xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1  // SPDX-License-Identifier: GPL-2.0
2  // CAN bus driver for Bosch M_CAN controller
3  // Copyright (C) 2014 Freescale Semiconductor, Inc.
4  //      Dong Aisheng <b29396@freescale.com>
5  // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6  
7  /* Bosch M_CAN user manual can be obtained from:
8   * https://github.com/linux-can/can-doc/tree/master/m_can
9   */
10  
11  #include <linux/bitfield.h>
12  #include <linux/can/dev.h>
13  #include <linux/ethtool.h>
14  #include <linux/hrtimer.h>
15  #include <linux/interrupt.h>
16  #include <linux/io.h>
17  #include <linux/iopoll.h>
18  #include <linux/kernel.h>
19  #include <linux/module.h>
20  #include <linux/netdevice.h>
21  #include <linux/of.h>
22  #include <linux/phy/phy.h>
23  #include <linux/pinctrl/consumer.h>
24  #include <linux/platform_device.h>
25  #include <linux/pm_runtime.h>
26  
27  #include "m_can.h"
28  
29  /* registers definition */
30  enum m_can_reg {
31  	M_CAN_CREL	= 0x0,
32  	M_CAN_ENDN	= 0x4,
33  	M_CAN_CUST	= 0x8,
34  	M_CAN_DBTP	= 0xc,
35  	M_CAN_TEST	= 0x10,
36  	M_CAN_RWD	= 0x14,
37  	M_CAN_CCCR	= 0x18,
38  	M_CAN_NBTP	= 0x1c,
39  	M_CAN_TSCC	= 0x20,
40  	M_CAN_TSCV	= 0x24,
41  	M_CAN_TOCC	= 0x28,
42  	M_CAN_TOCV	= 0x2c,
43  	M_CAN_ECR	= 0x40,
44  	M_CAN_PSR	= 0x44,
45  	/* TDCR Register only available for version >=3.1.x */
46  	M_CAN_TDCR	= 0x48,
47  	M_CAN_IR	= 0x50,
48  	M_CAN_IE	= 0x54,
49  	M_CAN_ILS	= 0x58,
50  	M_CAN_ILE	= 0x5c,
51  	M_CAN_GFC	= 0x80,
52  	M_CAN_SIDFC	= 0x84,
53  	M_CAN_XIDFC	= 0x88,
54  	M_CAN_XIDAM	= 0x90,
55  	M_CAN_HPMS	= 0x94,
56  	M_CAN_NDAT1	= 0x98,
57  	M_CAN_NDAT2	= 0x9c,
58  	M_CAN_RXF0C	= 0xa0,
59  	M_CAN_RXF0S	= 0xa4,
60  	M_CAN_RXF0A	= 0xa8,
61  	M_CAN_RXBC	= 0xac,
62  	M_CAN_RXF1C	= 0xb0,
63  	M_CAN_RXF1S	= 0xb4,
64  	M_CAN_RXF1A	= 0xb8,
65  	M_CAN_RXESC	= 0xbc,
66  	M_CAN_TXBC	= 0xc0,
67  	M_CAN_TXFQS	= 0xc4,
68  	M_CAN_TXESC	= 0xc8,
69  	M_CAN_TXBRP	= 0xcc,
70  	M_CAN_TXBAR	= 0xd0,
71  	M_CAN_TXBCR	= 0xd4,
72  	M_CAN_TXBTO	= 0xd8,
73  	M_CAN_TXBCF	= 0xdc,
74  	M_CAN_TXBTIE	= 0xe0,
75  	M_CAN_TXBCIE	= 0xe4,
76  	M_CAN_TXEFC	= 0xf0,
77  	M_CAN_TXEFS	= 0xf4,
78  	M_CAN_TXEFA	= 0xf8,
79  };
80  
81  /* message ram configuration data length */
82  #define MRAM_CFG_LEN	8
83  
84  /* Core Release Register (CREL) */
85  #define CREL_REL_MASK		GENMASK(31, 28)
86  #define CREL_STEP_MASK		GENMASK(27, 24)
87  #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
88  
89  /* Data Bit Timing & Prescaler Register (DBTP) */
90  #define DBTP_TDC		BIT(23)
91  #define DBTP_DBRP_MASK		GENMASK(20, 16)
92  #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
93  #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
94  #define DBTP_DSJW_MASK		GENMASK(3, 0)
95  
96  /* Transmitter Delay Compensation Register (TDCR) */
97  #define TDCR_TDCO_MASK		GENMASK(14, 8)
98  #define TDCR_TDCF_MASK		GENMASK(6, 0)
99  
100  /* Test Register (TEST) */
101  #define TEST_LBCK		BIT(4)
102  
103  /* CC Control Register (CCCR) */
104  #define CCCR_TXP		BIT(14)
105  #define CCCR_TEST		BIT(7)
106  #define CCCR_DAR		BIT(6)
107  #define CCCR_MON		BIT(5)
108  #define CCCR_CSR		BIT(4)
109  #define CCCR_CSA		BIT(3)
110  #define CCCR_ASM		BIT(2)
111  #define CCCR_CCE		BIT(1)
112  #define CCCR_INIT		BIT(0)
113  /* for version 3.0.x */
114  #define CCCR_CMR_MASK		GENMASK(11, 10)
115  #define CCCR_CMR_CANFD		0x1
116  #define CCCR_CMR_CANFD_BRS	0x2
117  #define CCCR_CMR_CAN		0x3
118  #define CCCR_CME_MASK		GENMASK(9, 8)
119  #define CCCR_CME_CAN		0
120  #define CCCR_CME_CANFD		0x1
121  #define CCCR_CME_CANFD_BRS	0x2
122  /* for version >=3.1.x */
123  #define CCCR_EFBI		BIT(13)
124  #define CCCR_PXHD		BIT(12)
125  #define CCCR_BRSE		BIT(9)
126  #define CCCR_FDOE		BIT(8)
127  /* for version >=3.2.x */
128  #define CCCR_NISO		BIT(15)
129  /* for version >=3.3.x */
130  #define CCCR_WMM		BIT(11)
131  #define CCCR_UTSU		BIT(10)
132  
133  /* Nominal Bit Timing & Prescaler Register (NBTP) */
134  #define NBTP_NSJW_MASK		GENMASK(31, 25)
135  #define NBTP_NBRP_MASK		GENMASK(24, 16)
136  #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
137  #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
138  
139  /* Timestamp Counter Configuration Register (TSCC) */
140  #define TSCC_TCP_MASK		GENMASK(19, 16)
141  #define TSCC_TSS_MASK		GENMASK(1, 0)
142  #define TSCC_TSS_DISABLE	0x0
143  #define TSCC_TSS_INTERNAL	0x1
144  #define TSCC_TSS_EXTERNAL	0x2
145  
146  /* Timestamp Counter Value Register (TSCV) */
147  #define TSCV_TSC_MASK		GENMASK(15, 0)
148  
149  /* Error Counter Register (ECR) */
150  #define ECR_RP			BIT(15)
151  #define ECR_REC_MASK		GENMASK(14, 8)
152  #define ECR_TEC_MASK		GENMASK(7, 0)
153  
154  /* Protocol Status Register (PSR) */
155  #define PSR_BO		BIT(7)
156  #define PSR_EW		BIT(6)
157  #define PSR_EP		BIT(5)
158  #define PSR_LEC_MASK	GENMASK(2, 0)
159  #define PSR_DLEC_MASK	GENMASK(10, 8)
160  
161  /* Interrupt Register (IR) */
162  #define IR_ALL_INT	0xffffffff
163  
