xref: /openbmc/linux/arch/x86/crypto/sm3-avx-asm_64.S (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * SM3 AVX accelerated transform.
4  * specified in: https://datatracker.ietf.org/doc/html/draft-sca-cfrg-sm3-02
5  *
6  * Copyright (C) 2021 Jussi Kivilinna <jussi.kivilinna@iki.fi>
7  * Copyright (C) 2021 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
8  */
9 
10 /* Based on SM3 AES/BMI2 accelerated work by libgcrypt at:
11  *  https://gnupg.org/software/libgcrypt/index.html
12  */
13 
14 #include <linux/linkage.h>
15 #include <linux/cfi_types.h>
16 #include <asm/frame.h>
17 
18 /* Context structure */
19 
20 #define state_h0 0
21 #define state_h1 4
22 #define state_h2 8
23 #define state_h3 12
24 #define state_h4 16
25 #define state_h5 20
26 #define state_h6 24
27 #define state_h7 28
28 
29 /* Constants */
30 
31 /* Round constant macros */
32 
33 #define K0   2043430169  /* 0x79cc4519 */
34 #define K1   -208106958  /* 0xf3988a32 */
35 #define K2   -416213915  /* 0xe7311465 */
36 #define K3   -832427829  /* 0xce6228cb */
37 #define K4  -1664855657  /* 0x9cc45197 */
38 #define K5    965255983  /* 0x3988a32f */
39 #define K6   1930511966  /* 0x7311465e */
40 #define K7   -433943364  /* 0xe6228cbc */
41 #define K8   -867886727  /* 0xcc451979 */
42 #define K9  -1735773453  /* 0x988a32f3 */
43 #define K10   823420391  /* 0x311465e7 */
44 #define K11  1646840782  /* 0x6228cbce */
45 #define K12 -1001285732  /* 0xc451979c */
46 #define K13 -2002571463  /* 0x88a32f39 */
47 #define K14   289824371  /* 0x11465e73 */
48 #define K15   579648742  /* 0x228cbce6 */
49 #define K16 -1651869049  /* 0x9d8a7a87 */
50 #define K17   991229199  /* 0x3b14f50f */
51 #define K18  1982458398  /* 0x7629ea1e */
52 #define K19  -330050500  /* 0xec53d43c */
53 #define K20  -660100999  /* 0xd8a7a879 */
54 #define K21 -1320201997  /* 0xb14f50f3 */
55 #define K22  1654563303  /* 0x629ea1e7 */
56 #define K23  -985840690  /* 0xc53d43ce */
57 #define K24 -1971681379  /* 0x8a7a879d */
58 #define K25   351604539  /* 0x14f50f3b */
59 #define K26   703209078  /* 0x29ea1e76 */
60 #define K27  1406418156  /* 0x53d43cec */
61 #define K28 -1482130984  /* 0xa7a879d8 */
62 #define K29  1330705329  /* 0x4f50f3b1 */
63 #define K30 -1633556638  /* 0x9ea1e762 */
64 #define K31  1027854021  /* 0x3d43cec5 */
65 #define K32  2055708042  /* 0x7a879d8a */
66 #define K33  -183551212  /* 0xf50f3b14 */
67 #define K34  -367102423  /* 0xea1e7629 */
68 #define K35  -734204845  /* 0xd43cec53 */
69 #define K36 -1468409689  /* 0xa879d8a7 */
70 #define K37  1358147919  /* 0x50f3b14f */
71 #define K38 -1578671458  /* 0xa1e7629e */
72 #define K39  1137624381  /* 0x43cec53d */
73 #define K40 -2019718534  /* 0x879d8a7a */
