85 /* The local peer's maximum number of credits to grant to the peer */
86 int smbd_receive_credit_max = 255;
87
88 /* The remote peer's credit request of local peer */
89 int smbd_send_credit_target = 255;
90
91 /* The maximum single message size can be sent to remote peer */
92 int smbd_max_send_size = 1364;
93
94 /* The maximum fragmented upper-layer payload receive size supported */
95 int smbd_max_fragmented_recv_size = 1024 * 1024;
96
97 /* The maximum single-message size which can be received */
98 int smbd_max_receive_size = 1364;
99
100 /* The timeout to initiate send of a keepalive message on idle */
101 int smbd_keep_alive_interval = 120;
102
103 /*
104 * User configurable initial values for RDMA transport
105 * The actual values used may be lower and are limited to hardware capabilities
106 */
107 /* Default maximum number of pages in a single RDMA write/read */
108 int smbd_max_frmr_depth = 2048;
109
110 /* If payload is less than this byte, use RDMA send/recv not read/write */
111 int rdma_readwrite_threshold = 4096;
112
113 /* Transport logging functions
114 * Logging are defined as classes. They can be OR'ed to define the actual
115 * logging level via module parameter smbd_logging_class
116 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
117 * log_rdma_event()
118 */
119 #define LOG_OUTGOING 0x1
120 #define LOG_INCOMING 0x2
121 #define LOG_READ 0x4
122 #define LOG_WRITE 0x8
123 #define LOG_RDMA_SEND 0x10
124 #define LOG_RDMA_RECV 0x20
125 #define LOG_KEEP_ALIVE 0x40
126 #define LOG_RDMA_EVENT 0x80
127 #define LOG_RDMA_MR 0x100
128 static unsigned int smbd_logging_class;
129 module_param(smbd_logging_class, uint, 0644);
130 MODULE_PARM_DESC(smbd_logging_class,
131 "Logging class for SMBD transport 0x0 to 0x100");
132
133 #define ERR 0x0
134 #define INFO 0x1
135 static unsigned int smbd_logging_level = ERR;
136 module_param(smbd_logging_level, uint, 0644);
137 MODULE_PARM_DESC(smbd_logging_level,
138 "Logging level for SMBD transport, 0 (default): error, 1: info");
139
140 #define log_rdma(level, class, fmt, args...) \
141 do { \
142 if (level <= smbd_logging_level || class & smbd_logging_class) \
143 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
144 } while (0)
145
146 #define log_outgoing(level, fmt, args...) \
147 log_rdma(level, LOG_OUTGOING, fmt, ##args)
148 #define log_incoming(level, fmt, args...) \
149 log_rdma(level, LOG_INCOMING, fmt, ##args)
150 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
151 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
152 #define log_rdma_send(level, fmt, args...) \
153 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
154 #define log_rdma_recv(level, fmt, args...) \
155 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
156 #define log_keep_alive(level, fmt, args...) \
157 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
158 #define log_rdma_event(level, fmt, args...) \
159 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
160 #define log_rdma_mr(level, fmt, args...) \
161 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
162
smbd_disconnect_rdma_work(struct work_struct * work)163 static void smbd_disconnect_rdma_work(struct work_struct *work)
164 {
165 struct smbd_connection *info =
166 container_of(work, struct smbd_connection, disconnect_work);
167
168 if (info->transport_status == SMBD_CONNECTED) {
169 info->transport_status = SMBD_DISCONNECTING;
170 rdma_disconnect(info->id);
171 }
172 }
173
smbd_disconnect_rdma_connection(struct smbd_connection * info)174 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
175 {
176 queue_work(info->workqueue, &info->disconnect_work);
177 }
178
179 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)180 static int smbd_conn_upcall(
181 struct rdma_cm_id *id, struct rdma_cm_event *event)
182 {
183 struct smbd_connection *info = id->context;
184
185 log_rdma_event(INFO, "event=%d status=%d\n",
186 event->event, event->status);
187
188 switch (event->event) {
189 case RDMA_CM_EVENT_ADDR_RESOLVED:
190 case RDMA_CM_EVENT_ROUTE_RESOLVED:
191 info->ri_rc = 0;
192 complete(&info->ri_done);
193 break;
194
195 case RDMA_CM_EVENT_ADDR_ERROR:
196 info->ri_rc = -EHOSTUNREACH;
197 complete(&info->ri_done);
198 break;
199
200 case RDMA_CM_EVENT_ROUTE_ERROR:
201 info->ri_rc = -ENETUNREACH;
202 complete(&info->ri_done);
203 break;
204
205 case RDMA_CM_EVENT_ESTABLISHED:
206 log_rdma_event(INFO, "connected event=%d\n", event->event);
207 info->transport_status = SMBD_CONNECTED;
208 wake_up_interruptible(&info->conn_wait);
209 break;
210
211 case RDMA_CM_EVENT_CONNECT_ERROR:
212 case RDMA_CM_EVENT_UNREACHABLE:
213 case RDMA_CM_EVENT_REJECTED:
214 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
215 info->transport_status = SMBD_DISCONNECTED;
216 wake_up_interruptible(&info->conn_wait);
217 break;
218
219 case RDMA_CM_EVENT_DEVICE_REMOVAL:
220 case RDMA_CM_EVENT_DISCONNECTED:
221 /* This happenes when we fail the negotiation */
222 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
223 info->transport_status = SMBD_DISCONNECTED;
224 wake_up(&info->conn_wait);
225 break;
226 }
227
228 info->transport_status = SMBD_DISCONNECTED;
229 wake_up_interruptible(&info->disconn_wait);
230 wake_up_interruptible(&info->wait_reassembly_queue);
231 wake_up_interruptible_all(&info->wait_send_queue);
232 break;
233
234 default:
235 break;
236 }
237
238 return 0;
239 }
240
241 /* Upcall from RDMA QP */
242 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)243 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
244 {
245 struct smbd_connection *info = context;
246
247 log_rdma_event(ERR, "%s on device %s info %p\n",
248 ib_event_msg(event->event), event->device->name, info);
249
250 switch (event->event) {
251 case IB_EVENT_CQ_ERR:
252 case IB_EVENT_QP_FATAL:
253 smbd_disconnect_rdma_connection(info);
254 break;
255
256 default:
257 break;
258 }
259 }
260
smbd_request_payload(struct smbd_request * request)261 static inline void *smbd_request_payload(struct smbd_request *request)
262 {
263 return (void *)request->packet;
264 }
265
smbd_response_payload(struct smbd_response * response)266 static inline void *smbd_response_payload(struct smbd_response *response)
267 {
268 return (void *)response->packet;
269 }
270
271 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)272 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
273 {
274 int i;
275 struct smbd_request *request =
276 container_of(wc->wr_cqe, struct smbd_request, cqe);
277
278 log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
279 request, wc->status);
280
281 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
282 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
283 wc->status, wc->opcode);
284 smbd_disconnect_rdma_connection(request->info);
285 }
286
287 for (i = 0; i < request->num_sge; i++)
288 ib_dma_unmap_single(request->info->id->device,
289 request->sge[i].addr,
290 request->sge[i].length,
291 DMA_TO_DEVICE);
292
293 if (atomic_dec_and_test(&request->info->send_pending))
294 wake_up(&request->info->wait_send_pending);
295
296 wake_up(&request->info->wait_post_send);
297
298 mempool_free(request, request->info->request_mempool);
299 }
300
dump_smbd_negotiate_resp(struct smbd_negotiate_resp * resp)301 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
302 {
303 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
304 resp->min_version, resp->max_version,
305 resp->negotiated_version, resp->credits_requested,
306 resp->credits_granted, resp->status,
307 resp->max_readwrite_size, resp->preferred_send_size,
308 resp->max_receive_size, resp->max_fragmented_size);
309 }
310
311 /*
312 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
313 * response, packet_length: the negotiation response message
314 * return value: true if negotiation is a success, false if failed
315 */
process_negotiation_response(struct smbd_response * response,int packet_length)316 static bool process_negotiation_response(
317 struct smbd_response *response, int packet_length)
318 {
319 struct smbd_connection *info = response->info;
320 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
321
322 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
323 log_rdma_event(ERR,
324 "error: packet_length=%d\n", packet_length);
325 return false;
326 }
327
328 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
329 log_rdma_event(ERR, "error: negotiated_version=%x\n",
330 le16_to_cpu(packet->negotiated_version));
331 return false;
332 }
333 info->protocol = le16_to_cpu(packet->negotiated_version);
334
335 if (packet->credits_requested == 0) {
336 log_rdma_event(ERR, "error: credits_requested==0\n");
337 return false;
338 }
339 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
340
341 if (packet->credits_granted == 0) {
342 log_rdma_event(ERR, "error: credits_granted==0\n");
343 return false;
344 }
345 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
346
347 atomic_set(&info->receive_credits, 0);
348
349 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
350 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
351 le32_to_cpu(packet->preferred_send_size));
352 return false;
353 }
354 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
355
356 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
357 log_rdma_event(ERR, "error: max_receive_size=%d\n",
358 le32_to_cpu(packet->max_receive_size));
359 return false;
360 }
361 info->max_send_size = min_t(int, info->max_send_size,
362 le32_to_cpu(packet->max_receive_size));
363
364 if (le32_to_cpu(packet->max_fragmented_size) <
365 SMBD_MIN_FRAGMENTED_SIZE) {
366 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
367 le32_to_cpu(packet->max_fragmented_size));
368 return false;
369 }
370 info->max_fragmented_send_size =
371 le32_to_cpu(packet->max_fragmented_size);
372 info->rdma_readwrite_threshold =
373 rdma_readwrite_threshold > info->max_fragmented_send_size ?