164  /* Renamed bits for versions > 3.1.x */
165  #define IR_ARA		BIT(29)
166  #define IR_PED		BIT(28)
167  #define IR_PEA		BIT(27)
168  
169  /* Bits for version 3.0.x */
170  #define IR_STE		BIT(31)
171  #define IR_FOE		BIT(30)
172  #define IR_ACKE		BIT(29)
173  #define IR_BE		BIT(28)
174  #define IR_CRCE		BIT(27)
175  #define IR_WDI		BIT(26)
176  #define IR_BO		BIT(25)
177  #define IR_EW		BIT(24)
178  #define IR_EP		BIT(23)
179  #define IR_ELO		BIT(22)
180  #define IR_BEU		BIT(21)
181  #define IR_BEC		BIT(20)
182  #define IR_DRX		BIT(19)
183  #define IR_TOO		BIT(18)
184  #define IR_MRAF		BIT(17)
185  #define IR_TSW		BIT(16)
186  #define IR_TEFL		BIT(15)
187  #define IR_TEFF		BIT(14)
188  #define IR_TEFW		BIT(13)
189  #define IR_TEFN		BIT(12)
190  #define IR_TFE		BIT(11)
191  #define IR_TCF		BIT(10)
192  #define IR_TC		BIT(9)
193  #define IR_HPM		BIT(8)
194  #define IR_RF1L		BIT(7)
195  #define IR_RF1F		BIT(6)
196  #define IR_RF1W		BIT(5)
197  #define IR_RF1N		BIT(4)
198  #define IR_RF0L		BIT(3)
199  #define IR_RF0F		BIT(2)
200  #define IR_RF0W		BIT(1)
201  #define IR_RF0N		BIT(0)
202  #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
203  
204  /* Interrupts for version 3.0.x */
205  #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206  #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207  			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208  			 IR_RF0L)
209  #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
210  
211  /* Interrupts for version >= 3.1.x */
212  #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
213  #define IR_ERR_BUS_31X	(IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214  			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215  			 IR_RF0L)
216  #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
217  
218  /* Interrupt Line Select (ILS) */
219  #define ILS_ALL_INT0	0x0
220  #define ILS_ALL_INT1	0xFFFFFFFF
221  
222  /* Interrupt Line Enable (ILE) */
223  #define ILE_EINT1	BIT(1)
224  #define ILE_EINT0	BIT(0)
225  
226  /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227  #define RXFC_FWM_MASK	GENMASK(30, 24)
228  #define RXFC_FS_MASK	GENMASK(22, 16)
229  
230  /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231  #define RXFS_RFL	BIT(25)
232  #define RXFS_FF		BIT(24)
233  #define RXFS_FPI_MASK	GENMASK(21, 16)
234  #define RXFS_FGI_MASK	GENMASK(13, 8)
235  #define RXFS_FFL_MASK	GENMASK(6, 0)
236  
237  /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238  #define RXESC_RBDS_MASK		GENMASK(10, 8)
239  #define RXESC_F1DS_MASK		GENMASK(6, 4)
240  #define RXESC_F0DS_MASK		GENMASK(2, 0)
241  #define RXESC_64B		0x7
242  
243  /* Tx Buffer Configuration (TXBC) */
244  #define TXBC_TFQS_MASK		GENMASK(29, 24)
245  #define TXBC_NDTB_MASK		GENMASK(21, 16)
246  
247  /* Tx FIFO/Queue Status (TXFQS) */
248  #define TXFQS_TFQF		BIT(21)
249  #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
250  #define TXFQS_TFGI_MASK		GENMASK(12, 8)
251  #define TXFQS_TFFL_MASK		GENMASK(5, 0)
252  
253  /* Tx Buffer Element Size Configuration (TXESC) */
254  #define TXESC_TBDS_MASK		GENMASK(2, 0)
255  #define TXESC_TBDS_64B		0x7
256  
257  /* Tx Event FIFO Configuration (TXEFC) */
258  #define TXEFC_EFS_MASK		GENMASK(21, 16)
259  
260  /* Tx Event FIFO Status (TXEFS) */
261  #define TXEFS_TEFL		BIT(25)
262  #define TXEFS_EFF		BIT(24)
263  #define TXEFS_EFGI_MASK		GENMASK(12, 8)
264  #define TXEFS_EFFL_MASK		GENMASK(5, 0)
265  
266  /* Tx Event FIFO Acknowledge (TXEFA) */
267  #define TXEFA_EFAI_MASK		GENMASK(4, 0)
268  
269  /* Message RAM Configuration (in bytes) */
270  #define SIDF_ELEMENT_SIZE	4
271  #define XIDF_ELEMENT_SIZE	8
272  #define RXF0_ELEMENT_SIZE	72
273  #define RXF1_ELEMENT_SIZE	72
274  #define RXB_ELEMENT_SIZE	72
275  #define TXE_ELEMENT_SIZE	8
276  #define TXB_ELEMENT_SIZE	72
277  
278  /* Message RAM Elements */
279  #define M_CAN_FIFO_ID		0x0
280  #define M_CAN_FIFO_DLC		0x4
281  #define M_CAN_FIFO_DATA		0x8
282  
283  /* Rx Buffer Element */
284  /* R0 */
285  #define RX_BUF_ESI		BIT(31)
286  #define RX_BUF_XTD		BIT(30)
287  #define RX_BUF_RTR		BIT(29)
288  /* R1 */
289  #define RX_BUF_ANMF		BIT(31)
290  #define RX_BUF_FDF		BIT(21)
291  #define RX_BUF_BRS		BIT(20)
292  #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
293  
294  /* Tx Buffer Element */
295  /* T0 */
296  #define TX_BUF_ESI		BIT(31)
297  #define TX_BUF_XTD		BIT(30)
298  #define TX_BUF_RTR		BIT(29)
299  /* T1 */
300  #define TX_BUF_EFC		BIT(23)
301  #define TX_BUF_FDF		BIT(21)
302  #define TX_BUF_BRS		BIT(20)
303  #define TX_BUF_MM_MASK		GENMASK(31, 24)
304  #define TX_BUF_DLC_MASK		GENMASK(19, 16)
305  
306  /* Tx event FIFO Element */
307  /* E1 */
308  #define TX_EVENT_MM_MASK	GENMASK(31, 24)
309  #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
310  
311  /* Hrtimer polling interval */
312  #define HRTIMER_POLL_INTERVAL_MS		1
313  
314  /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
315   * and we can save a (potentially slow) bus round trip by combining
316   * reads and writes to them.