74 #define K41   255530229  /* 0x0f3b14f5 */
75 #define K42   511060458  /* 0x1e7629ea */
76 #define K43  1022120916  /* 0x3cec53d4 */
77 #define K44  2044241832  /* 0x79d8a7a8 */
78 #define K45  -206483632  /* 0xf3b14f50 */
79 #define K46  -412967263  /* 0xe7629ea1 */
80 #define K47  -825934525  /* 0xcec53d43 */
81 #define K48 -1651869049  /* 0x9d8a7a87 */
82 #define K49   991229199  /* 0x3b14f50f */
83 #define K50  1982458398  /* 0x7629ea1e */
84 #define K51  -330050500  /* 0xec53d43c */
85 #define K52  -660100999  /* 0xd8a7a879 */
86 #define K53 -1320201997  /* 0xb14f50f3 */
87 #define K54  1654563303  /* 0x629ea1e7 */
88 #define K55  -985840690  /* 0xc53d43ce */
89 #define K56 -1971681379  /* 0x8a7a879d */
90 #define K57   351604539  /* 0x14f50f3b */
91 #define K58   703209078  /* 0x29ea1e76 */
92 #define K59  1406418156  /* 0x53d43cec */
93 #define K60 -1482130984  /* 0xa7a879d8 */
94 #define K61  1330705329  /* 0x4f50f3b1 */
95 #define K62 -1633556638  /* 0x9ea1e762 */
96 #define K63  1027854021  /* 0x3d43cec5 */
97 
98 /* Register macros */
99 
100 #define RSTATE %rdi
101 #define RDATA  %rsi
102 #define RNBLKS %rdx
103 
104 #define t0 %eax
105 #define t1 %ebx
106 #define t2 %ecx
107 
108 #define a %r8d
109 #define b %r9d
110 #define c %r10d
111 #define d %r11d
112 #define e %r12d
113 #define f %r13d
114 #define g %r14d
115 #define h %r15d
116 
117 #define W0 %xmm0
118 #define W1 %xmm1
119 #define W2 %xmm2
120 #define W3 %xmm3
121 #define W4 %xmm4
122 #define W5 %xmm5
123 
124 #define XTMP0 %xmm6
125 #define XTMP1 %xmm7
126 #define XTMP2 %xmm8
127 #define XTMP3 %xmm9
128 #define XTMP4 %xmm10
129 #define XTMP5 %xmm11
130 #define XTMP6 %xmm12
131 
132 #define BSWAP_REG %xmm15
133 
134 /* Stack structure */
135 
136 #define STACK_W_SIZE        (32 * 2 * 3)
137 #define STACK_REG_SAVE_SIZE (64)
138 
139 #define STACK_W             (0)
140 #define STACK_REG_SAVE      (STACK_W + STACK_W_SIZE)
141 #define STACK_SIZE          (STACK_REG_SAVE + STACK_REG_SAVE_SIZE)
142 
143 /* Instruction helpers. */
144 
145 #define roll2(v, reg)		\
146 	roll $(v), reg;
147 
148 #define roll3mov(v, src, dst)	\
149 	movl src, dst;		\
150 	roll $(v), dst;
151 
152 #define roll3(v, src, dst)	\
153 	rorxl $(32-(v)), src, dst;
154 
155 #define addl2(a, out)		\
156 	leal (a, out), out;
157 
158 /* Round function macros. */
159 
160 #define GG1(x, y, z, o, t)	\
161 	movl x, o;		\
162 	xorl y, o;		\
163 	xorl z, o;
164 
165 #define FF1(x, y, z, o, t) GG1(x, y, z, o, t)
166 
167 #define GG2(x, y, z, o, t)	\
168 	andnl z, x, o;		\
169 	movl y, t;		\
170 	andl x, t;		\
171 	addl2(t, o);
172 
173 #define FF2(x, y, z, o, t)	\
174 	movl y, o;		\
175 	xorl x, o;		\
176 	movl y, t;		\
177 	andl x, t;		\
178 	andl z, o;		\
179 	xorl t, o;