374 info->max_fragmented_send_size :
375 rdma_readwrite_threshold;
376
377
378 info->max_readwrite_size = min_t(u32,
379 le32_to_cpu(packet->max_readwrite_size),
380 info->max_frmr_depth * PAGE_SIZE);
381 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
382
383 return true;
384 }
385
smbd_post_send_credits(struct work_struct * work)386 static void smbd_post_send_credits(struct work_struct *work)
387 {
388 int ret = 0;
389 int use_receive_queue = 1;
390 int rc;
391 struct smbd_response *response;
392 struct smbd_connection *info =
393 container_of(work, struct smbd_connection,
394 post_send_credits_work);
395
396 if (info->transport_status != SMBD_CONNECTED) {
397 wake_up(&info->wait_receive_queues);
398 return;
399 }
400
401 if (info->receive_credit_target >
402 atomic_read(&info->receive_credits)) {
403 while (true) {
404 if (use_receive_queue)
405 response = get_receive_buffer(info);
406 else
407 response = get_empty_queue_buffer(info);
408 if (!response) {
409 /* now switch to emtpy packet queue */
410 if (use_receive_queue) {
411 use_receive_queue = 0;
412 continue;
413 } else
414 break;
415 }
416
417 response->type = SMBD_TRANSFER_DATA;
418 response->first_segment = false;
419 rc = smbd_post_recv(info, response);
420 if (rc) {
421 log_rdma_recv(ERR,
422 "post_recv failed rc=%d\n", rc);
423 put_receive_buffer(info, response);
424 break;
425 }
426
427 ret++;
428 }
429 }
430
431 spin_lock(&info->lock_new_credits_offered);
432 info->new_credits_offered += ret;
433 spin_unlock(&info->lock_new_credits_offered);
434
435 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
436 info->send_immediate = true;
437 if (atomic_read(&info->receive_credits) <
438 info->receive_credit_target - 1) {
439 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
440 info->send_immediate) {
441 log_keep_alive(INFO, "send an empty message\n");
442 smbd_post_send_empty(info);
443 }
444 }
445 }
446
447 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)448 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
449 {
450 struct smbd_data_transfer *data_transfer;
451 struct smbd_response *response =
452 container_of(wc->wr_cqe, struct smbd_response, cqe);
453 struct smbd_connection *info = response->info;
454 int data_length = 0;
455
456 log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
457 response, response->type, wc->status, wc->opcode,
458 wc->byte_len, wc->pkey_index);
459
460 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
461 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
462 wc->status, wc->opcode);
463 smbd_disconnect_rdma_connection(info);
464 goto error;
465 }
466
467 ib_dma_sync_single_for_cpu(
468 wc->qp->device,
469 response->sge.addr,
470 response->sge.length,
471 DMA_FROM_DEVICE);
472
473 switch (response->type) {
474 /* SMBD negotiation response */
475 case SMBD_NEGOTIATE_RESP:
476 dump_smbd_negotiate_resp(smbd_response_payload(response));
477 info->full_packet_received = true;
478 info->negotiate_done =
479 process_negotiation_response(response, wc->byte_len);
480 complete(&info->negotiate_completion);
481 break;
482
483 /* SMBD data transfer packet */
484 case SMBD_TRANSFER_DATA:
485 data_transfer = smbd_response_payload(response);
486 data_length = le32_to_cpu(data_transfer->data_length);
487
488 /*
489 * If this is a packet with data playload place the data in
490 * reassembly queue and wake up the reading thread
491 */
492 if (data_length) {
493 if (info->full_packet_received)
494 response->first_segment = true;
495
496 if (le32_to_cpu(data_transfer->remaining_data_length))
497 info->full_packet_received = false;
498 else
499 info->full_packet_received = true;
500
501 enqueue_reassembly(
502 info,
503 response,
504 data_length);
505 } else
506 put_empty_packet(info, response);
507
508 if (data_length)
509 wake_up_interruptible(&info->wait_reassembly_queue);
510
511 atomic_dec(&info->receive_credits);
512 info->receive_credit_target =
513 le16_to_cpu(data_transfer->credits_requested);
514 if (le16_to_cpu(data_transfer->credits_granted)) {
515 atomic_add(le16_to_cpu(data_transfer->credits_granted),
516 &info->send_credits);
517 /*
518 * We have new send credits granted from remote peer
519 * If any sender is waiting for credits, unblock it
520 */
521 wake_up_interruptible(&info->wait_send_queue);
522 }
523
524 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
525 le16_to_cpu(data_transfer->flags),
526 le32_to_cpu(data_transfer->data_offset),
527 le32_to_cpu(data_transfer->data_length),
528 le32_to_cpu(data_transfer->remaining_data_length));
529
530 /* Send a KEEP_ALIVE response right away if requested */
531 info->keep_alive_requested = KEEP_ALIVE_NONE;
532 if (le16_to_cpu(data_transfer->flags) &
533 SMB_DIRECT_RESPONSE_REQUESTED) {
534 info->keep_alive_requested = KEEP_ALIVE_PENDING;
535 }
536
537 return;
538
539 default:
540 log_rdma_recv(ERR,
541 "unexpected response type=%d\n", response->type);
542 }
543
544 error:
545 put_receive_buffer(info, response);
546 }
547
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)548 static struct rdma_cm_id *smbd_create_id(
549 struct smbd_connection *info,
550 struct sockaddr *dstaddr, int port)
551 {
552 struct rdma_cm_id *id;
553 int rc;
554 __be16 *sport;
555
556 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
557 RDMA_PS_TCP, IB_QPT_RC);
558 if (IS_ERR(id)) {
559 rc = PTR_ERR(id);
560 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
561 return id;
562 }
563
564 if (dstaddr->sa_family == AF_INET6)
565 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
566 else
567 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
568
569 *sport = htons(port);
570
571 init_completion(&info->ri_done);
572 info->ri_rc = -ETIMEDOUT;
573
574 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
575 RDMA_RESOLVE_TIMEOUT);
576 if (rc) {
577 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
578 goto out;
579 }
580 rc = wait_for_completion_interruptible_timeout(
581 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
582 /* e.g. if interrupted returns -ERESTARTSYS */
583 if (rc < 0) {
584 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
585 goto out;
586 }
587 rc = info->ri_rc;
588 if (rc) {
589 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
590 goto out;
591 }
592
593 info->ri_rc = -ETIMEDOUT;
594 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
595 if (rc) {
596 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
597 goto out;
598 }
599 rc = wait_for_completion_interruptible_timeout(
600 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
601 /* e.g. if interrupted returns -ERESTARTSYS */
602 if (rc < 0) {
603 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
604 goto out;
605 }
606 rc = info->ri_rc;
607 if (rc) {
608 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
609 goto out;
610 }
611
612 return id;
613
614 out:
615 rdma_destroy_id(id);
616 return ERR_PTR(rc);
617 }
618
619 /*
620 * Test if FRWR (Fast Registration Work Requests) is supported on the device
621 * This implementation requries FRWR on RDMA read/write
622 * return value: true if it is supported
623 */
frwr_is_supported(struct ib_device_attr * attrs)624 static bool frwr_is_supported(struct ib_device_attr *attrs)
625 {
626 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
627 return false;
628 if (attrs->max_fast_reg_page_list_len == 0)
629 return false;
630 return true;
631 }
632
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)633 static int smbd_ia_open(
634 struct smbd_connection *info,
635 struct sockaddr *dstaddr, int port)
636 {
637 int rc;
638
639 info->id = smbd_create_id(info, dstaddr, port);
640 if (IS_ERR(info->id)) {
641 rc = PTR_ERR(info->id);
642 goto out1;
643 }
644
645 if (!frwr_is_supported(&info->id->device->attrs)) {
646 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
647 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
648 info->id->device->attrs.device_cap_flags,
649 info->id->device->attrs.max_fast_reg_page_list_len);
650 rc = -EPROTONOSUPPORT;
651 goto out2;
652 }
653 info->max_frmr_depth = min_t(int,
654 smbd_max_frmr_depth,
655 info->id->device->attrs.max_fast_reg_page_list_len);
656 info->mr_type = IB_MR_TYPE_MEM_REG;
657 if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
658 info->mr_type = IB_MR_TYPE_SG_GAPS;
659
660 info->pd = ib_alloc_pd(info->id->device, 0);
661 if (IS_ERR(info->pd)) {
662 rc = PTR_ERR(info->pd);
663 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
664 goto out2;
665 }
666
667 return 0;
668
669 out2:
670 rdma_destroy_id(info->id);
671 info->id = NULL;
672
673 out1:
674 return rc;
675 }
676
677 /*
678 * Send a negotiation request message to the peer
679 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
680 * After negotiation, the transport is connected and ready for
681 * carrying upper layer SMB payload
682 */
smbd_post_send_negotiate_req(struct smbd_connection * info)683 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
684 {
685 struct ib_send_wr send_wr;
686 int rc = -ENOMEM;
687 struct smbd_request *request;
688 struct smbd_negotiate_req *packet;
689
690 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
691 if (!request)
692 return rc;
693
694 request->info = info;
695
696 packet = smbd_request_payload(request);
697 packet->min_version = cpu_to_le16(SMBD_V1);
698 packet->max_version = cpu_to_le16(SMBD_V1);
699 packet->reserved = 0;
700 packet->credits_requested = cpu_to_le16(info->send_credit_target);
701 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
702 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
703 packet->max_fragmented_size =
704 cpu_to_le32(info->max_fragmented_recv_size);
705
706 request->num_sge = 1;
707 request->sge[0].addr = ib_dma_map_single(
708 info->id->device, (void *)packet,
709 sizeof(*packet), DMA_TO_DEVICE);
710 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
711 rc = -EIO;
712 goto dma_mapping_failed;
713 }
714
715 request->sge[0].length = sizeof(*packet);
716 request->sge[0].lkey = info->pd->local_dma_lkey;
717
718 ib_dma_sync_single_for_device(
719 info->id->device, request->sge[0].addr,
720 request->sge[0].length, DMA_TO_DEVICE);
721
722 request->cqe.done = send_done;
723
724 send_wr.next = NULL;
725 send_wr.wr_cqe = &request->cqe;
726 send_wr.sg_list = request->sge;
727 send_wr.num_sge = request->num_sge;
728 send_wr.opcode = IB_WR_SEND;
729 send_wr.send_flags = IB_SEND_SIGNALED;
730
731 log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
732 request->sge[0].addr,
733 request->sge[0].length, request->sge[0].lkey);
734
735 atomic_inc(&info->send_pending);
736 rc = ib_post_send(info->id->qp, &send_wr, NULL);
737 if (!rc)
738 return 0;
739
740 /* if we reach here, post send failed */
741 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
742 atomic_dec(&info->send_pending);
743 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
744 request->sge[0].length, DMA_TO_DEVICE);
745
746 smbd_disconnect_rdma_connection(info);
747
748 dma_mapping_failed:
749 mempool_free(request, info->request_mempool);
750 return rc;
751 }
752
753 /*
754 * Extend the credits to remote peer
755 * This implements [MS-SMBD] 3.1.5.9
756 * The idea is that we should extend credits to remote peer as quickly as
757 * it's allowed, to maintain data flow. We allocate as much receive
758 * buffer as possible, and extend the receive credits to remote peer
759 * return value: the new credtis being granted.