317   */
318  struct id_and_dlc {
319  	u32 id;
320  	u32 dlc;
321  };
322  
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)323  static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
324  {
325  	return cdev->ops->read_reg(cdev, reg);
326  }
327  
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)328  static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
329  			       u32 val)
330  {
331  	cdev->ops->write_reg(cdev, reg, val);
332  }
333  
334  static int
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset,void * val,size_t val_count)335  m_can_fifo_read(struct m_can_classdev *cdev,
336  		u32 fgi, unsigned int offset, void *val, size_t val_count)
337  {
338  	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339  		offset;
340  
341  	if (val_count == 0)
342  		return 0;
343  
344  	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
345  }
346  
347  static int
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,const void * val,size_t val_count)348  m_can_fifo_write(struct m_can_classdev *cdev,
349  		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
350  {
351  	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
352  		offset;
353  
354  	if (val_count == 0)
355  		return 0;
356  
357  	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
358  }
359  
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)360  static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
361  					  u32 fpi, u32 val)
362  {
363  	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
364  }
365  
366  static int
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset,u32 * val)367  m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
368  {
369  	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
370  		offset;
371  
372  	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
373  }
374  
_m_can_tx_fifo_full(u32 txfqs)375  static inline bool _m_can_tx_fifo_full(u32 txfqs)
376  {
377  	return !!(txfqs & TXFQS_TFQF);
378  }
379  
m_can_tx_fifo_full(struct m_can_classdev * cdev)380  static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
381  {
382  	return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS));
383  }
384  
m_can_config_endisable(struct m_can_classdev * cdev,bool enable)385  static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
386  {
387  	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
388  	u32 timeout = 10;
389  	u32 val = 0;
390  
391  	/* Clear the Clock stop request if it was set */
392  	if (cccr & CCCR_CSR)
393  		cccr &= ~CCCR_CSR;
394  
395  	if (enable) {
396  		/* enable m_can configuration */
397  		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
398  		udelay(5);
399  		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
400  		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
401  	} else {
402  		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
403  	}
404  
405  	/* there's a delay for module initialization */
406  	if (enable)
407  		val = CCCR_INIT | CCCR_CCE;
408  
409  	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
410  		if (timeout == 0) {
411  			netdev_warn(cdev->net, "Failed to init module\n");
412  			return;
413  		}
414  		timeout--;
415  		udelay(1);
416  	}
417  }
418  
m_can_enable_all_interrupts(struct m_can_classdev * cdev)419  static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
420  {
421  	if (!cdev->net->irq) {
422  		dev_dbg(cdev->dev, "Start hrtimer\n");
423  		hrtimer_start(&cdev->hrtimer,
424  			      ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
425  			      HRTIMER_MODE_REL_PINNED);
426  	}
427  
428  	/* Only interrupt line 0 is used in this driver */
429  	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
430  }
431  
m_can_disable_all_interrupts(struct m_can_classdev * cdev)432  static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
433  {
434  	m_can_write(cdev, M_CAN_ILE, 0x0);
435  
436  	if (!cdev->net->irq) {
437  		dev_dbg(cdev->dev, "Stop hrtimer\n");
438  		hrtimer_cancel(&cdev->hrtimer);
439  	}
440  }
441  
442  /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
443   * width.
444   */
m_can_get_timestamp(struct m_can_classdev * cdev)445  static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
446  {
447  	u32 tscv;
448  	u32 tsc;
449  
450  	tscv = m_can_read(cdev, M_CAN_TSCV);
451  	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
452  
453  	return (tsc << 16);
454  }
455  
m_can_clean(struct net_device * net)456  static void m_can_clean(struct net_device *net)
457  {
458  	struct m_can_classdev *cdev = netdev_priv(net);
459  
460  	if (cdev->tx_skb) {
461  		int putidx = 0;
462  
463  		net->stats.tx_errors++;
464  		if (cdev->version > 30)
465  			putidx = FIELD_GET(TXFQS_TFQPI_MASK,
466  					   m_can_read(cdev, M_CAN_TXFQS));
467  
468  		can_free_echo_skb(cdev->net, putidx, NULL);
469  		cdev->tx_skb = NULL;
470  	}
471  }
472  
473  /* For peripherals, pass skb to rx-offload, which will push skb from
474   * napi. For non-peripherals, RX is done in napi already, so push
475   * directly. timestamp is used to ensure good skb ordering in
476   * rx-offload and is ignored for non-peripherals.
477   */
m_can_receive_skb(struct m_can_classdev * cdev,struct sk_buff * skb,u32 timestamp)478  static void m_can_receive_skb(struct m_can_classdev *cdev,
479  			      struct sk_buff *skb,
480  			      u32 timestamp)
481  {
482  	if (cdev->is_peripheral) {
483  		struct net_device_stats *stats = &cdev->net->stats;
484  		int err;
485  
486  		err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
487  						     timestamp);
488  		if (err)
489  			stats->rx_fifo_errors++;
490  	} else {
491  		netif_receive_skb(skb);
492  	}
493  }
494  
m_can_read_fifo(struct net_device * dev,u32 fgi)495  static int m_can_read_fifo(struct net_device *dev, u32 fgi)
496  {
497  	struct net_device_stats *stats = &dev->stats;
498  	struct m_can_classdev *cdev = netdev_priv(dev);
499  	struct canfd_frame *cf;
500  	struct sk_buff *skb;
501  	struct id_and_dlc fifo_header;
502  	u32 timestamp = 0;
503  	int err;
504  
505  	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
506  	if (err)
507  		goto out_fail;
508  
509  	if (fifo_header.dlc & RX_BUF_FDF)
510  		skb = alloc_canfd_skb(dev, &cf);
511  	else
512  		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
513  	if (!skb) {
514  		stats->rx_dropped++;
515  		return 0;
516  	}
517  
518  	if (fifo_header.dlc & RX_BUF_FDF)
519  		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
520  	else
521  		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
522  
523  	if (fifo_header.id & RX_BUF_XTD)
524  		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
525  	else
526  		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
527  
528  	if (fifo_header.id & RX_BUF_ESI) {
529  		cf->flags |= CANFD_ESI;
530  		netdev_dbg(dev, "ESI Error\n");
531  	}
532  
533  	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
534  		cf->can_id |= CAN_RTR_FLAG;
535  	} else {
536  		if (fifo_header.dlc & RX_BUF_BRS)
537  			cf->flags |= CANFD_BRS;
538  
