1 /*
2 * Copyright 2014-2018 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41 #include <uapi/linux/kfd_ioctl.h>
42
43 enum hqd_dequeue_request_type {
44 NO_ACTION = 0,
45 DRAIN_PIPE,
46 RESET_WAVES,
47 SAVE_WAVES
48 };
49
kgd_gfx_v9_lock_srbm(struct amdgpu_device * adev,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid,uint32_t inst)50 static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
51 uint32_t queue, uint32_t vmid, uint32_t inst)
52 {
53 mutex_lock(&adev->srbm_mutex);
54 soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst));
55 }
56
kgd_gfx_v9_unlock_srbm(struct amdgpu_device * adev,uint32_t inst)57 static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst)
58 {
59 soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst));
60 mutex_unlock(&adev->srbm_mutex);
61 }
62
kgd_gfx_v9_acquire_queue(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)63 void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
64 uint32_t queue_id, uint32_t inst)
65 {
66 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
67 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
68
69 kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst);
70 }
71
kgd_gfx_v9_get_queue_mask(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id)72 uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev,
73 uint32_t pipe_id, uint32_t queue_id)
74 {
75 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
76 queue_id;
77
78 return 1ull << bit;
79 }
80
kgd_gfx_v9_release_queue(struct amdgpu_device * adev,uint32_t inst)81 void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst)
82 {
83 kgd_gfx_v9_unlock_srbm(adev, inst);
84 }
85
kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device * adev,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases,uint32_t inst)86 void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
87 uint32_t sh_mem_config,
88 uint32_t sh_mem_ape1_base,
89 uint32_t sh_mem_ape1_limit,
90 uint32_t sh_mem_bases, uint32_t inst)
91 {
92 kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
93
94 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG), sh_mem_config);
95 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_BASES), sh_mem_bases);
96 /* APE1 no longer exists on GFX9 */
97
98 kgd_gfx_v9_unlock_srbm(adev, inst);
99 }
100
kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device * adev,u32 pasid,unsigned int vmid,uint32_t inst)101 int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
102 unsigned int vmid, uint32_t inst)
103 {
104 /*
105 * We have to assume that there is no outstanding mapping.
106 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
107 * a mapping is in progress or because a mapping finished
108 * and the SW cleared it.
109 * So the protocol is to always wait & clear.
110 */
111 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
112 ATC_VMID0_PASID_MAPPING__VALID_MASK;
113
114 /*
115 * need to do this twice, once for gfx and once for mmhub
116 * for ATC add 16 to VMID for mmhub, for IH different registers.
117 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
118 */
119
120 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
121 pasid_mapping);
122
123 while (!(RREG32(SOC15_REG_OFFSET(
124 ATHUB, 0,
125 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
126 (1U << vmid)))
127 cpu_relax();
128
129 WREG32(SOC15_REG_OFFSET(ATHUB, 0,
130 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
131 1U << vmid);
132
133 /* Mapping vmid to pasid also for IH block */
134 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
135 pasid_mapping);
136
137 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
138 pasid_mapping);
139
140 while (!(RREG32(SOC15_REG_OFFSET(
141 ATHUB, 0,
142 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
143 (1U << (vmid + 16))))
144 cpu_relax();
145
146 WREG32(SOC15_REG_OFFSET(ATHUB, 0,
147 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
148 1U << (vmid + 16));
149
150 /* Mapping vmid to pasid also for IH block */
151 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
152 pasid_mapping);
153 return 0;
154 }
155
156 /* TODO - RING0 form of field is obsolete, seems to date back to SI
157 * but still works
158 */
159
kgd_gfx_v9_init_interrupts(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t inst)160 int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
161 uint32_t inst)
162 {
163 uint32_t mec;
164 uint32_t pipe;
165
166 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
167 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
168
169 kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst);
170
171 WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL,
172 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
173 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
174
175 kgd_gfx_v9_unlock_srbm(adev, inst);
176
177 return 0;
178 }
179
get_sdma_rlc_reg_offset(struct amdgpu_device * adev,unsigned int engine_id,unsigned int queue_id)180 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
181 unsigned int engine_id,
182 unsigned int queue_id)
183 {
184 uint32_t sdma_engine_reg_base = 0;
185 uint32_t sdma_rlc_reg_offset;
186
187 switch (engine_id) {
188 default:
189 dev_warn(adev->dev,
190 "Invalid sdma engine id (%d), using engine id 0\n",
191 engine_id);
192 fallthrough;
193 case 0:
194 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
195 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
196 break;
197 case 1:
198 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