760 */
manage_credits_prior_sending(struct smbd_connection * info)761 static int manage_credits_prior_sending(struct smbd_connection *info)
762 {
763 int new_credits;
764
765 spin_lock(&info->lock_new_credits_offered);
766 new_credits = info->new_credits_offered;
767 info->new_credits_offered = 0;
768 spin_unlock(&info->lock_new_credits_offered);
769
770 return new_credits;
771 }
772
773 /*
774 * Check if we need to send a KEEP_ALIVE message
775 * The idle connection timer triggers a KEEP_ALIVE message when expires
776 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
777 * back a response.
778 * return value:
779 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
780 * 0: otherwise
781 */
manage_keep_alive_before_sending(struct smbd_connection * info)782 static int manage_keep_alive_before_sending(struct smbd_connection *info)
783 {
784 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
785 info->keep_alive_requested = KEEP_ALIVE_SENT;
786 return 1;
787 }
788 return 0;
789 }
790
791 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request)792 static int smbd_post_send(struct smbd_connection *info,
793 struct smbd_request *request)
794 {
795 struct ib_send_wr send_wr;
796 int rc, i;
797
798 for (i = 0; i < request->num_sge; i++) {
799 log_rdma_send(INFO,
800 "rdma_request sge[%d] addr=0x%llx length=%u\n",
801 i, request->sge[i].addr, request->sge[i].length);
802 ib_dma_sync_single_for_device(
803 info->id->device,
804 request->sge[i].addr,
805 request->sge[i].length,
806 DMA_TO_DEVICE);
807 }
808
809 request->cqe.done = send_done;
810
811 send_wr.next = NULL;
812 send_wr.wr_cqe = &request->cqe;
813 send_wr.sg_list = request->sge;
814 send_wr.num_sge = request->num_sge;
815 send_wr.opcode = IB_WR_SEND;
816 send_wr.send_flags = IB_SEND_SIGNALED;
817
818 rc = ib_post_send(info->id->qp, &send_wr, NULL);
819 if (rc) {
820 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
821 smbd_disconnect_rdma_connection(info);
822 rc = -EAGAIN;
823 } else
824 /* Reset timer for idle connection after packet is sent */
825 mod_delayed_work(info->workqueue, &info->idle_timer_work,
826 info->keep_alive_interval*HZ);
827
828 return rc;
829 }
830
smbd_post_send_iter(struct smbd_connection * info,struct iov_iter * iter,int * _remaining_data_length)831 static int smbd_post_send_iter(struct smbd_connection *info,
832 struct iov_iter *iter,
833 int *_remaining_data_length)
834 {
835 int i, rc;
836 int header_length;
837 int data_length;
838 struct smbd_request *request;
839 struct smbd_data_transfer *packet;
840 int new_credits = 0;
841
842 wait_credit:
843 /* Wait for send credits. A SMBD packet needs one credit */
844 rc = wait_event_interruptible(info->wait_send_queue,
845 atomic_read(&info->send_credits) > 0 ||
846 info->transport_status != SMBD_CONNECTED);
847 if (rc)
848 goto err_wait_credit;
849
850 if (info->transport_status != SMBD_CONNECTED) {
851 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
852 rc = -EAGAIN;
853 goto err_wait_credit;
854 }
855 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
856 atomic_inc(&info->send_credits);
857 goto wait_credit;
858 }
859
860 wait_send_queue:
861 wait_event(info->wait_post_send,
862 atomic_read(&info->send_pending) < info->send_credit_target ||
863 info->transport_status != SMBD_CONNECTED);
864
865 if (info->transport_status != SMBD_CONNECTED) {
866 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
867 rc = -EAGAIN;
868 goto err_wait_send_queue;
869 }
870
871 if (unlikely(atomic_inc_return(&info->send_pending) >
872 info->send_credit_target)) {
873 atomic_dec(&info->send_pending);
874 goto wait_send_queue;
875 }
876
877 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
878 if (!request) {
879 rc = -ENOMEM;
880 goto err_alloc;
881 }
882
883 request->info = info;
884 memset(request->sge, 0, sizeof(request->sge));
885
886 /* Fill in the data payload to find out how much data we can add */
887 if (iter) {
888 struct smb_extract_to_rdma extract = {
889 .nr_sge = 1,
890 .max_sge = SMBDIRECT_MAX_SEND_SGE,
891 .sge = request->sge,
892 .device = info->id->device,
893 .local_dma_lkey = info->pd->local_dma_lkey,
894 .direction = DMA_TO_DEVICE,
895 };
896
897 rc = smb_extract_iter_to_rdma(iter, *_remaining_data_length,
898 &extract);
899 if (rc < 0)
900 goto err_dma;
901 data_length = rc;
902 request->num_sge = extract.nr_sge;
903 *_remaining_data_length -= data_length;
904 } else {
905 data_length = 0;
906 request->num_sge = 1;
907 }
908
909 /* Fill in the packet header */
910 packet = smbd_request_payload(request);
911 packet->credits_requested = cpu_to_le16(info->send_credit_target);
912
913 new_credits = manage_credits_prior_sending(info);
914 atomic_add(new_credits, &info->receive_credits);
915 packet->credits_granted = cpu_to_le16(new_credits);
916
917 info->send_immediate = false;
918
919 packet->flags = 0;
920 if (manage_keep_alive_before_sending(info))
921 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
922
923 packet->reserved = 0;
924 if (!data_length)
925 packet->data_offset = 0;
926 else
927 packet->data_offset = cpu_to_le32(24);
928 packet->data_length = cpu_to_le32(data_length);
929 packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
930 packet->padding = 0;
931
932 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
933 le16_to_cpu(packet->credits_requested),
934 le16_to_cpu(packet->credits_granted),
935 le32_to_cpu(packet->data_offset),
936 le32_to_cpu(packet->data_length),
937 le32_to_cpu(packet->remaining_data_length));
938
939 /* Map the packet to DMA */
940 header_length = sizeof(struct smbd_data_transfer);
941 /* If this is a packet without payload, don't send padding */
942 if (!data_length)
943 header_length = offsetof(struct smbd_data_transfer, padding);
944
945 request->sge[0].addr = ib_dma_map_single(info->id->device,
946 (void *)packet,
947 header_length,
948 DMA_TO_DEVICE);
949 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
950 rc = -EIO;
951 request->sge[0].addr = 0;
952 goto err_dma;
953 }
954
955 request->sge[0].length = header_length;
956 request->sge[0].lkey = info->pd->local_dma_lkey;
957
958 rc = smbd_post_send(info, request);
959 if (!rc)
960 return 0;
961
962 err_dma:
963 for (i = 0; i < request->num_sge; i++)
964 if (request->sge[i].addr)
965 ib_dma_unmap_single(info->id->device,
966 request->sge[i].addr,
967 request->sge[i].length,
968 DMA_TO_DEVICE);
969 mempool_free(request, info->request_mempool);
970
971 /* roll back receive credits and credits to be offered */
972 spin_lock(&info->lock_new_credits_offered);
973 info->new_credits_offered += new_credits;
974 spin_unlock(&info->lock_new_credits_offered);
975 atomic_sub(new_credits, &info->receive_credits);
976
977 err_alloc:
978 if (atomic_dec_and_test(&info->send_pending))
979 wake_up(&info->wait_send_pending);
980
981 err_wait_send_queue:
982 /* roll back send credits and pending */
983 atomic_inc(&info->send_credits);
984
985 err_wait_credit:
986 return rc;
987 }
988
989 /*
990 * Send an empty message
991 * Empty message is used to extend credits to peer to for keep live
992 * while there is no upper layer payload to send at the time
993 */
smbd_post_send_empty(struct smbd_connection * info)994 static int smbd_post_send_empty(struct smbd_connection *info)
995 {
996 int remaining_data_length = 0;
997
998 info->count_send_empty++;
999 return smbd_post_send_iter(info, NULL, &remaining_data_length);
1000 }
1001
1002 /*
1003 * Post a receive request to the transport
1004 * The remote peer can only send data when a receive request is posted
1005 * The interaction is controlled by send/receive credit system
1006 */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1007 static int smbd_post_recv(
1008 struct smbd_connection *info, struct smbd_response *response)
1009 {
1010 struct ib_recv_wr recv_wr;
1011 int rc = -EIO;
1012
1013 response->sge.addr = ib_dma_map_single(
1014 info->id->device, response->packet,
1015 info->max_receive_size, DMA_FROM_DEVICE);
1016 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1017 return rc;
1018
1019 response->sge.length = info->max_receive_size;
1020 response->sge.lkey = info->pd->local_dma_lkey;
1021
1022 response->cqe.done = recv_done;
1023
1024 recv_wr.wr_cqe = &response->cqe;
1025 recv_wr.next = NULL;
1026 recv_wr.sg_list = &response->sge;
1027 recv_wr.num_sge = 1;
1028
1029 rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1030 if (rc) {
1031 ib_dma_unmap_single(info->id->device, response->sge.addr,
1032 response->sge.length, DMA_FROM_DEVICE);
1033 smbd_disconnect_rdma_connection(info);
1034 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1035 }
1036
1037 return rc;
1038 }
1039
1040 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1041 static int smbd_negotiate(struct smbd_connection *info)
1042 {
1043 int rc;
1044 struct smbd_response *response = get_receive_buffer(info);
1045
1046 response->type = SMBD_NEGOTIATE_RESP;
1047 rc = smbd_post_recv(info, response);
1048 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1049 rc, response->sge.addr,
1050 response->sge.length, response->sge.lkey);
1051 if (rc)
1052 return rc;
1053
1054 init_completion(&info->negotiate_completion);
1055 info->negotiate_done = false;
1056 rc = smbd_post_send_negotiate_req(info);
1057 if (rc)
1058 return rc;
1059
1060 rc = wait_for_completion_interruptible_timeout(
1061 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1062 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1063
1064 if (info->negotiate_done)
1065 return 0;
1066
1067 if (rc == 0)
1068 rc = -ETIMEDOUT;
1069 else if (rc == -ERESTARTSYS)
1070 rc = -EINTR;
1071 else
1072 rc = -ENOTCONN;
1073
1074 return rc;
1075 }
1076
put_empty_packet(struct smbd_connection * info,struct smbd_response * response)1077 static void put_empty_packet(
1078 struct smbd_connection *info, struct smbd_response *response)
1079 {
1080 spin_lock(&info->empty_packet_queue_lock);
1081 list_add_tail(&response->list, &info->empty_packet_queue);
1082 info->count_empty_packet_queue++;
1083 spin_unlock(&info->empty_packet_queue_lock);
1084
1085 queue_work(info->workqueue, &info->post_send_credits_work);
1086 }
1087
1088 /*
1089 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1090 * This is a queue for reassembling upper layer payload and present to upper
1091 * layer. All the inncoming payload go to the reassembly queue, regardless of
1092 * if reassembly is required. The uuper layer code reads from the queue for all
1093 * incoming payloads.