539  		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
540  				      cf->data, DIV_ROUND_UP(cf->len, 4));
541  		if (err)
542  			goto out_free_skb;
543  
544  		stats->rx_bytes += cf->len;
545  	}
546  	stats->rx_packets++;
547  
548  	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
549  
550  	m_can_receive_skb(cdev, skb, timestamp);
551  
552  	return 0;
553  
554  out_free_skb:
555  	kfree_skb(skb);
556  out_fail:
557  	netdev_err(dev, "FIFO read returned %d\n", err);
558  	return err;
559  }
560  
m_can_do_rx_poll(struct net_device * dev,int quota)561  static int m_can_do_rx_poll(struct net_device *dev, int quota)
562  {
563  	struct m_can_classdev *cdev = netdev_priv(dev);
564  	u32 pkts = 0;
565  	u32 rxfs;
566  	u32 rx_count;
567  	u32 fgi;
568  	int ack_fgi = -1;
569  	int i;
570  	int err = 0;
571  
572  	rxfs = m_can_read(cdev, M_CAN_RXF0S);
573  	if (!(rxfs & RXFS_FFL_MASK)) {
574  		netdev_dbg(dev, "no messages in fifo0\n");
575  		return 0;
576  	}
577  
578  	rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
579  	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
580  
581  	for (i = 0; i < rx_count && quota > 0; ++i) {
582  		err = m_can_read_fifo(dev, fgi);
583  		if (err)
584  			break;
585  
586  		quota--;
587  		pkts++;
588  		ack_fgi = fgi;
589  		fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
590  	}
591  
592  	if (ack_fgi != -1)
593  		m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
594  
595  	if (err)
596  		return err;
597  
598  	return pkts;
599  }
600  
m_can_handle_lost_msg(struct net_device * dev)601  static int m_can_handle_lost_msg(struct net_device *dev)
602  {
603  	struct m_can_classdev *cdev = netdev_priv(dev);
604  	struct net_device_stats *stats = &dev->stats;
605  	struct sk_buff *skb;
606  	struct can_frame *frame;
607  	u32 timestamp = 0;
608  
609  	netdev_err(dev, "msg lost in rxf0\n");
610  
611  	stats->rx_errors++;
612  	stats->rx_over_errors++;
613  
614  	skb = alloc_can_err_skb(dev, &frame);
615  	if (unlikely(!skb))
616  		return 0;
617  
618  	frame->can_id |= CAN_ERR_CRTL;
619  	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
620  
621  	if (cdev->is_peripheral)
622  		timestamp = m_can_get_timestamp(cdev);
623  
624  	m_can_receive_skb(cdev, skb, timestamp);
625  
626  	return 1;
627  }
628  
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)629  static int m_can_handle_lec_err(struct net_device *dev,
630  				enum m_can_lec_type lec_type)
631  {
632  	struct m_can_classdev *cdev = netdev_priv(dev);
633  	struct net_device_stats *stats = &dev->stats;
634  	struct can_frame *cf;
635  	struct sk_buff *skb;
636  	u32 timestamp = 0;
637  
638  	cdev->can.can_stats.bus_error++;
639  
640  	/* propagate the error condition to the CAN stack */
641  	skb = alloc_can_err_skb(dev, &cf);
642  
643  	/* check for 'last error code' which tells us the
644  	 * type of the last error to occur on the CAN bus
645  	 */
646  	if (likely(skb))
647  		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
648  
649  	switch (lec_type) {
650  	case LEC_STUFF_ERROR:
651  		netdev_dbg(dev, "stuff error\n");
652  		stats->rx_errors++;
653  		if (likely(skb))
654  			cf->data[2] |= CAN_ERR_PROT_STUFF;
655  		break;
656  	case LEC_FORM_ERROR:
657  		netdev_dbg(dev, "form error\n");
658  		stats->rx_errors++;
659  		if (likely(skb))
660  			cf->data[2] |= CAN_ERR_PROT_FORM;
661  		break;
662  	case LEC_ACK_ERROR:
663  		netdev_dbg(dev, "ack error\n");
664  		stats->tx_errors++;
665  		if (likely(skb))
666  			cf->data[3] = CAN_ERR_PROT_LOC_ACK;
667  		break;
668  	case LEC_BIT1_ERROR:
669  		netdev_dbg(dev, "bit1 error\n");
670  		stats->tx_errors++;
671  		if (likely(skb))
672  			cf->data[2] |= CAN_ERR_PROT_BIT1;
673  		break;
674  	case LEC_BIT0_ERROR:
675  		netdev_dbg(dev, "bit0 error\n");
676  		stats->tx_errors++;
677  		if (likely(skb))
678  			cf->data[2] |= CAN_ERR_PROT_BIT0;
679  		break;
680  	case LEC_CRC_ERROR:
681  		netdev_dbg(dev, "CRC error\n");
682  		stats->rx_errors++;
683  		if (likely(skb))
684  			cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
685  		break;
686  	default:
687  		break;
688  	}
689  
690  	if (unlikely(!skb))
691  		return 0;
692  
693  	if (cdev->is_peripheral)
694  		timestamp = m_can_get_timestamp(cdev);
695  
696  	m_can_receive_skb(cdev, skb, timestamp);
697  
698  	return 1;
699  }
700  
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)701  static int __m_can_get_berr_counter(const struct net_device *dev,
702  				    struct can_berr_counter *bec)
703  {
704  	struct m_can_classdev *cdev = netdev_priv(dev);
705  	unsigned int ecr;
706  
707  	ecr = m_can_read(cdev, M_CAN_ECR);
708  	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
709  	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
710  
711  	return 0;
712  }
713  
m_can_clk_start(struct m_can_classdev * cdev)714  static int m_can_clk_start(struct m_can_classdev *cdev)
715  {
716  	if (cdev->pm_clock_support == 0)
717  		return 0;
718  
719  	return pm_runtime_resume_and_get(cdev->dev);
720  }
721  
m_can_clk_stop(struct m_can_classdev * cdev)722  static void m_can_clk_stop(struct m_can_classdev *cdev)
723  {
724  	if (cdev->pm_clock_support)
725  		pm_runtime_put_sync(cdev->dev);
726  }
727  
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)728  static int m_can_get_berr_counter(const struct net_device *dev,
729  				  struct can_berr_counter *bec)
730  {
731  	struct m_can_classdev *cdev = netdev_priv(dev);
732  	int err;
733  
734  	err = m_can_clk_start(cdev);
735  	if (err)
736  		return err;
737  
738  	__m_can_get_berr_counter(dev, bec);
739  
740  	m_can_clk_stop(cdev);
741  
742  	return 0;
743  }
744  
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)745  static int m_can_handle_state_change(struct net_device *dev,
746  				     enum can_state new_state)
747  {
748  	struct m_can_classdev *cdev = netdev_priv(dev);
749  	struct can_frame *cf;
750  	struct sk_buff *skb;
751  	struct can_berr_counter bec;
752  	unsigned int ecr;
753  	u32 timestamp = 0;
754  
755  	switch (new_state) {
756  	case CAN_STATE_ERROR_WARNING:
757  		/* error warning state */
758  		cdev->can.can_stats.error_warning++;
759  		cdev->can.state = CAN_STATE_ERROR_WARNING;
760  		break;
761  	case CAN_STATE_ERROR_PASSIVE:
762  		/* error passive state */
763  		cdev->can.can_stats.error_passive++;
764  		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
765  		break;
766  	case CAN_STATE_BUS_OFF:
767  		/* bus-off state */
768  		cdev->can.state = CAN_STATE_BUS_OFF;
769  		m_can_disable_all_interrupts(cdev);
770  		cdev->can.can_stats.bus_off++;
771  		can_bus_off(dev);
772  		break;
773  	default:
774  		break;
775  	}
776  
777  	/* propagate the error condition to the CAN stack */
778  	skb = alloc_can_err_skb(dev, &cf);
779  	if (unlikely(!skb))
780  		return 0;
781  
782  	__m_can_get_berr_counter(dev, &bec);
783  
784  	switch (new_state) {
785  	case CAN_STATE_ERROR_WARNING:
786  		/* error warning state */
787  		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
788  		cf->data[1] = (bec.txerr > bec.rxerr) ?