199 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
200 break;
201 }
202
203 sdma_rlc_reg_offset = sdma_engine_reg_base
204 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
205
206 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
207 queue_id, sdma_rlc_reg_offset);
208
209 return sdma_rlc_reg_offset;
210 }
211
get_mqd(void * mqd)212 static inline struct v9_mqd *get_mqd(void *mqd)
213 {
214 return (struct v9_mqd *)mqd;
215 }
216
get_sdma_mqd(void * mqd)217 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
218 {
219 return (struct v9_sdma_mqd *)mqd;
220 }
221
kgd_gfx_v9_hqd_load(struct amdgpu_device * adev,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm,uint32_t inst)222 int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
223 uint32_t pipe_id, uint32_t queue_id,
224 uint32_t __user *wptr, uint32_t wptr_shift,
225 uint32_t wptr_mask, struct mm_struct *mm,
226 uint32_t inst)
227 {
228 struct v9_mqd *m;
229 uint32_t *mqd_hqd;
230 uint32_t reg, hqd_base, data;
231
232 m = get_mqd(mqd);
233
234 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
235
236 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
237 mqd_hqd = &m->cp_mqd_base_addr_lo;
238 hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
239
240 for (reg = hqd_base;
241 reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
242 WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
243
244
245 /* Activate doorbell logic before triggering WPTR poll. */
246 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
247 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
248 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL),
249 data);
250
251 if (wptr) {
252 /* Don't read wptr with get_user because the user
253 * context may not be accessible (if this function
254 * runs in a work queue). Instead trigger a one-shot
255 * polling read from memory in the CP. This assumes
256 * that wptr is GPU-accessible in the queue's VMID via
257 * ATC or SVM. WPTR==RPTR before starting the poll so
258 * the CP starts fetching new commands from the right
259 * place.
260 *
261 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
262 * tricky. Assume that the queue didn't overflow. The
263 * number of valid bits in the 32-bit RPTR depends on
264 * the queue size. The remaining bits are taken from
265 * the saved 64-bit WPTR. If the WPTR wrapped, add the
266 * queue size.
267 */
268 uint32_t queue_size =
269 2 << REG_GET_FIELD(m->cp_hqd_pq_control,
270 CP_HQD_PQ_CONTROL, QUEUE_SIZE);
271 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
272
273 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
274 guessed_wptr += queue_size;
275 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
276 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
277
278 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO),
279 lower_32_bits(guessed_wptr));
280 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI),
281 upper_32_bits(guessed_wptr));
282 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR),
283 lower_32_bits((uintptr_t)wptr));
284 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
285 upper_32_bits((uintptr_t)wptr));
286 WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1,
287 (uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id));
288 }
289
290 /* Start the EOP fetcher */
291 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR),
292 REG_SET_FIELD(m->cp_hqd_eop_rptr,
293 CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
294
295 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
296 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE), data);
297
298 kgd_gfx_v9_release_queue(adev, inst);
299
300 return 0;
301 }
302
kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device * adev,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t doorbell_off,uint32_t inst)303 int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
304 uint32_t pipe_id, uint32_t queue_id,
305 uint32_t doorbell_off, uint32_t inst)
306 {
307 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring;
308 struct v9_mqd *m;
309 uint32_t mec, pipe;
310 int r;
311
312 m = get_mqd(mqd);
313
314 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
315
316 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
317 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
318
319 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
320 mec, pipe, queue_id);
321
322 spin_lock(&adev->gfx.kiq[inst].ring_lock);
323 r = amdgpu_ring_alloc(kiq_ring, 7);
324 if (r) {
325 pr_err("Failed to alloc KIQ (%d).\n", r);
326 goto out_unlock;
327 }
328
329 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
330 amdgpu_ring_write(kiq_ring,
331 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
332 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
333 PACKET3_MAP_QUEUES_QUEUE(queue_id) |
334 PACKET3_MAP_QUEUES_PIPE(pipe) |
335 PACKET3_MAP_QUEUES_ME((mec - 1)) |
336 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
337 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
338 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
339 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
340 amdgpu_ring_write(kiq_ring,
341 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
342 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
343 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
344 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
345 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