1094 * Put a received packet to the reassembly queue
1095 * response: the packet received
1096 * data_length: the size of payload in this packet
1097 */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1098 static void enqueue_reassembly(
1099 struct smbd_connection *info,
1100 struct smbd_response *response,
1101 int data_length)
1102 {
1103 spin_lock(&info->reassembly_queue_lock);
1104 list_add_tail(&response->list, &info->reassembly_queue);
1105 info->reassembly_queue_length++;
1106 /*
1107 * Make sure reassembly_data_length is updated after list and
1108 * reassembly_queue_length are updated. On the dequeue side
1109 * reassembly_data_length is checked without a lock to determine
1110 * if reassembly_queue_length and list is up to date
1111 */
1112 virt_wmb();
1113 info->reassembly_data_length += data_length;
1114 spin_unlock(&info->reassembly_queue_lock);
1115 info->count_reassembly_queue++;
1116 info->count_enqueue_reassembly_queue++;
1117 }
1118
1119 /*
1120 * Get the first entry at the front of reassembly queue
1121 * Caller is responsible for locking
1122 * return value: the first entry if any, NULL if queue is empty
1123 */
_get_first_reassembly(struct smbd_connection * info)1124 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1125 {
1126 struct smbd_response *ret = NULL;
1127
1128 if (!list_empty(&info->reassembly_queue)) {
1129 ret = list_first_entry(
1130 &info->reassembly_queue,
1131 struct smbd_response, list);
1132 }
1133 return ret;
1134 }
1135
get_empty_queue_buffer(struct smbd_connection * info)1136 static struct smbd_response *get_empty_queue_buffer(
1137 struct smbd_connection *info)
1138 {
1139 struct smbd_response *ret = NULL;
1140 unsigned long flags;
1141
1142 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1143 if (!list_empty(&info->empty_packet_queue)) {
1144 ret = list_first_entry(
1145 &info->empty_packet_queue,
1146 struct smbd_response, list);
1147 list_del(&ret->list);
1148 info->count_empty_packet_queue--;
1149 }
1150 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1151
1152 return ret;
1153 }
1154
1155 /*
1156 * Get a receive buffer
1157 * For each remote send, we need to post a receive. The receive buffers are
1158 * pre-allocated in advance.
1159 * return value: the receive buffer, NULL if none is available
1160 */
get_receive_buffer(struct smbd_connection * info)1161 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1162 {
1163 struct smbd_response *ret = NULL;
1164 unsigned long flags;
1165
1166 spin_lock_irqsave(&info->receive_queue_lock, flags);
1167 if (!list_empty(&info->receive_queue)) {
1168 ret = list_first_entry(
1169 &info->receive_queue,
1170 struct smbd_response, list);
1171 list_del(&ret->list);
1172 info->count_receive_queue--;
1173 info->count_get_receive_buffer++;
1174 }
1175 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1176
1177 return ret;
1178 }
1179
1180 /*
1181 * Return a receive buffer
1182 * Upon returning of a receive buffer, we can post new receive and extend
1183 * more receive credits to remote peer. This is done immediately after a
1184 * receive buffer is returned.
1185 */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1186 static void put_receive_buffer(
1187 struct smbd_connection *info, struct smbd_response *response)
1188 {
1189 unsigned long flags;
1190
1191 ib_dma_unmap_single(info->id->device, response->sge.addr,
1192 response->sge.length, DMA_FROM_DEVICE);
1193
1194 spin_lock_irqsave(&info->receive_queue_lock, flags);
1195 list_add_tail(&response->list, &info->receive_queue);
1196 info->count_receive_queue++;
1197 info->count_put_receive_buffer++;
1198 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1199
1200 queue_work(info->workqueue, &info->post_send_credits_work);
1201 }
1202
1203 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1204 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1205 {
1206 int i;
1207 struct smbd_response *response;
1208
1209 INIT_LIST_HEAD(&info->reassembly_queue);
1210 spin_lock_init(&info->reassembly_queue_lock);
1211 info->reassembly_data_length = 0;
1212 info->reassembly_queue_length = 0;
1213
1214 INIT_LIST_HEAD(&info->receive_queue);
1215 spin_lock_init(&info->receive_queue_lock);
1216 info->count_receive_queue = 0;
1217
1218 INIT_LIST_HEAD(&info->empty_packet_queue);
1219 spin_lock_init(&info->empty_packet_queue_lock);
1220 info->count_empty_packet_queue = 0;
1221
1222 init_waitqueue_head(&info->wait_receive_queues);
1223
1224 for (i = 0; i < num_buf; i++) {
1225 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1226 if (!response)
1227 goto allocate_failed;
1228
1229 response->info = info;
1230 list_add_tail(&response->list, &info->receive_queue);
1231 info->count_receive_queue++;
1232 }
1233
1234 return 0;
1235
1236 allocate_failed:
1237 while (!list_empty(&info->receive_queue)) {
1238 response = list_first_entry(
1239 &info->receive_queue,
1240 struct smbd_response, list);
1241 list_del(&response->list);
1242 info->count_receive_queue--;
1243
1244 mempool_free(response, info->response_mempool);
1245 }
1246 return -ENOMEM;
1247 }
1248
destroy_receive_buffers(struct smbd_connection * info)1249 static void destroy_receive_buffers(struct smbd_connection *info)
1250 {
1251 struct smbd_response *response;
1252
1253 while ((response = get_receive_buffer(info)))
1254 mempool_free(response, info->response_mempool);
1255
1256 while ((response = get_empty_queue_buffer(info)))
1257 mempool_free(response, info->response_mempool);
1258 }
1259
1260 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1261 static void idle_connection_timer(struct work_struct *work)
1262 {
1263 struct smbd_connection *info = container_of(
1264 work, struct smbd_connection,
1265 idle_timer_work.work);
1266
1267 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1268 log_keep_alive(ERR,
1269 "error status info->keep_alive_requested=%d\n",
1270 info->keep_alive_requested);
1271 smbd_disconnect_rdma_connection(info);
1272 return;
1273 }
1274
1275 log_keep_alive(INFO, "about to send an empty idle message\n");
1276 smbd_post_send_empty(info);
1277
1278 /* Setup the next idle timeout work */
1279 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1280 info->keep_alive_interval*HZ);
1281 }
1282
1283 /*
1284 * Destroy the transport and related RDMA and memory resources
1285 * Need to go through all the pending counters and make sure on one is using
1286 * the transport while it is destroyed
1287 */
smbd_destroy(struct TCP_Server_Info * server)1288 void smbd_destroy(struct TCP_Server_Info *server)
1289 {
1290 struct smbd_connection *info = server->smbd_conn;
1291 struct smbd_response *response;
1292 unsigned long flags;
1293
1294 if (!info) {
1295 log_rdma_event(INFO, "rdma session already destroyed\n");
1296 return;
1297 }
1298
1299 log_rdma_event(INFO, "destroying rdma session\n");
1300 if (info->transport_status != SMBD_DISCONNECTED) {
1301 rdma_disconnect(server->smbd_conn->id);
1302 log_rdma_event(INFO, "wait for transport being disconnected\n");
1303 wait_event_interruptible(
1304 info->disconn_wait,
1305 info->transport_status == SMBD_DISCONNECTED);
1306 }
1307
1308 log_rdma_event(INFO, "destroying qp\n");
1309 ib_drain_qp(info->id->qp);
1310 rdma_destroy_qp(info->id);
1311
1312 log_rdma_event(INFO, "cancelling idle timer\n");
1313 cancel_delayed_work_sync(&info->idle_timer_work);
1314
1315 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1316 wait_event(info->wait_send_pending,
1317 atomic_read(&info->send_pending) == 0);
1318
1319 /* It's not possible for upper layer to get to reassembly */
1320 log_rdma_event(INFO, "drain the reassembly queue\n");
1321 do {
1322 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1323 response = _get_first_reassembly(info);
1324 if (response) {
1325 list_del(&response->list);
1326 spin_unlock_irqrestore(
1327 &info->reassembly_queue_lock, flags);
1328 put_receive_buffer(info, response);
1329 } else
1330 spin_unlock_irqrestore(
1331 &info->reassembly_queue_lock, flags);
1332 } while (response);
1333 info->reassembly_data_length = 0;
1334
1335 log_rdma_event(INFO, "free receive buffers\n");
1336 wait_event(info->wait_receive_queues,
1337 info->count_receive_queue + info->count_empty_packet_queue
1338 == info->receive_credit_max);
1339 destroy_receive_buffers(info);
1340
1341 /*
1342 * For performance reasons, memory registration and deregistration
1343 * are not locked by srv_mutex. It is possible some processes are
1344 * blocked on transport srv_mutex while holding memory registration.
1345 * Release the transport srv_mutex to allow them to hit the failure
1346 * path when sending data, and then release memory registartions.