789  			CAN_ERR_CRTL_TX_WARNING :
790  			CAN_ERR_CRTL_RX_WARNING;
791  		cf->data[6] = bec.txerr;
792  		cf->data[7] = bec.rxerr;
793  		break;
794  	case CAN_STATE_ERROR_PASSIVE:
795  		/* error passive state */
796  		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
797  		ecr = m_can_read(cdev, M_CAN_ECR);
798  		if (ecr & ECR_RP)
799  			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
800  		if (bec.txerr > 127)
801  			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
802  		cf->data[6] = bec.txerr;
803  		cf->data[7] = bec.rxerr;
804  		break;
805  	case CAN_STATE_BUS_OFF:
806  		/* bus-off state */
807  		cf->can_id |= CAN_ERR_BUSOFF;
808  		break;
809  	default:
810  		break;
811  	}
812  
813  	if (cdev->is_peripheral)
814  		timestamp = m_can_get_timestamp(cdev);
815  
816  	m_can_receive_skb(cdev, skb, timestamp);
817  
818  	return 1;
819  }
820  
m_can_handle_state_errors(struct net_device * dev,u32 psr)821  static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
822  {
823  	struct m_can_classdev *cdev = netdev_priv(dev);
824  	int work_done = 0;
825  
826  	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
827  		netdev_dbg(dev, "entered error warning state\n");
828  		work_done += m_can_handle_state_change(dev,
829  						       CAN_STATE_ERROR_WARNING);
830  	}
831  
832  	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
833  		netdev_dbg(dev, "entered error passive state\n");
834  		work_done += m_can_handle_state_change(dev,
835  						       CAN_STATE_ERROR_PASSIVE);
836  	}
837  
838  	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
839  		netdev_dbg(dev, "entered error bus off state\n");
840  		work_done += m_can_handle_state_change(dev,
841  						       CAN_STATE_BUS_OFF);
842  	}
843  
844  	return work_done;
845  }
846  
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)847  static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
848  {
849  	if (irqstatus & IR_WDI)
850  		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
851  	if (irqstatus & IR_BEU)
852  		netdev_err(dev, "Bit Error Uncorrected\n");
853  	if (irqstatus & IR_BEC)
854  		netdev_err(dev, "Bit Error Corrected\n");
855  	if (irqstatus & IR_TOO)
856  		netdev_err(dev, "Timeout reached\n");
857  	if (irqstatus & IR_MRAF)
858  		netdev_err(dev, "Message RAM access failure occurred\n");
859  }
860  
is_lec_err(u8 lec)861  static inline bool is_lec_err(u8 lec)
862  {
863  	return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
864  }
865  
m_can_is_protocol_err(u32 irqstatus)866  static inline bool m_can_is_protocol_err(u32 irqstatus)
867  {
868  	return irqstatus & IR_ERR_LEC_31X;
869  }
870  
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)871  static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
872  {
873  	struct net_device_stats *stats = &dev->stats;
874  	struct m_can_classdev *cdev = netdev_priv(dev);
875  	struct can_frame *cf;
876  	struct sk_buff *skb;
877  	u32 timestamp = 0;
878  
879  	/* propagate the error condition to the CAN stack */
880  	skb = alloc_can_err_skb(dev, &cf);
881  
882  	/* update tx error stats since there is protocol error */
883  	stats->tx_errors++;
884  
885  	/* update arbitration lost status */
886  	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
887  		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
888  		cdev->can.can_stats.arbitration_lost++;
889  		if (skb) {
890  			cf->can_id |= CAN_ERR_LOSTARB;
891  			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
892  		}
893  	}
894  
895  	if (unlikely(!skb)) {
896  		netdev_dbg(dev, "allocation of skb failed\n");
897  		return 0;
898  	}
899  
900  	if (cdev->is_peripheral)
901  		timestamp = m_can_get_timestamp(cdev);
902  
903  	m_can_receive_skb(cdev, skb, timestamp);
904  
905  	return 1;
906  }
907  
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)908  static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
909  				   u32 psr)
910  {
911  	struct m_can_classdev *cdev = netdev_priv(dev);
912  	int work_done = 0;
913  
914  	if (irqstatus & IR_RF0L)
915  		work_done += m_can_handle_lost_msg(dev);
916  
917  	/* handle lec errors on the bus */
918  	if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
919  		u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
920  		u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
921  
922  		if (is_lec_err(lec)) {
923  			netdev_dbg(dev, "Arbitration phase error detected\n");
924  			work_done += m_can_handle_lec_err(dev, lec);
925  		}
926  
927  		if (is_lec_err(dlec)) {
928  			netdev_dbg(dev, "Data phase error detected\n");
929  			work_done += m_can_handle_lec_err(dev, dlec);
930  		}
931  	}
932  
933  	/* handle protocol errors in arbitration phase */
934  	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
935  	    m_can_is_protocol_err(irqstatus))
936  		work_done += m_can_handle_protocol_error(dev, irqstatus);
937  
938  	/* other unproccessed error interrupts */
939  	m_can_handle_other_err(dev, irqstatus);
940  
941  	return work_done;
942  }
943  
m_can_rx_handler(struct net_device * dev,int quota,u32 irqstatus)944  static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
945  {
946  	struct m_can_classdev *cdev = netdev_priv(dev);
947  	int rx_work_or_err;
948  	int work_done = 0;
949  
950  	if (!irqstatus)
951  		goto end;
952  
953  	/* Errata workaround for issue "Needless activation of MRAF irq"
954  	 * During frame reception while the MCAN is in Error Passive state
955  	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
956  	 * it may happen that MCAN_IR.MRAF is set although there was no
957  	 * Message RAM access failure.
958  	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
959  	 * The Message RAM Access Failure interrupt routine needs to check
960  	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
961  	 * In this case, reset MCAN_IR.MRAF. No further action is required.
962  	 */
963  	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
964  	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
965  		struct can_berr_counter bec;
966  
967  		__m_can_get_berr_counter(dev, &bec);
968  		if (bec.rxerr == 127) {
969  			m_can_write(cdev, M_CAN_IR, IR_MRAF);
970  			irqstatus &= ~IR_MRAF;
971  		}
972  	}
973  
974  	if (irqstatus & IR_ERR_STATE)
975  		work_done += m_can_handle_state_errors(dev,
976  						       m_can_read(cdev, M_CAN_PSR));
977  
978  	if (irqstatus & IR_ERR_BUS_30X)
979  		work_done += m_can_handle_bus_errors(dev, irqstatus,
980  						     m_can_read(cdev, M_CAN_PSR));
981  
982  	if (irqstatus & IR_RF0N) {
983  		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
984  		if (rx_work_or_err < 0)
985  			return rx_work_or_err;
986  
987  		work_done += rx_work_or_err;
988  	}
989  end:
990  	return work_done;
991  }
992  
m_can_rx_peripheral(struct net_device * dev,u32 irqstatus)993  static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus)
994  {
995  	struct m_can_classdev *cdev = netdev_priv(dev);
996  	int work_done;
997  
998  	work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus);
999  
1000  	/* Don't re-enable interrupts if the driver had a fatal error
1001  	 * (e.g., FIFO read failure).
1002  	 */
1003  	if (work_done < 0)
1004  		m_can_disable_all_interrupts(cdev);
1005  
1006  	return work_done;
1007  }
1008  
m_can_poll(struct napi_struct * napi,int quota)1009  static int m_can_poll(struct napi_struct *napi, int quota)
1010  {
1011  	struct net_device *dev = napi->dev;
1012  	struct m_can_classdev *cdev = netdev_priv(dev);
1013  	int work_done;
1014  	u32 irqstatus;
1015  
1016  	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1017  
1018  	work_done = m_can_rx_handler(dev, quota, irqstatus);
1019  
1020  	/* Don't re-enable interrupts if the driver had a fatal error
1021  	 * (e.g., FIFO read failure).
1022  	 */
1023  	if (work_done >= 0 && work_done < quota) {
1024  		napi_complete_done(napi, work_done);
1025  		m_can_enable_all_interrupts(cdev);
1026  	}
1027  
1028  	return work_done;
1029  }
1030  
1031  /* Echo tx skb and update net stats. Peripherals use rx-offload for
1032   * echo. timestamp is used for peripherals to ensure correct ordering
1033   * by rx-offload, and is ignored for non-peripherals.