346 amdgpu_ring_commit(kiq_ring);
347
348 out_unlock:
349 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
350 kgd_gfx_v9_release_queue(adev, inst);
351
352 return r;
353 }
354
kgd_gfx_v9_hqd_dump(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs,uint32_t inst)355 int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
356 uint32_t pipe_id, uint32_t queue_id,
357 uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
358 {
359 uint32_t i = 0, reg;
360 #define HQD_N_REGS 56
361 #define DUMP_REG(addr) do { \
362 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
363 break; \
364 (*dump)[i][0] = (addr) << 2; \
365 (*dump)[i++][1] = RREG32(addr); \
366 } while (0)
367
368 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
369 if (*dump == NULL)
370 return -ENOMEM;
371
372 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
373
374 for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
375 reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
376 DUMP_REG(reg);
377
378 kgd_gfx_v9_release_queue(adev, inst);
379
380 WARN_ON_ONCE(i != HQD_N_REGS);
381 *n_regs = i;
382
383 return 0;
384 }
385
kgd_hqd_sdma_load(struct amdgpu_device * adev,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)386 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
387 uint32_t __user *wptr, struct mm_struct *mm)
388 {
389 struct v9_sdma_mqd *m;
390 uint32_t sdma_rlc_reg_offset;
391 unsigned long end_jiffies;
392 uint32_t data;
393 uint64_t data64;
394 uint64_t __user *wptr64 = (uint64_t __user *)wptr;
395
396 m = get_sdma_mqd(mqd);
397 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
398 m->sdma_queue_id);
399
400 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
401 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
402
403 end_jiffies = msecs_to_jiffies(2000) + jiffies;
404 while (true) {
405 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
406 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
407 break;
408 if (time_after(jiffies, end_jiffies)) {
409 pr_err("SDMA RLC not idle in %s\n", __func__);
410 return -ETIME;
411 }
412 usleep_range(500, 1000);
413 }
414
415 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
416 m->sdmax_rlcx_doorbell_offset);
417
418 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
419 ENABLE, 1);
420 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
421 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
422 m->sdmax_rlcx_rb_rptr);
423 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
424 m->sdmax_rlcx_rb_rptr_hi);
425
426 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
427 if (read_user_wptr(mm, wptr64, data64)) {
428 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
429 lower_32_bits(data64));
430 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
431 upper_32_bits(data64));
432 } else {
433 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
434 m->sdmax_rlcx_rb_rptr);
435 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
436 m->sdmax_rlcx_rb_rptr_hi);
437 }
438 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
439
440 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
441 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
442 m->sdmax_rlcx_rb_base_hi);
443 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
444 m->sdmax_rlcx_rb_rptr_addr_lo);
445 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
446 m->sdmax_rlcx_rb_rptr_addr_hi);
447
448 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
449 RB_ENABLE, 1);
450 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
451
452 return 0;
453 }
454
kgd_hqd_sdma_dump(struct amdgpu_device * adev,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)455 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
456 uint32_t engine_id, uint32_t queue_id,
457 uint32_t (**dump)[2], uint32_t *n_regs)
458 {
459 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
460 engine_id, queue_id);
461 uint32_t i = 0, reg;
462 #undef HQD_N_REGS
463 #define HQD_N_REGS (19+6+7+10)
464
465 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
466 if (*dump == NULL)
467 return -ENOMEM;
468
469 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
470 DUMP_REG(sdma_rlc_reg_offset + reg);
471 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
472 DUMP_REG(sdma_rlc_reg_offset + reg);
473 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
474 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
475 DUMP_REG(sdma_rlc_reg_offset + reg);
476 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
477 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
478 DUMP_REG(sdma_rlc_reg_offset + reg);
479
480 WARN_ON_ONCE(i != HQD_N_REGS);
481 *n_regs = i;
482
483 return 0;
484 }
485
kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device * adev,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)486 bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
487 uint64_t queue_address, uint32_t pipe_id,
488 uint32_t queue_id, uint32_t inst)
489 {
490 uint32_t act;
491 bool retval = false;
492 uint32_t low, high;
493
494 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
495 act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
496 if (act) {
497 low = lower_32_bits(queue_address >> 8);
498 high = upper_32_bits(queue_address >> 8);
499
500 if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) &&
501 high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI))
502 retval = true;
503 }
504 kgd_gfx_v9_release_queue(adev, inst);
505 return retval;