180 
181 #define R(i, a, b, c, d, e, f, g, h, round, widx, wtype)		\
182 	/* rol(a, 12) => t0 */						\
183 	roll3mov(12, a, t0); /* rorxl here would reduce perf by 6% on zen3 */ \
184 	/* rol (t0 + e + t), 7) => t1 */				\
185 	leal K##round(t0, e, 1), t1;					\
186 	roll2(7, t1);							\
187 	/* h + w1 => h */						\
188 	addl wtype##_W1_ADDR(round, widx), h;				\
189 	/* h + t1 => h */						\
190 	addl2(t1, h);							\
191 	/* t1 ^ t0 => t0 */						\
192 	xorl t1, t0;							\
193 	/* w1w2 + d => d */						\
194 	addl wtype##_W1W2_ADDR(round, widx), d;				\
195 	/* FF##i(a,b,c) => t1 */					\
196 	FF##i(a, b, c, t1, t2);						\
197 	/* d + t1 => d */						\
198 	addl2(t1, d);							\
199 	/* GG#i(e,f,g) => t2 */						\
200 	GG##i(e, f, g, t2, t1);						\
201 	/* h + t2 => h */						\
202 	addl2(t2, h);							\
203 	/* rol (f, 19) => f */						\
204 	roll2(19, f);							\
205 	/* d + t0 => d */						\
206 	addl2(t0, d);							\
207 	/* rol (b, 9) => b */						\
208 	roll2(9, b);							\
209 	/* P0(h) => h */						\
210 	roll3(9, h, t2);						\
211 	roll3(17, h, t1);						\
212 	xorl t2, h;							\
213 	xorl t1, h;
214 
215 #define R1(a, b, c, d, e, f, g, h, round, widx, wtype) \
216 	R(1, a, b, c, d, e, f, g, h, round, widx, wtype)
217 
218 #define R2(a, b, c, d, e, f, g, h, round, widx, wtype) \
219 	R(2, a, b, c, d, e, f, g, h, round, widx, wtype)
220 
221 /* Input expansion macros. */
222 
223 /* Byte-swapped input address. */
224 #define IW_W_ADDR(round, widx, offs) \
225 	(STACK_W + ((round) / 4) * 64 + (offs) + ((widx) * 4))(%rsp)
226 
227 /* Expanded input address. */
228 #define XW_W_ADDR(round, widx, offs) \
229 	(STACK_W + ((((round) / 3) - 4) % 2) * 64 + (offs) + ((widx) * 4))(%rsp)
230 
231 /* Rounds 1-12, byte-swapped input block addresses. */
232 #define IW_W1_ADDR(round, widx)   IW_W_ADDR(round, widx, 0)
233 #define IW_W1W2_ADDR(round, widx) IW_W_ADDR(round, widx, 32)
234 
235 /* Rounds 1-12, expanded input block addresses. */
236 #define XW_W1_ADDR(round, widx)   XW_W_ADDR(round, widx, 0)
237 #define XW_W1W2_ADDR(round, widx) XW_W_ADDR(round, widx, 32)
238 
239 /* Input block loading. */
240 #define LOAD_W_XMM_1()							\
241 	vmovdqu 0*16(RDATA), XTMP0; /* XTMP0: w3, w2, w1, w0 */		\
242 	vmovdqu 1*16(RDATA), XTMP1; /* XTMP1: w7, w6, w5, w4 */		\
243 	vmovdqu 2*16(RDATA), XTMP2; /* XTMP2: w11, w10, w9, w8 */	\
244 	vmovdqu 3*16(RDATA), XTMP3; /* XTMP3: w15, w14, w13, w12 */	\
245 	vpshufb BSWAP_REG, XTMP0, XTMP0;				\
246 	vpshufb BSWAP_REG, XTMP1, XTMP1;				\
247 	vpshufb BSWAP_REG, XTMP2, XTMP2;				\
248 	vpshufb BSWAP_REG, XTMP3, XTMP3;				\
249 	vpxor XTMP0, XTMP1, XTMP4;					\
250 	vpxor XTMP1, XTMP2, XTMP5;					\
251 	vpxor XTMP2, XTMP3, XTMP6;					\