1034   */
m_can_tx_update_stats(struct m_can_classdev * cdev,unsigned int msg_mark,u32 timestamp)1035  static void m_can_tx_update_stats(struct m_can_classdev *cdev,
1036  				  unsigned int msg_mark,
1037  				  u32 timestamp)
1038  {
1039  	struct net_device *dev = cdev->net;
1040  	struct net_device_stats *stats = &dev->stats;
1041  
1042  	if (cdev->is_peripheral)
1043  		stats->tx_bytes +=
1044  			can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1045  								    msg_mark,
1046  								    timestamp,
1047  								    NULL);
1048  	else
1049  		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1050  
1051  	stats->tx_packets++;
1052  }
1053  
m_can_echo_tx_event(struct net_device * dev)1054  static int m_can_echo_tx_event(struct net_device *dev)
1055  {
1056  	u32 txe_count = 0;
1057  	u32 m_can_txefs;
1058  	u32 fgi = 0;
1059  	int ack_fgi = -1;
1060  	int i = 0;
1061  	int err = 0;
1062  	unsigned int msg_mark;
1063  
1064  	struct m_can_classdev *cdev = netdev_priv(dev);
1065  
1066  	/* read tx event fifo status */
1067  	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1068  
1069  	/* Get Tx Event fifo element count */
1070  	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1071  	fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1072  
1073  	/* Get and process all sent elements */
1074  	for (i = 0; i < txe_count; i++) {
1075  		u32 txe, timestamp = 0;
1076  
1077  		/* get message marker, timestamp */
1078  		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1079  		if (err) {
1080  			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1081  			break;
1082  		}
1083  
1084  		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1085  		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1086  
1087  		ack_fgi = fgi;
1088  		fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1089  
1090  		/* update stats */
1091  		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1092  	}
1093  
1094  	if (ack_fgi != -1)
1095  		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1096  							  ack_fgi));
1097  
1098  	return err;
1099  }
1100  
m_can_isr(int irq,void * dev_id)1101  static irqreturn_t m_can_isr(int irq, void *dev_id)
1102  {
1103  	struct net_device *dev = (struct net_device *)dev_id;
1104  	struct m_can_classdev *cdev = netdev_priv(dev);
1105  	u32 ir;
1106  
1107  	if (pm_runtime_suspended(cdev->dev))
1108  		return IRQ_NONE;
1109  	ir = m_can_read(cdev, M_CAN_IR);
1110  	if (!ir)
1111  		return IRQ_NONE;
1112  
1113  	/* ACK all irqs */
1114  	m_can_write(cdev, M_CAN_IR, ir);
1115  
1116  	if (cdev->ops->clear_interrupts)
1117  		cdev->ops->clear_interrupts(cdev);
1118  
1119  	/* schedule NAPI in case of
1120  	 * - rx IRQ
1121  	 * - state change IRQ
1122  	 * - bus error IRQ and bus error reporting
1123  	 */
1124  	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1125  		cdev->irqstatus = ir;
1126  		if (!cdev->is_peripheral) {
1127  			m_can_disable_all_interrupts(cdev);
1128  			napi_schedule(&cdev->napi);
1129  		} else if (m_can_rx_peripheral(dev, ir) < 0) {
1130  			goto out_fail;
1131  		}
1132  	}
1133  
1134  	if (cdev->version == 30) {
1135  		if (ir & IR_TC) {
1136  			/* Transmission Complete Interrupt*/
1137  			u32 timestamp = 0;
1138  
1139  			if (cdev->is_peripheral)
1140  				timestamp = m_can_get_timestamp(cdev);
1141  			m_can_tx_update_stats(cdev, 0, timestamp);
1142  			netif_wake_queue(dev);
1143  		}
1144  	} else  {
1145  		if (ir & IR_TEFN) {
1146  			/* New TX FIFO Element arrived */
1147  			if (m_can_echo_tx_event(dev) != 0)
1148  				goto out_fail;
1149  
1150  			if (netif_queue_stopped(dev) &&
1151  			    !m_can_tx_fifo_full(cdev))
1152  				netif_wake_queue(dev);
1153  		}
1154  	}
1155  
1156  	if (cdev->is_peripheral)
1157  		can_rx_offload_threaded_irq_finish(&cdev->offload);
1158  
1159  	return IRQ_HANDLED;
1160  
1161  out_fail:
1162  	m_can_disable_all_interrupts(cdev);
1163  	return IRQ_HANDLED;
1164  }
1165  
1166  static const struct can_bittiming_const m_can_bittiming_const_30X = {
1167  	.name = KBUILD_MODNAME,
1168  	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1169  	.tseg1_max = 64,
1170  	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1171  	.tseg2_max = 16,
1172  	.sjw_max = 16,
1173  	.brp_min = 1,
1174  	.brp_max = 1024,
1175  	.brp_inc = 1,
1176  };
1177  
1178  static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1179  	.name = KBUILD_MODNAME,
1180  	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1181  	.tseg1_max = 16,
1182  	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1183  	.tseg2_max = 8,
1184  	.sjw_max = 4,
1185  	.brp_min = 1,
1186  	.brp_max = 32,
1187  	.brp_inc = 1,
1188  };
1189  
1190  static const struct can_bittiming_const m_can_bittiming_const_31X = {
1191  	.name = KBUILD_MODNAME,
1192  	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1193  	.tseg1_max = 256,
1194  	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1195  	.tseg2_max = 128,
1196  	.sjw_max = 128,
1197  	.brp_min = 1,
1198  	.brp_max = 512,
1199  	.brp_inc = 1,
1200  };
1201  
1202  static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1203  	.name = KBUILD_MODNAME,
1204  	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1205  	.tseg1_max = 32,
1206  	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1207  	.tseg2_max = 16,
1208  	.sjw_max = 16,
1209  	.brp_min = 1,
1210  	.brp_max = 32,
1211  	.brp_inc = 1,
1212  };
1213  
m_can_set_bittiming(struct net_device * dev)1214  static int m_can_set_bittiming(struct net_device *dev)
1215  {
1216  	struct m_can_classdev *cdev = netdev_priv(dev);
1217  	const struct can_bittiming *bt = &cdev->can.bittiming;
1218  	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1219  	u16 brp, sjw, tseg1, tseg2;
1220  	u32 reg_btp;
1221  
1222  	brp = bt->brp - 1;
1223  	sjw = bt->sjw - 1;
1224  	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1225  	tseg2 = bt->phase_seg2 - 1;
1226  	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1227  		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1228  		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1229  		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1230  	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1231  
1232  	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1233  		reg_btp = 0;
1234  		brp = dbt->brp - 1;
1235  		sjw = dbt->sjw - 1;
1236  		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1237  		tseg2 = dbt->phase_seg2 - 1;
1238  
1239  		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1240  		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1241  		 * paper presented at the International CAN Conference 2013
1242  		 */
1243  		if (dbt->bitrate > 2500000) {
1244  			u32 tdco, ssp;
1245  
1246  			/* Use the same value of secondary sampling point
1247  			 * as the data sampling point
1248  			 */
1249  			ssp = dbt->sample_point;
1250  
1251  			/* Equation based on Bosch's M_CAN User Manual's
1252  			 * Transmitter Delay Compensation Section
1253  			 */
1254  			tdco = (cdev->can.clock.freq / 1000) *
1255  				ssp / dbt->bitrate;
1256  
1257  			/* Max valid TDCO value is 127 */
1258  			if (tdco > 127) {
1259  				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1260  					    tdco);
1261  				tdco = 127;
1262  			}
1263  
1264  			reg_btp |= DBTP_TDC;
1265  			m_can_write(cdev, M_CAN_TDCR,
1266  				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1267  		}