1347 */
1348 log_rdma_event(INFO, "freeing mr list\n");
1349 wake_up_interruptible_all(&info->wait_mr);
1350 while (atomic_read(&info->mr_used_count)) {
1351 cifs_server_unlock(server);
1352 msleep(1000);
1353 cifs_server_lock(server);
1354 }
1355 destroy_mr_list(info);
1356
1357 ib_free_cq(info->send_cq);
1358 ib_free_cq(info->recv_cq);
1359 ib_dealloc_pd(info->pd);
1360 rdma_destroy_id(info->id);
1361
1362 /* free mempools */
1363 mempool_destroy(info->request_mempool);
1364 kmem_cache_destroy(info->request_cache);
1365
1366 mempool_destroy(info->response_mempool);
1367 kmem_cache_destroy(info->response_cache);
1368
1369 info->transport_status = SMBD_DESTROYED;
1370
1371 destroy_workqueue(info->workqueue);
1372 log_rdma_event(INFO, "rdma session destroyed\n");
1373 kfree(info);
1374 server->smbd_conn = NULL;
1375 }
1376
1377 /*
1378 * Reconnect this SMBD connection, called from upper layer
1379 * return value: 0 on success, or actual error code
1380 */
smbd_reconnect(struct TCP_Server_Info * server)1381 int smbd_reconnect(struct TCP_Server_Info *server)
1382 {
1383 log_rdma_event(INFO, "reconnecting rdma session\n");
1384
1385 if (!server->smbd_conn) {
1386 log_rdma_event(INFO, "rdma session already destroyed\n");
1387 goto create_conn;
1388 }
1389
1390 /*
1391 * This is possible if transport is disconnected and we haven't received
1392 * notification from RDMA, but upper layer has detected timeout
1393 */
1394 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1395 log_rdma_event(INFO, "disconnecting transport\n");
1396 smbd_destroy(server);
1397 }
1398
1399 create_conn:
1400 log_rdma_event(INFO, "creating rdma session\n");
1401 server->smbd_conn = smbd_get_connection(
1402 server, (struct sockaddr *) &server->dstaddr);
1403
1404 if (server->smbd_conn) {
1405 cifs_dbg(VFS, "RDMA transport re-established\n");
1406 trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1407 return 0;
1408 }
1409 trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1410 return -ENOENT;
1411 }
1412
destroy_caches_and_workqueue(struct smbd_connection * info)1413 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1414 {
1415 destroy_receive_buffers(info);
1416 destroy_workqueue(info->workqueue);
1417 mempool_destroy(info->response_mempool);
1418 kmem_cache_destroy(info->response_cache);
1419 mempool_destroy(info->request_mempool);
1420 kmem_cache_destroy(info->request_cache);
1421 }
1422
1423 #define MAX_NAME_LEN 80
allocate_caches_and_workqueue(struct smbd_connection * info)1424 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1425 {
1426 char name[MAX_NAME_LEN];
1427 int rc;
1428
1429 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1430 info->request_cache =
1431 kmem_cache_create(
1432 name,
1433 sizeof(struct smbd_request) +
1434 sizeof(struct smbd_data_transfer),
1435 0, SLAB_HWCACHE_ALIGN, NULL);
1436 if (!info->request_cache)
1437 return -ENOMEM;
1438
1439 info->request_mempool =
1440 mempool_create(info->send_credit_target, mempool_alloc_slab,
1441 mempool_free_slab, info->request_cache);
1442 if (!info->request_mempool)
1443 goto out1;
1444
1445 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1446 info->response_cache =
1447 kmem_cache_create(
1448 name,
1449 sizeof(struct smbd_response) +
1450 info->max_receive_size,
1451 0, SLAB_HWCACHE_ALIGN, NULL);
1452 if (!info->response_cache)
1453 goto out2;
1454
1455 info->response_mempool =
1456 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1457 mempool_free_slab, info->response_cache);
1458 if (!info->response_mempool)
1459 goto out3;
1460
1461 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1462 info->workqueue = create_workqueue(name);
1463 if (!info->workqueue)
1464 goto out4;
1465
1466 rc = allocate_receive_buffers(info, info->receive_credit_max);
1467 if (rc) {
1468 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1469 goto out5;
1470 }
1471
1472 return 0;
1473
1474 out5:
1475 destroy_workqueue(info->workqueue);
1476 out4:
1477 mempool_destroy(info->response_mempool);
1478 out3:
1479 kmem_cache_destroy(info->response_cache);
1480 out2:
1481 mempool_destroy(info->request_mempool);
1482 out1:
1483 kmem_cache_destroy(info->request_cache);
1484 return -ENOMEM;
1485 }
1486
1487 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1488 static struct smbd_connection *_smbd_get_connection(
1489 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1490 {
1491 int rc;
1492 struct smbd_connection *info;
1493 struct rdma_conn_param conn_param;
1494 struct ib_qp_init_attr qp_attr;
1495 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1496 struct ib_port_immutable port_immutable;
1497 u32 ird_ord_hdr[2];
1498
1499 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1500 if (!info)
1501 return NULL;
1502
1503 info->transport_status = SMBD_CONNECTING;
1504 rc = smbd_ia_open(info, dstaddr, port);
1505 if (rc) {
1506 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1507 goto create_id_failed;
1508 }
1509
1510 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1511 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1512 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1513 smbd_send_credit_target,
1514 info->id->device->attrs.max_cqe,
1515 info->id->device->attrs.max_qp_wr);
1516 goto config_failed;
1517 }
1518
1519 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1520 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1521 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1522 smbd_receive_credit_max,
1523 info->id->device->attrs.max_cqe,
1524 info->id->device->attrs.max_qp_wr);
1525 goto config_failed;
1526 }
1527
1528 info->receive_credit_max = smbd_receive_credit_max;
1529 info->send_credit_target = smbd_send_credit_target;
1530 info->max_send_size = smbd_max_send_size;
1531 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1532 info->max_receive_size = smbd_max_receive_size;
1533 info->keep_alive_interval = smbd_keep_alive_interval;
1534
1535 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1536 info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1537 log_rdma_event(ERR,
1538 "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1539 IB_DEVICE_NAME_MAX,
1540 info->id->device->name,
1541 info->id->device->attrs.max_send_sge,
1542 info->id->device->attrs.max_recv_sge);
1543 goto config_failed;
1544 }
1545
1546 info->send_cq = NULL;
1547 info->recv_cq = NULL;
1548 info->send_cq =
1549 ib_alloc_cq_any(info->id->device, info,
1550 info->send_credit_target, IB_POLL_SOFTIRQ);
1551 if (IS_ERR(info->send_cq)) {
1552 info->send_cq = NULL;
1553 goto alloc_cq_failed;
1554 }
1555
1556 info->recv_cq =
1557 ib_alloc_cq_any(info->id->device, info,
1558 info->receive_credit_max, IB_POLL_SOFTIRQ);
1559 if (IS_ERR(info->recv_cq)) {
1560 info->recv_cq = NULL;
1561 goto alloc_cq_failed;
1562 }
1563
1564 memset(&qp_attr, 0, sizeof(qp_attr));
1565 qp_attr.event_handler = smbd_qp_async_error_upcall;
1566 qp_attr.qp_context = info;
1567 qp_attr.cap.max_send_wr = info->send_credit_target;
1568 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1569 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1570 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1571 qp_attr.cap.max_inline_data = 0;
1572 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1573 qp_attr.qp_type = IB_QPT_RC;
1574 qp_attr.send_cq = info->send_cq;
1575 qp_attr.recv_cq = info->recv_cq;
1576 qp_attr.port_num = ~0;
1577
1578 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1579 if (rc) {
1580 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1581 goto create_qp_failed;
1582 }
1583
1584 memset(&conn_param, 0, sizeof(conn_param));
1585 conn_param.initiator_depth = 0;
1586
1587 conn_param.responder_resources =
1588 info->id->device->attrs.max_qp_rd_atom
1589 < SMBD_CM_RESPONDER_RESOURCES ?
1590 info->id->device->attrs.max_qp_rd_atom :
1591 SMBD_CM_RESPONDER_RESOURCES;
1592 info->responder_resources = conn_param.responder_resources;
1593 log_rdma_mr(INFO, "responder_resources=%d\n",
1594 info->responder_resources);
1595
1596 /* Need to send IRD/ORD in private data for iWARP */
1597 info->id->device->ops.get_port_immutable(
1598 info->id->device, info->id->port_num, &port_immutable);
1599 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1600 ird_ord_hdr[0] = info->responder_resources;
1601 ird_ord_hdr[1] = 1;
1602 conn_param.private_data = ird_ord_hdr;
1603 conn_param.private_data_len = sizeof(ird_ord_hdr);
1604 } else {
1605 conn_param.private_data = NULL;
1606 conn_param.private_data_len = 0;
1607 }
1608
1609 conn_param.retry_count = SMBD_CM_RETRY;
1610 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1611 conn_param.flow_control = 0;
1612
1613 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1614 &addr_in->sin_addr, port);
1615
1616 init_waitqueue_head(&info->conn_wait);
1617 init_waitqueue_head(&info->disconn_wait);
1618 init_waitqueue_head(&info->wait_reassembly_queue);
1619 rc = rdma_connect(info->id, &conn_param);
1620 if (rc) {
1621 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1622 goto rdma_connect_failed;
1623 }
1624
1625 wait_event_interruptible(
1626 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1627
1628 if (info->transport_status != SMBD_CONNECTED) {
1629 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1630 goto rdma_connect_failed;
1631 }
1632
1633 log_rdma_event(INFO, "rdma_connect connected\n");
1634
1635 rc = allocate_caches_and_workqueue(info);
1636 if (rc) {
1637 log_rdma_event(ERR, "cache allocation failed\n");
1638 goto allocate_cache_failed;
1639 }
1640
1641 init_waitqueue_head(&info->wait_send_queue);
1642 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1643 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1644 info->keep_alive_interval*HZ);
1645
1646 init_waitqueue_head(&info->wait_send_pending);
1647 atomic_set(&info->send_pending, 0);
1648
1649 init_waitqueue_head(&info->wait_post_send);
1650
1651 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1652 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1653 info->new_credits_offered = 0;
1654 spin_lock_init(&info->lock_new_credits_offered);
1655
1656 rc = smbd_negotiate(info);
1657 if (rc) {
1658 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1659 goto negotiation_failed;
1660 }
1661
1662 rc = allocate_mr_list(info);
1663 if (rc) {
1664 log_rdma_mr(ERR, "memory registration allocation failed\n");
1665 goto allocate_mr_failed;
1666 }
1667
1668 return info;
1669
1670 allocate_mr_failed:
1671 /* At this point, need to a full transport shutdown */
1672 server->smbd_conn = info;
1673 smbd_destroy(server);
1674 return NULL;
1675
1676 negotiation_failed:
1677 cancel_delayed_work_sync(&info->idle_timer_work);
1678 destroy_caches_and_workqueue(info);
1679 info->transport_status = SMBD_NEGOTIATE_FAILED;
1680 init_waitqueue_head(&info->conn_wait);
1681 rdma_disconnect(info->id);
1682 wait_event(info->conn_wait,
1683 info->transport_status == SMBD_DISCONNECTED);
1684
1685 allocate_cache_failed:
1686 rdma_connect_failed:
1687 rdma_destroy_qp(info->id);
1688
1689 create_qp_failed:
1690 alloc_cq_failed:
1691 if (info->send_cq)
1692 ib_free_cq(info->send_cq);
1693 if (info->recv_cq)
1694 ib_free_cq(info->recv_cq);
1695
1696 config_failed:
1697 ib_dealloc_pd(info->pd);
1698 rdma_destroy_id(info->id);
1699
1700 create_id_failed:
1701 kfree(info);
1702 return NULL;
1703 }
1704
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1705 struct smbd_connection *smbd_get_connection(
1706 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1707 {
1708 struct smbd_connection *ret;
1709 int port = SMBD_PORT;
1710
1711 try_again:
1712 ret = _smbd_get_connection(server, dstaddr, port);
1713
1714 /* Try SMB_PORT if SMBD_PORT doesn't work */
1715 if (!ret && port == SMBD_PORT) {
1716 port = SMB_PORT;
1717 goto try_again;
1718 }
1719 return ret;
1720 }
1721
1722 /*
1723 * Receive data from receive reassembly queue
1724 * All the incoming data packets are placed in reassembly queue
1725 * buf: the buffer to read data into
1726 * size: the length of data to read
1727 * return value: actual data read
1728 * Note: this implementation copies the data from reassebmly queue to receive
1729 * buffers used by upper layer. This is not the optimal code path. A better way
1730 * to do it is to not have upper layer allocate its receive buffers but rather
1731 * borrow the buffer from reassembly queue, and return it after data is
1732 * consumed. But this will require more changes to upper layer code, and also
1733 * need to consider packet boundaries while they still being reassembled.