252 	leaq 64(RDATA), RDATA;						\
253 	vmovdqa XTMP0, IW_W1_ADDR(0, 0);				\
254 	vmovdqa XTMP4, IW_W1W2_ADDR(0, 0);				\
255 	vmovdqa XTMP1, IW_W1_ADDR(4, 0);				\
256 	vmovdqa XTMP5, IW_W1W2_ADDR(4, 0);
257 
258 #define LOAD_W_XMM_2()				\
259 	vmovdqa XTMP2, IW_W1_ADDR(8, 0);	\
260 	vmovdqa XTMP6, IW_W1W2_ADDR(8, 0);
261 
262 #define LOAD_W_XMM_3()							\
263 	vpshufd $0b00000000, XTMP0, W0; /* W0: xx, w0, xx, xx */	\
264 	vpshufd $0b11111001, XTMP0, W1; /* W1: xx, w3, w2, w1 */	\
265 	vmovdqa XTMP1, W2;              /* W2: xx, w6, w5, w4 */	\
266 	vpalignr $12, XTMP1, XTMP2, W3; /* W3: xx, w9, w8, w7 */	\
267 	vpalignr $8, XTMP2, XTMP3, W4;  /* W4: xx, w12, w11, w10 */	\
268 	vpshufd $0b11111001, XTMP3, W5; /* W5: xx, w15, w14, w13 */
269 
270 /* Message scheduling. Note: 3 words per XMM register. */
271 #define SCHED_W_0(round, w0, w1, w2, w3, w4, w5)			\
272 	/* Load (w[i - 16]) => XTMP0 */					\
273 	vpshufd $0b10111111, w0, XTMP0;					\
274 	vpalignr $12, XTMP0, w1, XTMP0; /* XTMP0: xx, w2, w1, w0 */	\
275 	/* Load (w[i - 13]) => XTMP1 */					\
276 	vpshufd $0b10111111, w1, XTMP1;					\
277 	vpalignr $12, XTMP1, w2, XTMP1;					\
278 	/* w[i - 9] == w3 */						\
279 	/* XMM3 ^ XTMP0 => XTMP0 */					\
280 	vpxor w3, XTMP0, XTMP0;
281 
282 #define SCHED_W_1(round, w0, w1, w2, w3, w4, w5)	\
283 	/* w[i - 3] == w5 */				\
284 	/* rol(XMM5, 15) ^ XTMP0 => XTMP0 */		\
285 	vpslld $15, w5, XTMP2;				\
286 	vpsrld $(32-15), w5, XTMP3;			\
287 	vpxor XTMP2, XTMP3, XTMP3;			\
288 	vpxor XTMP3, XTMP0, XTMP0;			\
289 	/* rol(XTMP1, 7) => XTMP1 */			\
290 	vpslld $7, XTMP1, XTMP5;			\
291 	vpsrld $(32-7), XTMP1, XTMP1;			\
292 	vpxor XTMP5, XTMP1, XTMP1;			\
293 	/* XMM4 ^ XTMP1 => XTMP1 */			\
294 	vpxor w4, XTMP1, XTMP1;				\
295 	/* w[i - 6] == XMM4 */				\
296 	/* P1(XTMP0) ^ XTMP1 => XMM0 */			\
297 	vpslld $15, XTMP0, XTMP5;			\
298 	vpsrld $(32-15), XTMP0, XTMP6;			\
299 	vpslld $23, XTMP0, XTMP2;			\
300 	vpsrld $(32-23), XTMP0, XTMP3;			\
301 	vpxor XTMP0, XTMP1, XTMP1;			\
302 	vpxor XTMP6, XTMP5, XTMP5;			\
303 	vpxor XTMP3, XTMP2, XTMP2;			\
304 	vpxor XTMP2, XTMP5, XTMP5;			\
305 	vpxor XTMP5, XTMP1, w0;
306 
307 #define SCHED_W_2(round, w0, w1, w2, w3, w4, w5)	\
308 	/* W1 in XMM12 */				\
309 	vpshufd $0b10111111, w4, XTMP4;			\
310 	vpalignr $12, XTMP4, w5, XTMP4;			\
311 	vmovdqa XTMP4, XW_W1_ADDR((round), 0);		\
312 	/* W1 ^ W2 => XTMP1 */				\
313 	vpxor w0, XTMP4, XTMP1;				\
314 	vmovdqa XTMP1, XW_W1W2_ADDR((round), 0);
315 
316 
317 .section	.rodata.cst16, "aM", @progbits, 16
318 .align 16
319 
320 .Lbe32mask:
321 	.long 0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f
322 
323 .text
324 
325 /*
326  * Transform nblocks*64 bytes (nblocks*16 32-bit words) at DATA.