506 }
507
kgd_hqd_sdma_is_occupied(struct amdgpu_device * adev,void * mqd)508 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
509 {
510 struct v9_sdma_mqd *m;
511 uint32_t sdma_rlc_reg_offset;
512 uint32_t sdma_rlc_rb_cntl;
513
514 m = get_sdma_mqd(mqd);
515 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
516 m->sdma_queue_id);
517
518 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
519
520 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
521 return true;
522
523 return false;
524 }
525
kgd_gfx_v9_hqd_destroy(struct amdgpu_device * adev,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)526 int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
527 enum kfd_preempt_type reset_type,
528 unsigned int utimeout, uint32_t pipe_id,
529 uint32_t queue_id, uint32_t inst)
530 {
531 enum hqd_dequeue_request_type type;
532 unsigned long end_jiffies;
533 uint32_t temp;
534 struct v9_mqd *m = get_mqd(mqd);
535
536 if (amdgpu_in_reset(adev))
537 return -EIO;
538
539 kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
540
541 if (m->cp_hqd_vmid == 0)
542 WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0);
543
544 switch (reset_type) {
545 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
546 type = DRAIN_PIPE;
547 break;
548 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
549 type = RESET_WAVES;
550 break;
551 case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
552 type = SAVE_WAVES;
553 break;
554 default:
555 type = DRAIN_PIPE;
556 break;
557 }
558
559 WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST), type);
560
561 end_jiffies = (utimeout * HZ / 1000) + jiffies;
562 while (true) {
563 temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
564 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
565 break;
566 if (time_after(jiffies, end_jiffies)) {
567 pr_err("cp queue preemption time out.\n");
568 kgd_gfx_v9_release_queue(adev, inst);
569 return -ETIME;
570 }
571 usleep_range(500, 1000);
572 }
573
574 kgd_gfx_v9_release_queue(adev, inst);
575 return 0;
576 }
577
kgd_hqd_sdma_destroy(struct amdgpu_device * adev,void * mqd,unsigned int utimeout)578 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
579 unsigned int utimeout)
580 {
581 struct v9_sdma_mqd *m;
582 uint32_t sdma_rlc_reg_offset;
583 uint32_t temp;
584 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
585
586 m = get_sdma_mqd(mqd);
587 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
588 m->sdma_queue_id);
589
590 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
591 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
592 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
593
594 while (true) {
595 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
596 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
597 break;
598 if (time_after(jiffies, end_jiffies)) {
599 pr_err("SDMA RLC not idle in %s\n", __func__);
600 return -ETIME;
601 }
602 usleep_range(500, 1000);
603 }
604
605 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
606 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
607 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
608 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
609
610 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
611 m->sdmax_rlcx_rb_rptr_hi =
612 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
613
614 return 0;
615 }
616
kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device * adev,uint8_t vmid,uint16_t * p_pasid)617 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
618 uint8_t vmid, uint16_t *p_pasid)
619 {
620 uint32_t value;
621
622 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
623 + vmid);
624 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
625
626 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
627 }
628
kgd_gfx_v9_wave_control_execute(struct amdgpu_device * adev,uint32_t gfx_index_val,uint32_t sq_cmd,uint32_t inst)629 int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
630 uint32_t gfx_index_val,
631 uint32_t sq_cmd, uint32_t inst)
632 {
633 uint32_t data = 0;
634
635 mutex_lock(&adev->grbm_idx_mutex);
636
637 WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val);
638 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd);
639
640 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
641 INSTANCE_BROADCAST_WRITES, 1);
642 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
643 SH_BROADCAST_WRITES, 1);
644 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
645 SE_BROADCAST_WRITES, 1);
646
647 WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data);
648 mutex_unlock(&adev->grbm_idx_mutex);
649
650 return 0;
651 }
652
653 /*
654 * GFX9 helper for wave launch stall requirements on debug trap setting.
655 *
656 * vmid:
657 * Target VMID to stall/unstall.
658 *
659 * stall:
660 * 0-unstall wave launch (enable), 1-stall wave launch (disable).
661 * After wavefront launch has been stalled, allocated waves must drain from
662 * SPI in order for debug trap settings to take effect on those waves.
663 * This is roughly a ~96 clock cycle wait on SPI where a read on
664 * SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
665 * KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
666 *
667 * NOTE: We can afford to clear the entire STALL_VMID field on unstall
668 * because GFX9.4.1 cannot support multi-process debugging due to trap
669 * configuration and masking being limited to global scope. Always assume
670 * single process conditions.