1734 */
smbd_recv_buf(struct smbd_connection * info,char * buf,unsigned int size)1735 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1736 unsigned int size)
1737 {
1738 struct smbd_response *response;
1739 struct smbd_data_transfer *data_transfer;
1740 int to_copy, to_read, data_read, offset;
1741 u32 data_length, remaining_data_length, data_offset;
1742 int rc;
1743
1744 again:
1745 /*
1746 * No need to hold the reassembly queue lock all the time as we are
1747 * the only one reading from the front of the queue. The transport
1748 * may add more entries to the back of the queue at the same time
1749 */
1750 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1751 info->reassembly_data_length);
1752 if (info->reassembly_data_length >= size) {
1753 int queue_length;
1754 int queue_removed = 0;
1755
1756 /*
1757 * Need to make sure reassembly_data_length is read before
1758 * reading reassembly_queue_length and calling
1759 * _get_first_reassembly. This call is lock free
1760 * as we never read at the end of the queue which are being
1761 * updated in SOFTIRQ as more data is received
1762 */
1763 virt_rmb();
1764 queue_length = info->reassembly_queue_length;
1765 data_read = 0;
1766 to_read = size;
1767 offset = info->first_entry_offset;
1768 while (data_read < size) {
1769 response = _get_first_reassembly(info);
1770 data_transfer = smbd_response_payload(response);
1771 data_length = le32_to_cpu(data_transfer->data_length);
1772 remaining_data_length =
1773 le32_to_cpu(
1774 data_transfer->remaining_data_length);
1775 data_offset = le32_to_cpu(data_transfer->data_offset);
1776
1777 /*
1778 * The upper layer expects RFC1002 length at the
1779 * beginning of the payload. Return it to indicate
1780 * the total length of the packet. This minimize the
1781 * change to upper layer packet processing logic. This
1782 * will be eventually remove when an intermediate
1783 * transport layer is added
1784 */
1785 if (response->first_segment && size == 4) {
1786 unsigned int rfc1002_len =
1787 data_length + remaining_data_length;
1788 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1789 data_read = 4;
1790 response->first_segment = false;
1791 log_read(INFO, "returning rfc1002 length %d\n",
1792 rfc1002_len);
1793 goto read_rfc1002_done;
1794 }
1795
1796 to_copy = min_t(int, data_length - offset, to_read);
1797 memcpy(
1798 buf + data_read,
1799 (char *)data_transfer + data_offset + offset,
1800 to_copy);
1801
1802 /* move on to the next buffer? */
1803 if (to_copy == data_length - offset) {
1804 queue_length--;
1805 /*
1806 * No need to lock if we are not at the
1807 * end of the queue
1808 */
1809 if (queue_length)
1810 list_del(&response->list);
1811 else {
1812 spin_lock_irq(
1813 &info->reassembly_queue_lock);
1814 list_del(&response->list);
1815 spin_unlock_irq(
1816 &info->reassembly_queue_lock);
1817 }
1818 queue_removed++;
1819 info->count_reassembly_queue--;
1820 info->count_dequeue_reassembly_queue++;
1821 put_receive_buffer(info, response);
1822 offset = 0;
1823 log_read(INFO, "put_receive_buffer offset=0\n");
1824 } else
1825 offset += to_copy;
1826
1827 to_read -= to_copy;
1828 data_read += to_copy;
1829
1830 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1831 to_copy, data_length - offset,
1832 to_read, data_read, offset);
1833 }
1834
1835 spin_lock_irq(&info->reassembly_queue_lock);
1836 info->reassembly_data_length -= data_read;
1837 info->reassembly_queue_length -= queue_removed;
1838 spin_unlock_irq(&info->reassembly_queue_lock);
1839
1840 info->first_entry_offset = offset;
1841 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1842 data_read, info->reassembly_data_length,
1843 info->first_entry_offset);
1844 read_rfc1002_done:
1845 return data_read;
1846 }
1847
1848 log_read(INFO, "wait_event on more data\n");
1849 rc = wait_event_interruptible(
1850 info->wait_reassembly_queue,
1851 info->reassembly_data_length >= size ||
1852 info->transport_status != SMBD_CONNECTED);
1853 /* Don't return any data if interrupted */
1854 if (rc)
1855 return rc;
1856
1857 if (info->transport_status != SMBD_CONNECTED) {
1858 log_read(ERR, "disconnected\n");
1859 return -ECONNABORTED;
1860 }
1861
1862 goto again;
1863 }
1864
1865 /*
1866 * Receive a page from receive reassembly queue
1867 * page: the page to read data into
1868 * to_read: the length of data to read
1869 * return value: actual data read
1870 */
smbd_recv_page(struct smbd_connection * info,struct page * page,unsigned int page_offset,unsigned int to_read)1871 static int smbd_recv_page(struct smbd_connection *info,
1872 struct page *page, unsigned int page_offset,
1873 unsigned int to_read)
1874 {
1875 int ret;
1876 char *to_address;
1877 void *page_address;
1878
1879 /* make sure we have the page ready for read */
1880 ret = wait_event_interruptible(
1881 info->wait_reassembly_queue,
1882 info->reassembly_data_length >= to_read ||
1883 info->transport_status != SMBD_CONNECTED);
1884 if (ret)
1885 return ret;
1886
1887 /* now we can read from reassembly queue and not sleep */
1888 page_address = kmap_atomic(page);
1889 to_address = (char *) page_address + page_offset;
1890
1891 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1892 page, to_address, to_read);
1893
1894 ret = smbd_recv_buf(info, to_address, to_read);
1895 kunmap_atomic(page_address);
1896
1897 return ret;
1898 }
1899
1900 /*
1901 * Receive data from transport
1902 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1903 * return: total bytes read, or 0. SMB Direct will not do partial read.
1904 */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)1905 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1906 {
1907 char *buf;
1908 struct page *page;
1909 unsigned int to_read, page_offset;
1910 int rc;
1911
1912 if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1913 /* It's a bug in upper layer to get there */
1914 cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1915 iov_iter_rw(&msg->msg_iter));
1916 rc = -EINVAL;
1917 goto out;
1918 }
1919
1920 switch (iov_iter_type(&msg->msg_iter)) {
1921 case ITER_KVEC:
1922 buf = msg->msg_iter.kvec->iov_base;
1923 to_read = msg->msg_iter.kvec->iov_len;
1924 rc = smbd_recv_buf(info, buf, to_read);
1925 break;
1926
1927 case ITER_BVEC:
1928 page = msg->msg_iter.bvec->bv_page;
1929 page_offset = msg->msg_iter.bvec->bv_offset;
1930 to_read = msg->msg_iter.bvec->bv_len;
1931 rc = smbd_recv_page(info, page, page_offset, to_read);
1932 break;
1933
1934 default:
1935 /* It's a bug in upper layer to get there */
1936 cifs_dbg(VFS, "Invalid msg type %d\n",
1937 iov_iter_type(&msg->msg_iter));
1938 rc = -EINVAL;
1939 }
1940
1941 out:
1942 /* SMBDirect will read it all or nothing */
1943 if (rc > 0)
1944 msg->msg_iter.count = 0;
1945 return rc;
1946 }
1947
1948 /*
1949 * Send data to transport
1950 * Each rqst is transported as a SMBDirect payload
1951 * rqst: the data to write
1952 * return value: 0 if successfully write, otherwise error code
1953 */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)1954 int smbd_send(struct TCP_Server_Info *server,
1955 int num_rqst, struct smb_rqst *rqst_array)
1956 {
1957 struct smbd_connection *info = server->smbd_conn;
1958 struct smb_rqst *rqst;
1959 struct iov_iter iter;
1960 unsigned int remaining_data_length, klen;
1961 int rc, i, rqst_idx;
1962
1963 if (info->transport_status != SMBD_CONNECTED)
1964 return -EAGAIN;
1965
1966 /*
1967 * Add in the page array if there is one. The caller needs to set
1968 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1969 * ends at page boundary
1970 */
1971 remaining_data_length = 0;
1972 for (i = 0; i < num_rqst; i++)
1973 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1974
1975 if (unlikely(remaining_data_length > info->max_fragmented_send_size)) {
1976 /* assertion: payload never exceeds negotiated maximum */
1977 log_write(ERR, "payload size %d > max size %d\n",
1978 remaining_data_length, info->max_fragmented_send_size);
1979 return -EINVAL;
1980 }
1981
1982 log_write(INFO, "num_rqst=%d total length=%u\n",
1983 num_rqst, remaining_data_length);
1984
1985 rqst_idx = 0;
1986 do {
1987 rqst = &rqst_array[rqst_idx];
1988
1989 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1990 rqst_idx, smb_rqst_len(server, rqst));
1991 for (i = 0; i < rqst->rq_nvec; i++)
1992 dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1993
1994 log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1995 rqst_idx, rqst->rq_nvec, remaining_data_length,
1996 iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1997
1998 /* Send the metadata pages. */
1999 klen = 0;
2000 for (i = 0; i < rqst->rq_nvec; i++)
2001 klen += rqst->rq_iov[i].iov_len;
2002 iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2003
2004 rc = smbd_post_send_iter(info, &iter, &remaining_data_length);
2005 if (rc < 0)
2006 break;
2007
2008 if (iov_iter_count(&rqst->rq_iter) > 0) {
2009 /* And then the data pages if there are any */
2010 rc = smbd_post_send_iter(info, &rqst->rq_iter,
2011 &remaining_data_length);
2012 if (rc < 0)
2013 break;
2014 }
2015
2016 } while (++rqst_idx < num_rqst);
2017
2018 /*
2019 * As an optimization, we don't wait for individual I/O to finish
2020 * before sending the next one.