1268  
1269  		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1270  			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1271  			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1272  			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1273  
1274  		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1275  	}
1276  
1277  	return 0;
1278  }
1279  
1280  /* Configure M_CAN chip:
1281   * - set rx buffer/fifo element size
1282   * - configure rx fifo
1283   * - accept non-matching frame into fifo 0
1284   * - configure tx buffer
1285   *		- >= v3.1.x: TX FIFO is used
1286   * - configure mode
1287   * - setup bittiming
1288   * - configure timestamp generation
1289   */
m_can_chip_config(struct net_device * dev)1290  static int m_can_chip_config(struct net_device *dev)
1291  {
1292  	struct m_can_classdev *cdev = netdev_priv(dev);
1293  	u32 interrupts = IR_ALL_INT;
1294  	u32 cccr, test;
1295  	int err;
1296  
1297  	err = m_can_init_ram(cdev);
1298  	if (err) {
1299  		dev_err(cdev->dev, "Message RAM configuration failed\n");
1300  		return err;
1301  	}
1302  
1303  	/* Disable unused interrupts */
1304  	interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TEFW | IR_TFE |
1305  			IR_TCF | IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N |
1306  			IR_RF0F | IR_RF0W);
1307  
1308  	m_can_config_endisable(cdev, true);
1309  
1310  	/* RX Buffer/FIFO Element Size 64 bytes data field */
1311  	m_can_write(cdev, M_CAN_RXESC,
1312  		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1313  		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1314  		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1315  
1316  	/* Accept Non-matching Frames Into FIFO 0 */
1317  	m_can_write(cdev, M_CAN_GFC, 0x0);
1318  
1319  	if (cdev->version == 30) {
1320  		/* only support one Tx Buffer currently */
1321  		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1322  			    cdev->mcfg[MRAM_TXB].off);
1323  	} else {
1324  		/* TX FIFO is used for newer IP Core versions */
1325  		m_can_write(cdev, M_CAN_TXBC,
1326  			    FIELD_PREP(TXBC_TFQS_MASK,
1327  				       cdev->mcfg[MRAM_TXB].num) |
1328  			    cdev->mcfg[MRAM_TXB].off);
1329  	}
1330  
1331  	/* support 64 bytes payload */
1332  	m_can_write(cdev, M_CAN_TXESC,
1333  		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1334  
1335  	/* TX Event FIFO */
1336  	if (cdev->version == 30) {
1337  		m_can_write(cdev, M_CAN_TXEFC,
1338  			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1339  			    cdev->mcfg[MRAM_TXE].off);
1340  	} else {
1341  		/* Full TX Event FIFO is used */
1342  		m_can_write(cdev, M_CAN_TXEFC,
1343  			    FIELD_PREP(TXEFC_EFS_MASK,
1344  				       cdev->mcfg[MRAM_TXE].num) |
1345  			    cdev->mcfg[MRAM_TXE].off);
1346  	}
1347  
1348  	/* rx fifo configuration, blocking mode, fifo size 1 */
1349  	m_can_write(cdev, M_CAN_RXF0C,
1350  		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1351  		    cdev->mcfg[MRAM_RXF0].off);
1352  
1353  	m_can_write(cdev, M_CAN_RXF1C,
1354  		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1355  		    cdev->mcfg[MRAM_RXF1].off);
1356  
1357  	cccr = m_can_read(cdev, M_CAN_CCCR);
1358  	test = m_can_read(cdev, M_CAN_TEST);
1359  	test &= ~TEST_LBCK;
1360  	if (cdev->version == 30) {
1361  		/* Version 3.0.x */
1362  
1363  		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1364  			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1365  			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1366  
1367  		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1368  			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1369  
1370  	} else {
1371  		/* Version 3.1.x or 3.2.x */
1372  		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1373  			  CCCR_NISO | CCCR_DAR);
1374  
1375  		/* Only 3.2.x has NISO Bit implemented */
1376  		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1377  			cccr |= CCCR_NISO;
1378  
1379  		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1380  			cccr |= (CCCR_BRSE | CCCR_FDOE);
1381  	}
1382  
1383  	/* Loopback Mode */
1384  	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1385  		cccr |= CCCR_TEST | CCCR_MON;
1386  		test |= TEST_LBCK;
1387  	}
1388  
1389  	/* Enable Monitoring (all versions) */
1390  	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1391  		cccr |= CCCR_MON;
1392  
1393  	/* Disable Auto Retransmission (all versions) */
1394  	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1395  		cccr |= CCCR_DAR;
1396  
1397  	/* Write config */
1398  	m_can_write(cdev, M_CAN_CCCR, cccr);
1399  	m_can_write(cdev, M_CAN_TEST, test);
1400  
1401  	/* Enable interrupts */
1402  	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1403  		if (cdev->version == 30)
1404  			interrupts &= ~(IR_ERR_LEC_30X);
1405  		else
1406  			interrupts &= ~(IR_ERR_LEC_31X);
1407  	}
1408  	m_can_write(cdev, M_CAN_IE, interrupts);
1409  
1410  	/* route all interrupts to INT0 */
1411  	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1412  
1413  	/* set bittiming params */
1414  	m_can_set_bittiming(dev);
1415  
1416  	/* enable internal timestamp generation, with a prescaler of 16. The
1417  	 * prescaler is applied to the nominal bit timing
1418  	 */
1419  	m_can_write(cdev, M_CAN_TSCC,
1420  		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1421  		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1422  
1423  	m_can_config_endisable(cdev, false);
1424  
1425  	if (cdev->ops->init)
1426  		cdev->ops->init(cdev);
1427  
1428  	return 0;
1429  }
1430  
m_can_start(struct net_device * dev)1431  static int m_can_start(struct net_device *dev)
1432  {
1433  	struct m_can_classdev *cdev = netdev_priv(dev);
1434  	int ret;
1435  
1436  	/* basic m_can configuration */
1437  	ret = m_can_chip_config(dev);
1438  	if (ret)
1439  		return ret;
1440  
1441  	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1442  
1443  	m_can_enable_all_interrupts(cdev);
1444  
1445  	return 0;
1446  }
1447  
m_can_set_mode(struct net_device * dev,enum can_mode mode)1448  static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1449  {
1450  	switch (mode) {
1451  	case CAN_MODE_START:
1452  		m_can_clean(dev);
1453  		m_can_start(dev);
1454  		netif_wake_queue(dev);
1455  		break;
1456  	default:
1457  		return -EOPNOTSUPP;
1458  	}
1459  
1460  	return 0;
1461  }
1462  
1463  /* Checks core release number of M_CAN
1464   * returns 0 if an unsupported device is detected
1465   * else it returns the release and step coded as:
1466   * return value = 10 * <release> + 1 * <step>
1467   */
m_can_check_core_release(struct m_can_classdev * cdev)1468  static int m_can_check_core_release(struct m_can_classdev *cdev)
1469  {
1470  	u32 crel_reg;
1471  	u8 rel;
1472  	u8 step;
1473  	int res;
1474  
1475  	/* Read Core Release Version and split into version number
1476  	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1477  	 */
1478  	crel_reg = m_can_read(cdev, M_CAN_CREL);
1479  	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1480  	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1481  
1482  	if (rel == 3) {
1483  		/* M_CAN v3.x.y: create return value */
1484  		res = 30 + step;
1485  	} else {
1486  		/* Unsupported M_CAN version */
1487  		res = 0;
1488  	}
1489  
1490  	return res;
1491  }
1492  
1493  /* Selectable Non ISO support only in version 3.2.x
1494   * This function checks if the bit is writable.