327  *
328  * void sm3_transform_avx(struct sm3_state *state,
329  *                        const u8 *data, int nblocks);
330  */
331 SYM_TYPED_FUNC_START(sm3_transform_avx)
332 	/* input:
333 	 *	%rdi: ctx, CTX
334 	 *	%rsi: data (64*nblks bytes)
335 	 *	%rdx: nblocks
336 	 */
337 	vzeroupper;
338 
339 	pushq %rbp;
340 	movq %rsp, %rbp;
341 
342 	movq %rdx, RNBLKS;
343 
344 	subq $STACK_SIZE, %rsp;
345 	andq $(~63), %rsp;
346 
347 	movq %rbx, (STACK_REG_SAVE + 0 * 8)(%rsp);
348 	movq %r15, (STACK_REG_SAVE + 1 * 8)(%rsp);
349 	movq %r14, (STACK_REG_SAVE + 2 * 8)(%rsp);
350 	movq %r13, (STACK_REG_SAVE + 3 * 8)(%rsp);
351 	movq %r12, (STACK_REG_SAVE + 4 * 8)(%rsp);
352 
353 	vmovdqa .Lbe32mask (%rip), BSWAP_REG;
354 
355 	/* Get the values of the chaining variables. */
356 	movl state_h0(RSTATE), a;
357 	movl state_h1(RSTATE), b;
358 	movl state_h2(RSTATE), c;
359 	movl state_h3(RSTATE), d;
360 	movl state_h4(RSTATE), e;
361 	movl state_h5(RSTATE), f;
362 	movl state_h6(RSTATE), g;
363 	movl state_h7(RSTATE), h;
364 
365 .align 16
366 .Loop:
367 	/* Load data part1. */
368 	LOAD_W_XMM_1();
369 
370 	leaq -1(RNBLKS), RNBLKS;
371 
372 	/* Transform 0-3 + Load data part2. */
373 	R1(a, b, c, d, e, f, g, h, 0, 0, IW); LOAD_W_XMM_2();
374 	R1(d, a, b, c, h, e, f, g, 1, 1, IW);
375 	R1(c, d, a, b, g, h, e, f, 2, 2, IW);
376 	R1(b, c, d, a, f, g, h, e, 3, 3, IW); LOAD_W_XMM_3();
377 
378 	/* Transform 4-7 + Precalc 12-14. */
379 	R1(a, b, c, d, e, f, g, h, 4, 0, IW);
380 	R1(d, a, b, c, h, e, f, g, 5, 1, IW);
381 	R1(c, d, a, b, g, h, e, f, 6, 2, IW); SCHED_W_0(12, W0, W1, W2, W3, W4, W5);
382 	R1(b, c, d, a, f, g, h, e, 7, 3, IW); SCHED_W_1(12, W0, W1, W2, W3, W4, W5);
383 
384 	/* Transform 8-11 + Precalc 12-17. */
385 	R1(a, b, c, d, e, f, g, h, 8, 0, IW); SCHED_W_2(12, W0, W1, W2, W3, W4, W5);
386 	R1(d, a, b, c, h, e, f, g, 9, 1, IW); SCHED_W_0(15, W1, W2, W3, W4, W5, W0);
387 	R1(c, d, a, b, g, h, e, f, 10, 2, IW); SCHED_W_1(15, W1, W2, W3, W4, W5, W0);
388 	R1(b, c, d, a, f, g, h, e, 11, 3, IW); SCHED_W_2(15, W1, W2, W3, W4, W5, W0);