2021 * Send them all and wait for pending send count to get to 0
2022 * that means all the I/Os have been out and we are good to return
2023 */
2024
2025 wait_event(info->wait_send_pending,
2026 atomic_read(&info->send_pending) == 0);
2027
2028 return rc;
2029 }
2030
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2031 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2032 {
2033 struct smbd_mr *mr;
2034 struct ib_cqe *cqe;
2035
2036 if (wc->status) {
2037 log_rdma_mr(ERR, "status=%d\n", wc->status);
2038 cqe = wc->wr_cqe;
2039 mr = container_of(cqe, struct smbd_mr, cqe);
2040 smbd_disconnect_rdma_connection(mr->conn);
2041 }
2042 }
2043
2044 /*
2045 * The work queue function that recovers MRs
2046 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2047 * again. Both calls are slow, so finish them in a workqueue. This will not
2048 * block I/O path.
2049 * There is one workqueue that recovers MRs, there is no need to lock as the
2050 * I/O requests calling smbd_register_mr will never update the links in the
2051 * mr_list.
2052 */
smbd_mr_recovery_work(struct work_struct * work)2053 static void smbd_mr_recovery_work(struct work_struct *work)
2054 {
2055 struct smbd_connection *info =
2056 container_of(work, struct smbd_connection, mr_recovery_work);
2057 struct smbd_mr *smbdirect_mr;
2058 int rc;
2059
2060 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2061 if (smbdirect_mr->state == MR_ERROR) {
2062
2063 /* recover this MR entry */
2064 rc = ib_dereg_mr(smbdirect_mr->mr);
2065 if (rc) {
2066 log_rdma_mr(ERR,
2067 "ib_dereg_mr failed rc=%x\n",
2068 rc);
2069 smbd_disconnect_rdma_connection(info);
2070 continue;
2071 }
2072
2073 smbdirect_mr->mr = ib_alloc_mr(
2074 info->pd, info->mr_type,
2075 info->max_frmr_depth);
2076 if (IS_ERR(smbdirect_mr->mr)) {
2077 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2078 info->mr_type,
2079 info->max_frmr_depth);
2080 smbd_disconnect_rdma_connection(info);
2081 continue;
2082 }
2083 } else
2084 /* This MR is being used, don't recover it */
2085 continue;
2086
2087 smbdirect_mr->state = MR_READY;
2088
2089 /* smbdirect_mr->state is updated by this function
2090 * and is read and updated by I/O issuing CPUs trying
2091 * to get a MR, the call to atomic_inc_return
2092 * implicates a memory barrier and guarantees this
2093 * value is updated before waking up any calls to
2094 * get_mr() from the I/O issuing CPUs
2095 */
2096 if (atomic_inc_return(&info->mr_ready_count) == 1)
2097 wake_up_interruptible(&info->wait_mr);
2098 }
2099 }
2100
destroy_mr_list(struct smbd_connection * info)2101 static void destroy_mr_list(struct smbd_connection *info)
2102 {
2103 struct smbd_mr *mr, *tmp;
2104
2105 cancel_work_sync(&info->mr_recovery_work);
2106 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2107 if (mr->state == MR_INVALIDATED)
2108 ib_dma_unmap_sg(info->id->device, mr->sgt.sgl,
2109 mr->sgt.nents, mr->dir);
2110 ib_dereg_mr(mr->mr);
2111 kfree(mr->sgt.sgl);
2112 kfree(mr);
2113 }
2114 }
2115
2116 /*
2117 * Allocate MRs used for RDMA read/write
2118 * The number of MRs will not exceed hardware capability in responder_resources
2119 * All MRs are kept in mr_list. The MR can be recovered after it's used
2120 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2121 * as MRs are used and recovered for I/O, but the list links will not change
2122 */
allocate_mr_list(struct smbd_connection * info)2123 static int allocate_mr_list(struct smbd_connection *info)
2124 {
2125 int i;
2126 struct smbd_mr *smbdirect_mr, *tmp;
2127
2128 INIT_LIST_HEAD(&info->mr_list);
2129 init_waitqueue_head(&info->wait_mr);
2130 spin_lock_init(&info->mr_list_lock);
2131 atomic_set(&info->mr_ready_count, 0);
2132 atomic_set(&info->mr_used_count, 0);
2133 init_waitqueue_head(&info->wait_for_mr_cleanup);
2134 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2135 /* Allocate more MRs (2x) than hardware responder_resources */
2136 for (i = 0; i < info->responder_resources * 2; i++) {
2137 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2138 if (!smbdirect_mr)
2139 goto cleanup_entries;
2140 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2141 info->max_frmr_depth);
2142 if (IS_ERR(smbdirect_mr->mr)) {
2143 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2144 info->mr_type, info->max_frmr_depth);
2145 goto out;
2146 }
2147 smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2148 sizeof(struct scatterlist),
2149 GFP_KERNEL);
2150 if (!smbdirect_mr->sgt.sgl) {
2151 log_rdma_mr(ERR, "failed to allocate sgl\n");
2152 ib_dereg_mr(smbdirect_mr->mr);
2153 goto out;
2154 }
2155 smbdirect_mr->state = MR_READY;
2156 smbdirect_mr->conn = info;
2157
2158 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2159 atomic_inc(&info->mr_ready_count);
2160 }
2161 return 0;
2162
2163 out:
2164 kfree(smbdirect_mr);
2165 cleanup_entries:
2166 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2167 list_del(&smbdirect_mr->list);
2168 ib_dereg_mr(smbdirect_mr->mr);
2169 kfree(smbdirect_mr->sgt.sgl);
2170 kfree(smbdirect_mr);
2171 }
2172 return -ENOMEM;
2173 }
2174
2175 /*
2176 * Get a MR from mr_list. This function waits until there is at least one
2177 * MR available in the list. It may access the list while the
2178 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2179 * as they never modify the same places. However, there may be several CPUs
2180 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2181 * protect this situation.
2182 */
get_mr(struct smbd_connection * info)2183 static struct smbd_mr *get_mr(struct smbd_connection *info)
2184 {
2185 struct smbd_mr *ret;
2186 int rc;
2187 again:
2188 rc = wait_event_interruptible(info->wait_mr,
2189 atomic_read(&info->mr_ready_count) ||
2190 info->transport_status != SMBD_CONNECTED);
2191 if (rc) {
2192 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2193 return NULL;
2194 }
2195
2196 if (info->transport_status != SMBD_CONNECTED) {
2197 log_rdma_mr(ERR, "info->transport_status=%x\n",
2198 info->transport_status);
2199 return NULL;
2200 }
2201
2202 spin_lock(&info->mr_list_lock);
2203 list_for_each_entry(ret, &info->mr_list, list) {
2204 if (ret->state == MR_READY) {
2205 ret->state = MR_REGISTERED;
2206 spin_unlock(&info->mr_list_lock);
2207 atomic_dec(&info->mr_ready_count);
2208 atomic_inc(&info->mr_used_count);
2209 return ret;
2210 }
2211 }
2212
2213 spin_unlock(&info->mr_list_lock);
2214 /*
2215 * It is possible that we could fail to get MR because other processes may
2216 * try to acquire a MR at the same time. If this is the case, retry it.
2217 */
2218 goto again;
2219 }
2220
2221 /*
2222 * Transcribe the pages from an iterator into an MR scatterlist.
2223 */
smbd_iter_to_mr(struct smbd_connection * info,struct iov_iter * iter,struct sg_table * sgt,unsigned int max_sg)2224 static int smbd_iter_to_mr(struct smbd_connection *info,
2225 struct iov_iter *iter,
2226 struct sg_table *sgt,
2227 unsigned int max_sg)
2228 {
2229 int ret;
2230
2231 memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2232
2233 ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2234 WARN_ON(ret < 0);
2235 if (sgt->nents > 0)
2236 sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2237 return ret;
2238 }
2239
2240 /*
2241 * Register memory for RDMA read/write
2242 * iter: the buffer to register memory with
2243 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2244 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2245 * return value: the MR registered, NULL if failed.
2246 */
smbd_register_mr(struct smbd_connection * info,struct iov_iter * iter,bool writing,bool need_invalidate)2247 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2248 struct iov_iter *iter,
2249 bool writing, bool need_invalidate)
2250 {
2251 struct smbd_mr *smbdirect_mr;
2252 int rc, num_pages;
2253 enum dma_data_direction dir;
2254 struct ib_reg_wr *reg_wr;
2255
2256 num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2257 if (num_pages > info->max_frmr_depth) {
2258 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2259 num_pages, info->max_frmr_depth);
2260 WARN_ON_ONCE(1);
2261 return NULL;
2262 }
2263
2264 smbdirect_mr = get_mr(info);
2265 if (!smbdirect_mr) {
2266 log_rdma_mr(ERR, "get_mr returning NULL\n");
2267 return NULL;
2268 }
2269
2270 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2271 smbdirect_mr->dir = dir;
2272 smbdirect_mr->need_invalidate = need_invalidate;
2273 smbdirect_mr->sgt.nents = 0;
2274 smbdirect_mr->sgt.orig_nents = 0;
2275
2276 log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2277 num_pages, iov_iter_count(iter), info->max_frmr_depth);
2278 smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2279
2280 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgt.sgl,
2281 smbdirect_mr->sgt.nents, dir);
2282 if (!rc) {
2283 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2284 num_pages, dir, rc);
2285 goto dma_map_error;
2286 }
2287
2288 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2289 smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2290 if (rc != smbdirect_mr->sgt.nents) {
2291 log_rdma_mr(ERR,
2292 "ib_map_mr_sg failed rc = %d nents = %x\n",
2293 rc, smbdirect_mr->sgt.nents);
2294 goto map_mr_error;
2295 }
2296
2297 ib_update_fast_reg_key(smbdirect_mr->mr,
2298 ib_inc_rkey(smbdirect_mr->mr->rkey));
2299 reg_wr = &smbdirect_mr->wr;
2300 reg_wr->wr.opcode = IB_WR_REG_MR;
2301 smbdirect_mr->cqe.done = register_mr_done;
2302 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2303 reg_wr->wr.num_sge = 0;
2304 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2305 reg_wr->mr = smbdirect_mr->mr;
2306 reg_wr->key = smbdirect_mr->mr->rkey;
2307 reg_wr->access = writing ?