671 */
672 #define KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY 3
kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device * adev,uint32_t vmid,bool stall)673 void kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device *adev,
674 uint32_t vmid,
675 bool stall)
676 {
677 int i;
678 uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
679
680 if (adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 1))
681 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
682 stall ? 1 << vmid : 0);
683 else
684 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA,
685 stall ? 1 : 0);
686
687 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
688
689 if (!stall)
690 return;
691
692 for (i = 0; i < KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
693 RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
694 }
695
696 /*
697 * restore_dbg_registers is ignored here but is a general interface requirement
698 * for devices that support GFXOFF and where the RLC save/restore list
699 * does not support hw registers for debugging i.e. the driver has to manually
700 * initialize the debug mode registers after it has disabled GFX off during the
701 * debug session.
702 */
kgd_gfx_v9_enable_debug_trap(struct amdgpu_device * adev,bool restore_dbg_registers,uint32_t vmid)703 uint32_t kgd_gfx_v9_enable_debug_trap(struct amdgpu_device *adev,
704 bool restore_dbg_registers,
705 uint32_t vmid)
706 {
707 mutex_lock(&adev->grbm_idx_mutex);
708
709 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
710
711 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
712
713 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
714
715 mutex_unlock(&adev->grbm_idx_mutex);
716
717 return 0;
718 }
719
720 /*
721 * keep_trap_enabled is ignored here but is a general interface requirement
722 * for devices that support multi-process debugging where the performance
723 * overhead from trap temporary setup needs to be bypassed when the debug
724 * session has ended.
725 */
kgd_gfx_v9_disable_debug_trap(struct amdgpu_device * adev,bool keep_trap_enabled,uint32_t vmid)726 uint32_t kgd_gfx_v9_disable_debug_trap(struct amdgpu_device *adev,
727 bool keep_trap_enabled,
728 uint32_t vmid)
729 {
730 mutex_lock(&adev->grbm_idx_mutex);
731
732 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
733
734 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
735
736 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
737
738 mutex_unlock(&adev->grbm_idx_mutex);
739
740 return 0;
741 }
742
kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device * adev,uint32_t trap_override,uint32_t * trap_mask_supported)743 int kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device *adev,
744 uint32_t trap_override,
745 uint32_t *trap_mask_supported)
746 {
747 *trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
748
749 /* The SPI_GDBG_TRAP_MASK register is global and affects all
750 * processes. Only allow OR-ing the address-watch bit, since
751 * this only affects processes under the debugger. Other bits
752 * should stay 0 to avoid the debugger interfering with other
753 * processes.
754 */
755 if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
756 return -EINVAL;
757
758 return 0;
759 }
760
kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device * adev,uint32_t vmid,uint32_t trap_override,uint32_t trap_mask_bits,uint32_t trap_mask_request,uint32_t * trap_mask_prev,uint32_t kfd_dbg_cntl_prev)761 uint32_t kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device *adev,
762 uint32_t vmid,
763 uint32_t trap_override,
764 uint32_t trap_mask_bits,
765 uint32_t trap_mask_request,
766 uint32_t *trap_mask_prev,
767 uint32_t kfd_dbg_cntl_prev)
768 {
769 uint32_t data, wave_cntl_prev;
770
771 mutex_lock(&adev->grbm_idx_mutex);
772
773 wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
774
775 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
776
777 data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
778 *trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
779
780 trap_mask_bits = (trap_mask_bits & trap_mask_request) |
781 (*trap_mask_prev & ~trap_mask_request);
782
783 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
784 data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
785 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
786
787 /* We need to preserve wave launch mode stall settings. */
788 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
789
790 mutex_unlock(&adev->grbm_idx_mutex);
791
792 return 0;
793 }
794
kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device * adev,uint8_t wave_launch_mode,uint32_t vmid)795 uint32_t kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device *adev,
796 uint8_t wave_launch_mode,
797 uint32_t vmid)
798 {
799 uint32_t data = 0;
800 bool is_mode_set = !!wave_launch_mode;
801