389 
390 	/* Transform 12-14 + Precalc 18-20 */
391 	R1(a, b, c, d, e, f, g, h, 12, 0, XW); SCHED_W_0(18, W2, W3, W4, W5, W0, W1);
392 	R1(d, a, b, c, h, e, f, g, 13, 1, XW); SCHED_W_1(18, W2, W3, W4, W5, W0, W1);
393 	R1(c, d, a, b, g, h, e, f, 14, 2, XW); SCHED_W_2(18, W2, W3, W4, W5, W0, W1);
394 
395 	/* Transform 15-17 + Precalc 21-23 */
396 	R1(b, c, d, a, f, g, h, e, 15, 0, XW); SCHED_W_0(21, W3, W4, W5, W0, W1, W2);
397 	R2(a, b, c, d, e, f, g, h, 16, 1, XW); SCHED_W_1(21, W3, W4, W5, W0, W1, W2);
398 	R2(d, a, b, c, h, e, f, g, 17, 2, XW); SCHED_W_2(21, W3, W4, W5, W0, W1, W2);
399 
400 	/* Transform 18-20 + Precalc 24-26 */
401 	R2(c, d, a, b, g, h, e, f, 18, 0, XW); SCHED_W_0(24, W4, W5, W0, W1, W2, W3);
402 	R2(b, c, d, a, f, g, h, e, 19, 1, XW); SCHED_W_1(24, W4, W5, W0, W1, W2, W3);
403 	R2(a, b, c, d, e, f, g, h, 20, 2, XW); SCHED_W_2(24, W4, W5, W0, W1, W2, W3);
404 
405 	/* Transform 21-23 + Precalc 27-29 */
406 	R2(d, a, b, c, h, e, f, g, 21, 0, XW); SCHED_W_0(27, W5, W0, W1, W2, W3, W4);
407 	R2(c, d, a, b, g, h, e, f, 22, 1, XW); SCHED_W_1(27, W5, W0, W1, W2, W3, W4);
408 	R2(b, c, d, a, f, g, h, e, 23, 2, XW); SCHED_W_2(27, W5, W0, W1, W2, W3, W4);
409 
410 	/* Transform 24-26 + Precalc 30-32 */
411 	R2(a, b, c, d, e, f, g, h, 24, 0, XW); SCHED_W_0(30, W0, W1, W2, W3, W4, W5);
412 	R2(d, a, b, c, h, e, f, g, 25, 1, XW); SCHED_W_1(30, W0, W1, W2, W3, W4, W5);
413 	R2(c, d, a, b, g, h, e, f, 26, 2, XW); SCHED_W_2(30, W0, W1, W2, W3, W4, W5);
414 
415 	/* Transform 27-29 + Precalc 33-35 */
416 	R2(b, c, d, a, f, g, h, e, 27, 0, XW); SCHED_W_0(33, W1, W2, W3, W4, W5, W0);
417 	R2(a, b, c, d, e, f, g, h, 28, 1, XW); SCHED_W_1(33, W1, W2, W3, W4, W5, W0);
418 	R2(d, a, b, c, h, e, f, g, 29, 2, XW); SCHED_W_2(33, W1, W2, W3, W4, W5, W0);
419 
420 	/* Transform 30-32 + Precalc 36-38 */
421 	R2(c, d, a, b, g, h, e, f, 30, 0, XW); SCHED_W_0(36, W2, W3, W4, W5, W0, W1);
422 	R2(b, c, d, a, f, g, h, e, 31, 1, XW); SCHED_W_1(36, W2, W3, W4, W5, W0, W1);
423 	R2(a, b, c, d, e, f, g, h, 32, 2, XW); SCHED_W_2(36, W2, W3, W4, W5, W0, W1);