2308 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2309 IB_ACCESS_REMOTE_READ;
2310
2311 /*
2312 * There is no need for waiting for complemtion on ib_post_send
2313 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2314 * on the next ib_post_send when we actaully send I/O to remote peer
2315 */
2316 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL);
2317 if (!rc)
2318 return smbdirect_mr;
2319
2320 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2321 rc, reg_wr->key);
2322
2323 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2324 map_mr_error:
2325 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgt.sgl,
2326 smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2327
2328 dma_map_error:
2329 smbdirect_mr->state = MR_ERROR;
2330 if (atomic_dec_and_test(&info->mr_used_count))
2331 wake_up(&info->wait_for_mr_cleanup);
2332
2333 smbd_disconnect_rdma_connection(info);
2334
2335 return NULL;
2336 }
2337
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2338 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2339 {
2340 struct smbd_mr *smbdirect_mr;
2341 struct ib_cqe *cqe;
2342
2343 cqe = wc->wr_cqe;
2344 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2345 smbdirect_mr->state = MR_INVALIDATED;
2346 if (wc->status != IB_WC_SUCCESS) {
2347 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2348 smbdirect_mr->state = MR_ERROR;
2349 }
2350 complete(&smbdirect_mr->invalidate_done);
2351 }
2352
2353 /*
2354 * Deregister a MR after I/O is done
2355 * This function may wait if remote invalidation is not used
2356 * and we have to locally invalidate the buffer to prevent data is being
2357 * modified by remote peer after upper layer consumes it
2358 */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2359 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2360 {
2361 struct ib_send_wr *wr;
2362 struct smbd_connection *info = smbdirect_mr->conn;
2363 int rc = 0;
2364
2365 if (smbdirect_mr->need_invalidate) {
2366 /* Need to finish local invalidation before returning */
2367 wr = &smbdirect_mr->inv_wr;
2368 wr->opcode = IB_WR_LOCAL_INV;
2369 smbdirect_mr->cqe.done = local_inv_done;
2370 wr->wr_cqe = &smbdirect_mr->cqe;
2371 wr->num_sge = 0;
2372 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2373 wr->send_flags = IB_SEND_SIGNALED;
2374
2375 init_completion(&smbdirect_mr->invalidate_done);
2376 rc = ib_post_send(info->id->qp, wr, NULL);
2377 if (rc) {
2378 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2379 smbd_disconnect_rdma_connection(info);
2380 goto done;
2381 }
2382 wait_for_completion(&smbdirect_mr->invalidate_done);
2383 smbdirect_mr->need_invalidate = false;
2384 } else
2385 /*
2386 * For remote invalidation, just set it to MR_INVALIDATED
2387 * and defer to mr_recovery_work to recover the MR for next use
2388 */
2389 smbdirect_mr->state = MR_INVALIDATED;
2390
2391 if (smbdirect_mr->state == MR_INVALIDATED) {
2392 ib_dma_unmap_sg(
2393 info->id->device, smbdirect_mr->sgt.sgl,
2394 smbdirect_mr->sgt.nents,
2395 smbdirect_mr->dir);
2396 smbdirect_mr->state = MR_READY;
2397 if (atomic_inc_return(&info->mr_ready_count) == 1)
2398 wake_up_interruptible(&info->wait_mr);
2399 } else
2400 /*
2401 * Schedule the work to do MR recovery for future I/Os MR
2402 * recovery is slow and don't want it to block current I/O
2403 */
2404 queue_work(info->workqueue, &info->mr_recovery_work);
2405
2406 done:
2407 if (atomic_dec_and_test(&info->mr_used_count))
2408 wake_up(&info->wait_for_mr_cleanup);
2409
2410 return rc;
2411 }
2412
smb_set_sge(struct smb_extract_to_rdma * rdma,struct page * lowest_page,size_t off,size_t len)2413 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2414 struct page *lowest_page, size_t off, size_t len)
2415 {
2416 struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2417 u64 addr;
2418
2419 addr = ib_dma_map_page(rdma->device, lowest_page,
2420 off, len, rdma->direction);
2421 if (ib_dma_mapping_error(rdma->device, addr))
2422 return false;
2423
2424 sge->addr = addr;
2425 sge->length = len;
2426 sge->lkey = rdma->local_dma_lkey;
2427 rdma->nr_sge++;
2428 return true;
2429 }
2430
2431 /*
2432 * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2433 * element list. The pages are not pinned.
2434 */
smb_extract_bvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2435 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2436 struct smb_extract_to_rdma *rdma,
2437 ssize_t maxsize)
2438 {
2439 const struct bio_vec *bv = iter->bvec;
2440 unsigned long start = iter->iov_offset;
2441 unsigned int i;
2442 ssize_t ret = 0;
2443
2444 for (i = 0; i < iter->nr_segs; i++) {
2445 size_t off, len;
2446
2447 len = bv[i].bv_len;
2448 if (start >= len) {
2449 start -= len;
2450 continue;
2451 }
2452
2453 len = min_t(size_t, maxsize, len - start);
2454 off = bv[i].bv_offset + start;
2455
2456 if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2457 return -EIO;
2458
2459 ret += len;
2460 maxsize -= len;
2461 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2462 break;
2463 start = 0;
2464 }
2465
2466 return ret;
2467 }
2468
2469 /*
2470 * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2471 * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2472 * The pages are not pinned.
2473 */
smb_extract_kvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2474 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2475 struct smb_extract_to_rdma *rdma,
2476 ssize_t maxsize)
2477 {
2478 const struct kvec *kv = iter->kvec;
2479 unsigned long start = iter->iov_offset;
2480 unsigned int i;
2481 ssize_t ret = 0;
2482
2483 for (i = 0; i < iter->nr_segs; i++) {
2484 struct page *page;
2485 unsigned long kaddr;
2486 size_t off, len, seg;
2487
2488 len = kv[i].iov_len;
2489 if (start >= len) {
2490 start -= len;
2491 continue;
2492 }
2493
2494 kaddr = (unsigned long)kv[i].iov_base + start;
2495 off = kaddr & ~PAGE_MASK;
2496 len = min_t(size_t, maxsize, len - start);
2497 kaddr &= PAGE_MASK;
2498
2499 maxsize -= len;
2500 do {
2501 seg = min_t(size_t, len, PAGE_SIZE - off);
2502
2503 if (is_vmalloc_or_module_addr((void *)kaddr))
2504 page = vmalloc_to_page((void *)kaddr);
2505 else
2506 page = virt_to_page((void *)kaddr);
2507
2508 if (!smb_set_sge(rdma, page, off, seg))
2509 return -EIO;
2510
2511 ret += seg;
2512 len -= seg;
2513 kaddr += PAGE_SIZE;
2514 off = 0;
2515 } while (len > 0 && rdma->nr_sge < rdma->max_sge);
2516
2517 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2518 break;
2519 start = 0;
2520 }
2521
2522 return ret;
2523 }
2524
2525 /*
2526 * Extract folio fragments from an XARRAY-class iterator and add them to an
2527 * RDMA list. The folios are not pinned.
2528 */
smb_extract_xarray_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2529 static ssize_t smb_extract_xarray_to_rdma(struct iov_iter *iter,
2530 struct smb_extract_to_rdma *rdma,
2531 ssize_t maxsize)
2532 {
2533 struct xarray *xa = iter->xarray;
2534 struct folio *folio;
2535 loff_t start = iter->xarray_start + iter->iov_offset;
2536 pgoff_t index = start / PAGE_SIZE;
2537 ssize_t ret = 0;
2538 size_t off, len;
2539 XA_STATE(xas, xa, index);
2540
2541 rcu_read_lock();
2542
2543 xas_for_each(&xas, folio, ULONG_MAX) {
2544 if (xas_retry(&xas, folio))
2545 continue;
2546 if (WARN_ON(xa_is_value(folio)))
2547 break;
2548 if (WARN_ON(folio_test_hugetlb(folio)))
2549 break;
2550
2551 off = offset_in_folio(folio, start);
2552 len = min_t(size_t, maxsize, folio_size(folio) - off);
2553
2554 if (!smb_set_sge(rdma, folio_page(folio, 0), off, len)) {
2555 rcu_read_unlock();
2556 return -EIO;
2557 }
2558
2559 maxsize -= len;
2560 ret += len;
2561 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2562 break;
2563 }
2564
2565 rcu_read_unlock();
2566 return ret;
2567 }
2568
2569 /*
2570 * Extract page fragments from up to the given amount of the source iterator
2571 * and build up an RDMA list that refers to all of those bits. The RDMA list
2572 * is appended to, up to the maximum number of elements set in the parameter
2573 * block.
2574 *
2575 * The extracted page fragments are not pinned or ref'd in any way; if an
2576 * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2577 * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2578 * way.
2579 */
smb_extract_iter_to_rdma(struct iov_iter * iter,size_t len,struct smb_extract_to_rdma * rdma)2580 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2581 struct smb_extract_to_rdma *rdma)
2582 {
2583 ssize_t ret;
2584 int before = rdma->nr_sge;
2585
2586 switch (iov_iter_type(iter)) {
2587 case ITER_BVEC:
2588 ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2589 break;
2590 case ITER_KVEC:
2591 ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2592 break;
2593 case ITER_XARRAY:
2594 ret = smb_extract_xarray_to_rdma(iter, rdma, len);
2595 break;
2596 default:
2597 WARN_ON_ONCE(1);
2598 return -EIO;
2599 }
2600
2601 if (ret > 0) {
2602 iov_iter_advance(iter, ret);
2603 } else if (ret < 0) {
2604 while (rdma->nr_sge > before) {
2605 struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2606
2607 ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2608 rdma->direction);
2609 sge->addr = 0;
2610 }
2611 }
2612
2613 return ret;
2614 }
2615