802 mutex_lock(&adev->grbm_idx_mutex);
803
804 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
805
806 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
807 VMID_MASK, is_mode_set ? 1 << vmid : 0);
808 data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
809 MODE, is_mode_set ? wave_launch_mode : 0);
810 WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
811
812 kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
813
814 mutex_unlock(&adev->grbm_idx_mutex);
815
816 return 0;
817 }
818
819 #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
kgd_gfx_v9_set_address_watch(struct amdgpu_device * adev,uint64_t watch_address,uint32_t watch_address_mask,uint32_t watch_id,uint32_t watch_mode,uint32_t debug_vmid,uint32_t inst)820 uint32_t kgd_gfx_v9_set_address_watch(struct amdgpu_device *adev,
821 uint64_t watch_address,
822 uint32_t watch_address_mask,
823 uint32_t watch_id,
824 uint32_t watch_mode,
825 uint32_t debug_vmid,
826 uint32_t inst)
827 {
828 uint32_t watch_address_high;
829 uint32_t watch_address_low;
830 uint32_t watch_address_cntl;
831
832 watch_address_cntl = 0;
833
834 watch_address_low = lower_32_bits(watch_address);
835 watch_address_high = upper_32_bits(watch_address) & 0xffff;
836
837 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
838 TCP_WATCH0_CNTL,
839 VMID,
840 debug_vmid);
841 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
842 TCP_WATCH0_CNTL,
843 MODE,
844 watch_mode);
845 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
846 TCP_WATCH0_CNTL,
847 MASK,
848 watch_address_mask >> 6);
849
850 /* Turning off this watch point until we set all the registers */
851 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
852 TCP_WATCH0_CNTL,
853 VALID,
854 0);
855
856 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
857 (watch_id * TCP_WATCH_STRIDE)),
858 watch_address_cntl);
859
860 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
861 (watch_id * TCP_WATCH_STRIDE)),
862 watch_address_high);
863
864 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
865 (watch_id * TCP_WATCH_STRIDE)),
866 watch_address_low);
867
868 /* Enable the watch point */
869 watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
870 TCP_WATCH0_CNTL,
871 VALID,
872 1);
873
874 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
875 (watch_id * TCP_WATCH_STRIDE)),
876 watch_address_cntl);
877
878 return 0;
879 }
880
kgd_gfx_v9_clear_address_watch(struct amdgpu_device * adev,uint32_t watch_id)881 uint32_t kgd_gfx_v9_clear_address_watch(struct amdgpu_device *adev,
882 uint32_t watch_id)
883 {
884 uint32_t watch_address_cntl;
885
886 watch_address_cntl = 0;
887
888 WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
889 (watch_id * TCP_WATCH_STRIDE)),
890 watch_address_cntl);
891
892 return 0;
893 }
894
895 /* kgd_gfx_v9_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
896 * The values read are:
897 * ib_offload_wait_time -- Wait Count for Indirect Buffer Offloads.
898 * atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
899 * wrm_offload_wait_time -- Wait Count for WAIT_REG_MEM Offloads.
900 * gws_wait_time -- Wait Count for Global Wave Syncs.
901 * que_sleep_wait_time -- Wait Count for Dequeue Retry.
902 * sch_wave_wait_time -- Wait Count for Scheduling Wave Message.
903 * sem_rearm_wait_time -- Wait Count for Semaphore re-arm.
904 * deq_retry_wait_time -- Wait Count for Global Wave Syncs.
905 */
kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device * adev,uint32_t * wait_times,uint32_t inst)906 void kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device *adev,
907 uint32_t *wait_times,
908 uint32_t inst)
909
910 {
911 *wait_times = RREG32(SOC15_REG_OFFSET(GC, GET_INST(GC, inst),
912 mmCP_IQ_WAIT_TIME2));
913 }
914
kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device * adev,uint32_t vmid,uint64_t page_table_base)915 void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
916 uint32_t vmid, uint64_t page_table_base)
917 {
918 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
919 pr_err("trying to set page table base for wrong VMID %u\n",
920 vmid);
921 return;
922 }
923
924 adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
925
926 adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
927 }
928
lock_spi_csq_mutexes(struct amdgpu_device * adev)929 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
930 {
931 mutex_lock(&adev->srbm_mutex);
932 mutex_lock(&adev->grbm_idx_mutex);
933
934 }
935
unlock_spi_csq_mutexes(struct amdgpu_device * adev)936 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
937 {
938 mutex_unlock(&adev->grbm_idx_mutex);
939 mutex_unlock(&adev->srbm_mutex);
940 }
941
942 /**
943 * get_wave_count: Read device registers to get number of waves in flight for
944 * a particular queue. The method also returns the VMID associated with the
945 * queue.