424 
425 	/* Transform 33-35 + Precalc 39-41 */
426 	R2(d, a, b, c, h, e, f, g, 33, 0, XW); SCHED_W_0(39, W3, W4, W5, W0, W1, W2);
427 	R2(c, d, a, b, g, h, e, f, 34, 1, XW); SCHED_W_1(39, W3, W4, W5, W0, W1, W2);
428 	R2(b, c, d, a, f, g, h, e, 35, 2, XW); SCHED_W_2(39, W3, W4, W5, W0, W1, W2);
429 
430 	/* Transform 36-38 + Precalc 42-44 */
431 	R2(a, b, c, d, e, f, g, h, 36, 0, XW); SCHED_W_0(42, W4, W5, W0, W1, W2, W3);
432 	R2(d, a, b, c, h, e, f, g, 37, 1, XW); SCHED_W_1(42, W4, W5, W0, W1, W2, W3);
433 	R2(c, d, a, b, g, h, e, f, 38, 2, XW); SCHED_W_2(42, W4, W5, W0, W1, W2, W3);
434 
435 	/* Transform 39-41 + Precalc 45-47 */
436 	R2(b, c, d, a, f, g, h, e, 39, 0, XW); SCHED_W_0(45, W5, W0, W1, W2, W3, W4);
437 	R2(a, b, c, d, e, f, g, h, 40, 1, XW); SCHED_W_1(45, W5, W0, W1, W2, W3, W4);
438 	R2(d, a, b, c, h, e, f, g, 41, 2, XW); SCHED_W_2(45, W5, W0, W1, W2, W3, W4);
439 
440 	/* Transform 42-44 + Precalc 48-50 */
441 	R2(c, d, a, b, g, h, e, f, 42, 0, XW); SCHED_W_0(48, W0, W1, W2, W3, W4, W5);
442 	R2(b, c, d, a, f, g, h, e, 43, 1, XW); SCHED_W_1(48, W0, W1, W2, W3, W4, W5);
443 	R2(a, b, c, d, e, f, g, h, 44, 2, XW); SCHED_W_2(48, W0, W1, W2, W3, W4, W5);
444 
445 	/* Transform 45-47 + Precalc 51-53 */
446 	R2(d, a, b, c, h, e, f, g, 45, 0, XW); SCHED_W_0(51, W1, W2, W3, W4, W5, W0);
447 	R2(c, d, a, b, g, h, e, f, 46, 1, XW); SCHED_W_1(51, W1, W2, W3, W4, W5, W0);
448 	R2(b, c, d, a, f, g, h, e, 47, 2, XW); SCHED_W_2(51, W1, W2, W3, W4, W5, W0);
449 
450 	/* Transform 48-50 + Precalc 54-56 */
451 	R2(a, b, c, d, e, f, g, h, 48, 0, XW); SCHED_W_0(54, W2, W3, W4, W5, W0, W1);
452 	R2(d, a, b, c, h, e, f, g, 49, 1, XW); SCHED_W_1(54, W2, W3, W4, W5, W0, W1);
453 	R2(c, d, a, b, g, h, e, f, 50, 2, XW); SCHED_W_2(54, W2, W3, W4, W5, W0, W1);
454 
455 	/* Transform 51-53 + Precalc 57-59 */
456 	R2(b, c, d, a, f, g, h, e, 51, 0, XW); SCHED_W_0(57, W3, W4, W5, W0, W1, W2);
457 	R2(a, b, c, d, e, f, g, h, 52, 1, XW); SCHED_W_1(57, W3, W4, W5, W0, W1, W2);
458 	R2(d, a, b, c, h, e, f, g, 53, 2, XW); SCHED_W_2(57, W3, W4, W5, W0, W1, W2);