946 *
947 * @adev: Handle of device whose registers are to be read
948 * @queue_idx: Index of queue in the queue-map bit-field
949 * @wave_cnt: Output parameter updated with number of waves in flight
950 * @vmid: Output parameter updated with VMID of queue whose wave count
951 * is being collected
952 * @inst: xcc's instance number on a multi-XCC setup
953 */
get_wave_count(struct amdgpu_device * adev,int queue_idx,int * wave_cnt,int * vmid,uint32_t inst)954 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
955 int *wave_cnt, int *vmid, uint32_t inst)
956 {
957 int pipe_idx;
958 int queue_slot;
959 unsigned int reg_val;
960
961 /*
962 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
963 * parameters to read out waves in flight. Get VMID if there are
964 * non-zero waves in flight.
965 */
966 *vmid = 0xFF;
967 *wave_cnt = 0;
968 pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
969 queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
970 soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, inst);
971 reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, inst, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
972 queue_slot);
973 *wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
974 if (*wave_cnt != 0)
975 *vmid = (RREG32_SOC15(GC, inst, mmCP_HQD_VMID) &
976 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
977 }
978
979 /**
980 * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
981 * shader engine and aggregates the number of waves that are in flight for the
982 * process whose pasid is provided as a parameter. The process could have ZERO
983 * or more queues running and submitting waves to compute units.
984 *
985 * @adev: Handle of device from which to get number of waves in flight
986 * @pasid: Identifies the process for which this query call is invoked
987 * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
988 * belong to process with given pasid
989 * @max_waves_per_cu: Output parameter updated with maximum number of waves
990 * possible per Compute Unit
991 * @inst: xcc's instance number on a multi-XCC setup
992 *
993 * Note: It's possible that the device has too many queues (oversubscription)
994 * in which case a VMID could be remapped to a different PASID. This could lead
995 * to an inaccurate wave count. Following is a high-level sequence:
996 * Time T1: vmid = getVmid(); vmid is associated with Pasid P1
997 * Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
998 * In the sequence above wave count obtained from time T1 will be incorrectly
999 * lost or added to total wave count.
1000 *
1001 * The registers that provide the waves in flight are:
1002 *
1003 * SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
1004 * queue is slotted, OFF if there is no queue. A process could have ZERO or
1005 * more queues slotted and submitting waves to be run on compute units. Even
1006 * when there is a queue it is possible there could be zero wave fronts, this
1007 * can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
1008 * command
1009 *
1010 * For each bit that is ON from above:
1011 *
1012 * Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
1013 * number of waves that are in flight for the queue at specified index. The
1014 * index ranges from 0 to 7.
1015 *
1016 * If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
1017 * of the wave(s).
1018 *
1019 * Determine if VMID from above step maps to pasid provided as parameter. If
1020 * it matches agrregate the wave count. That the VMID will not match pasid is
1021 * a normal condition i.e. a device is expected to support multiple queues
1022 * from multiple proceses.
1023 *
1024 * Reading registers referenced above involves programming GRBM appropriately
1025 */
kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device * adev,int pasid,int * pasid_wave_cnt,int * max_waves_per_cu,uint32_t inst)1026 void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
1027 int *pasid_wave_cnt, int *max_waves_per_cu, uint32_t inst)
1028 {
1029 int qidx;
1030 int vmid;
1031 int se_idx;
1032 int sh_idx;
1033 int se_cnt;
1034 int sh_cnt;
1035 int wave_cnt;
1036 int queue_map;
1037 int pasid_tmp;
1038 int max_queue_cnt;
1039 int vmid_wave_cnt = 0;
1040 DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
1041
1042 lock_spi_csq_mutexes(adev);
1043 soc15_grbm_select(adev, 1, 0, 0, 0, inst);
1044
1045 /*
1046 * Iterate through the shader engines and arrays of the device
1047 * to get number of waves in flight
1048 */
1049 bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap,
1050 KGD_MAX_QUEUES);
1051 max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
1052 adev->gfx.mec.num_queue_per_pipe;
1053 sh_cnt = adev->gfx.config.max_sh_per_se;
1054 se_cnt = adev->gfx.config.max_shader_engines;