459 
460 	/* Transform 54-56 + Precalc 60-62 */
461 	R2(c, d, a, b, g, h, e, f, 54, 0, XW); SCHED_W_0(60, W4, W5, W0, W1, W2, W3);
462 	R2(b, c, d, a, f, g, h, e, 55, 1, XW); SCHED_W_1(60, W4, W5, W0, W1, W2, W3);
463 	R2(a, b, c, d, e, f, g, h, 56, 2, XW); SCHED_W_2(60, W4, W5, W0, W1, W2, W3);
464 
465 	/* Transform 57-59 + Precalc 63 */
466 	R2(d, a, b, c, h, e, f, g, 57, 0, XW); SCHED_W_0(63, W5, W0, W1, W2, W3, W4);
467 	R2(c, d, a, b, g, h, e, f, 58, 1, XW);
468 	R2(b, c, d, a, f, g, h, e, 59, 2, XW); SCHED_W_1(63, W5, W0, W1, W2, W3, W4);
469 
470 	/* Transform 60-62 + Precalc 63 */
471 	R2(a, b, c, d, e, f, g, h, 60, 0, XW);
472 	R2(d, a, b, c, h, e, f, g, 61, 1, XW); SCHED_W_2(63, W5, W0, W1, W2, W3, W4);
473 	R2(c, d, a, b, g, h, e, f, 62, 2, XW);
474 
475 	/* Transform 63 */
476 	R2(b, c, d, a, f, g, h, e, 63, 0, XW);
477 
478 	/* Update the chaining variables. */
479 	xorl state_h0(RSTATE), a;
480 	xorl state_h1(RSTATE), b;
481 	xorl state_h2(RSTATE), c;
482 	xorl state_h3(RSTATE), d;
483 	movl a, state_h0(RSTATE);
484 	movl b, state_h1(RSTATE);
485 	movl c, state_h2(RSTATE);
486 	movl d, state_h3(RSTATE);
487 	xorl state_h4(RSTATE), e;
488 	xorl state_h5(RSTATE), f;
489 	xorl state_h6(RSTATE), g;
490 	xorl state_h7(RSTATE), h;
491 	movl e, state_h4(RSTATE);
492 	movl f, state_h5(RSTATE);
493 	movl g, state_h6(RSTATE);
494 	movl h, state_h7(RSTATE);
495 
496 	cmpq $0, RNBLKS;
497 	jne .Loop;
498 
499 	vzeroall;
500 
501 	movq (STACK_REG_SAVE + 0 * 8)(%rsp), %rbx;
502 	movq (STACK_REG_SAVE + 1 * 8)(%rsp), %r15;
503 	movq (STACK_REG_SAVE + 2 * 8)(%rsp), %r14;
504 	movq (STACK_REG_SAVE + 3 * 8)(%rsp), %r13;
505 	movq (STACK_REG_SAVE + 4 * 8)(%rsp), %r12;
506 
507 	vmovdqa %xmm0, IW_W1_ADDR(0, 0);
508 	vmovdqa %xmm0, IW_W1W2_ADDR(0, 0);
509 	vmovdqa %xmm0, IW_W1_ADDR(4, 0);
510 	vmovdqa %xmm0, IW_W1W2_ADDR(4, 0);
511 	vmovdqa %xmm0, IW_W1_ADDR(8, 0);
512 	vmovdqa %xmm0, IW_W1W2_ADDR(8, 0);
513 
514 	movq %rbp, %rsp;
515 	popq %rbp;
516 	RET;
517 SYM_FUNC_END(sm3_transform_avx)
518