1055 for (se_idx = 0; se_idx < se_cnt; se_idx++) {
1056 for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
1057
1058 amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff, inst);
1059 queue_map = RREG32_SOC15(GC, inst, mmSPI_CSQ_WF_ACTIVE_STATUS);
1060
1061 /*
1062 * Assumption: queue map encodes following schema: four
1063 * pipes per each micro-engine, with each pipe mapping
1064 * eight queues. This schema is true for GFX9 devices
1065 * and must be verified for newer device families
1066 */
1067 for (qidx = 0; qidx < max_queue_cnt; qidx++) {
1068
1069 /* Skip qeueus that are not associated with
1070 * compute functions
1071 */
1072 if (!test_bit(qidx, cp_queue_bitmap))
1073 continue;
1074
1075 if (!(queue_map & (1 << qidx)))
1076 continue;
1077
1078 /* Get number of waves in flight and aggregate them */
1079 get_wave_count(adev, qidx, &wave_cnt, &vmid,
1080 inst);
1081 if (wave_cnt != 0) {
1082 pasid_tmp =
1083 RREG32(SOC15_REG_OFFSET(OSSSYS, inst,
1084 mmIH_VMID_0_LUT) + vmid);
1085 if (pasid_tmp == pasid)
1086 vmid_wave_cnt += wave_cnt;
1087 }
1088 }
1089 }
1090 }
1091
1092 amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst);
1093 soc15_grbm_select(adev, 0, 0, 0, 0, inst);
1094 unlock_spi_csq_mutexes(adev);
1095
1096 /* Update the output parameters and return */
1097 *pasid_wave_cnt = vmid_wave_cnt;
1098 *max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
1099 adev->gfx.cu_info.max_waves_per_simd;
1100 }
1101
kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device * adev,uint32_t wait_times,uint32_t grace_period,uint32_t * reg_offset,uint32_t * reg_data)1102 void kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device *adev,
1103 uint32_t wait_times,
1104 uint32_t grace_period,
1105 uint32_t *reg_offset,
1106 uint32_t *reg_data)
1107 {
1108 *reg_data = wait_times;
1109
1110 /*
1111 * The CP cannot handle a 0 grace period input and will result in
1112 * an infinite grace period being set so set to 1 to prevent this.
1113 */
1114 if (grace_period == 0)
1115 grace_period = 1;
1116
1117 *reg_data = REG_SET_FIELD(*reg_data,
1118 CP_IQ_WAIT_TIME2,
1119 SCH_WAVE,
1120 grace_period);
1121
1122 *reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
1123 }
1124
kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device * adev,uint32_t vmid,uint64_t tba_addr,uint64_t tma_addr,uint32_t inst)1125 void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
1126 uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst)
1127 {
1128 kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
1129
1130 /*
1131 * Program TBA registers
1132 */
1133 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO,
1134 lower_32_bits(tba_addr >> 8));
1135 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI,
1136 upper_32_bits(tba_addr >> 8));
1137
1138 /*
1139 * Program TMA registers
1140 */
1141 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO,
1142 lower_32_bits(tma_addr >> 8));
1143 WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI,
1144 upper_32_bits(tma_addr >> 8));
1145
1146 kgd_gfx_v9_unlock_srbm(adev, inst);
1147 }
1148
1149 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
1150 .program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
1151 .set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
1152 .init_interrupts = kgd_gfx_v9_init_interrupts,
1153 .hqd_load = kgd_gfx_v9_hqd_load,
1154 .hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
1155 .hqd_sdma_load = kgd_hqd_sdma_load,
1156 .hqd_dump = kgd_gfx_v9_hqd_dump,
1157 .hqd_sdma_dump = kgd_hqd_sdma_dump,
1158 .hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
1159 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
1160 .hqd_destroy = kgd_gfx_v9_hqd_destroy,
1161 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
1162 .wave_control_execute = kgd_gfx_v9_wave_control_execute,
1163 .get_atc_vmid_pasid_mapping_info =
1164 kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
1165 .set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
1166 .enable_debug_trap = kgd_gfx_v9_enable_debug_trap,
1167 .disable_debug_trap = kgd_gfx_v9_disable_debug_trap,
1168 .validate_trap_override_request = kgd_gfx_v9_validate_trap_override_request,
1169 .set_wave_launch_trap_override = kgd_gfx_v9_set_wave_launch_trap_override,
1170 .set_wave_launch_mode = kgd_gfx_v9_set_wave_launch_mode,
1171 .set_address_watch = kgd_gfx_v9_set_address_watch,
1172 .clear_address_watch = kgd_gfx_v9_clear_address_watch,
1173 .get_iq_wait_times = kgd_gfx_v9_get_iq_wait_times,
1174 .build_grace_period_packet_info = kgd_gfx_v9_build_grace_period_packet_info,
1175 .get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
1176 .program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
1177 };
1178