1495   */
m_can_niso_supported(struct m_can_classdev * cdev)1496  static bool m_can_niso_supported(struct m_can_classdev *cdev)
1497  {
1498  	u32 cccr_reg, cccr_poll = 0;
1499  	int niso_timeout = -ETIMEDOUT;
1500  	int i;
1501  
1502  	m_can_config_endisable(cdev, true);
1503  	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1504  	cccr_reg |= CCCR_NISO;
1505  	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1506  
1507  	for (i = 0; i <= 10; i++) {
1508  		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1509  		if (cccr_poll == cccr_reg) {
1510  			niso_timeout = 0;
1511  			break;
1512  		}
1513  
1514  		usleep_range(1, 5);
1515  	}
1516  
1517  	/* Clear NISO */
1518  	cccr_reg &= ~(CCCR_NISO);
1519  	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1520  
1521  	m_can_config_endisable(cdev, false);
1522  
1523  	/* return false if time out (-ETIMEDOUT), else return true */
1524  	return !niso_timeout;
1525  }
1526  
m_can_dev_setup(struct m_can_classdev * cdev)1527  static int m_can_dev_setup(struct m_can_classdev *cdev)
1528  {
1529  	struct net_device *dev = cdev->net;
1530  	int m_can_version, err;
1531  
1532  	m_can_version = m_can_check_core_release(cdev);
1533  	/* return if unsupported version */
1534  	if (!m_can_version) {
1535  		dev_err(cdev->dev, "Unsupported version number: %2d",
1536  			m_can_version);
1537  		return -EINVAL;
1538  	}
1539  
1540  	if (!cdev->is_peripheral)
1541  		netif_napi_add(dev, &cdev->napi, m_can_poll);
1542  
1543  	/* Shared properties of all M_CAN versions */
1544  	cdev->version = m_can_version;
1545  	cdev->can.do_set_mode = m_can_set_mode;
1546  	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1547  
1548  	/* Set M_CAN supported operations */
1549  	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1550  		CAN_CTRLMODE_LISTENONLY |
1551  		CAN_CTRLMODE_BERR_REPORTING |
1552  		CAN_CTRLMODE_FD |
1553  		CAN_CTRLMODE_ONE_SHOT;
1554  
1555  	/* Set properties depending on M_CAN version */
1556  	switch (cdev->version) {
1557  	case 30:
1558  		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1559  		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1560  		if (err)
1561  			return err;
1562  		cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1563  		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1564  		break;
1565  	case 31:
1566  		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1567  		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1568  		if (err)
1569  			return err;
1570  		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1571  		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1572  		break;
1573  	case 32:
1574  	case 33:
1575  		/* Support both MCAN version v3.2.x and v3.3.0 */
1576  		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1577  		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1578  
1579  		cdev->can.ctrlmode_supported |=
1580  			(m_can_niso_supported(cdev) ?
1581  			 CAN_CTRLMODE_FD_NON_ISO : 0);
1582  		break;
1583  	default:
1584  		dev_err(cdev->dev, "Unsupported version number: %2d",
1585  			cdev->version);
1586  		return -EINVAL;
1587  	}
1588  
1589  	if (cdev->ops->init)
1590  		cdev->ops->init(cdev);
1591  
1592  	return 0;
1593  }
1594  
m_can_stop(struct net_device * dev)1595  static void m_can_stop(struct net_device *dev)
1596  {
1597  	struct m_can_classdev *cdev = netdev_priv(dev);
1598  
1599  	/* disable all interrupts */
1600  	m_can_disable_all_interrupts(cdev);
1601  
1602  	/* Set init mode to disengage from the network */
1603  	m_can_config_endisable(cdev, true);
1604  
1605  	/* set the state as STOPPED */
1606  	cdev->can.state = CAN_STATE_STOPPED;
1607  }
1608  
m_can_close(struct net_device * dev)1609  static int m_can_close(struct net_device *dev)
1610  {
1611  	struct m_can_classdev *cdev = netdev_priv(dev);
1612  
1613  	netif_stop_queue(dev);
1614  
1615  	m_can_stop(dev);
1616  	if (dev->irq)
1617  		free_irq(dev->irq, dev);
1618  
1619  	if (cdev->is_peripheral) {
1620  		cdev->tx_skb = NULL;
1621  		destroy_workqueue(cdev->tx_wq);
1622  		cdev->tx_wq = NULL;
1623  		can_rx_offload_disable(&cdev->offload);
1624  	} else {
1625  		napi_disable(&cdev->napi);
1626  	}
1627  
1628  	close_candev(dev);
1629  
1630  	m_can_clk_stop(cdev);
1631  	phy_power_off(cdev->transceiver);
1632  
1633  	return 0;
1634  }
1635  
m_can_next_echo_skb_occupied(struct net_device * dev,int putidx)1636  static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1637  {
1638  	struct m_can_classdev *cdev = netdev_priv(dev);
1639  	/*get wrap around for loopback skb index */
1640  	unsigned int wrap = cdev->can.echo_skb_max;
1641  	int next_idx;
1642  
1643  	/* calculate next index */
1644  	next_idx = (++putidx >= wrap ? 0 : putidx);
1645  
1646  	/* check if occupied */
1647  	return !!cdev->can.echo_skb[next_idx];
1648  }
1649  
m_can_tx_handler(struct m_can_classdev * cdev)1650  static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1651  {
1652  	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1653  	struct net_device *dev = cdev->net;
1654  	struct sk_buff *skb = cdev->tx_skb;
1655  	struct id_and_dlc fifo_header;
1656  	u32 cccr, fdflags;
1657  	u32 txfqs;
1658  	int err;
1659  	int putidx;
1660  
1661  	cdev->tx_skb = NULL;
1662  
1663  	/* Generate ID field for TX buffer Element */
1664  	/* Common to all supported M_CAN versions */
1665  	if (cf->can_id & CAN_EFF_FLAG) {
1666  		fifo_header.id = cf->can_id & CAN_EFF_MASK;
1667  		fifo_header.id |= TX_BUF_XTD;
1668  	} else {
1669  		fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1670  	}
1671  
1672  	if (cf->can_id & CAN_RTR_FLAG)
1673  		fifo_header.id |= TX_BUF_RTR;
1674  
1675  	if (cdev->version == 30) {
1676  		netif_stop_queue(dev);
1677  
1678  		fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1679  
1680  		/* Write the frame ID, DLC, and payload to the FIFO element. */
1681  		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1682  		if (err)
1683  			goto out_fail;
1684  
1685  		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1686  				       cf->data, DIV_ROUND_UP(cf->len, 4));
1687  		if (err)
1688  			goto out_fail;
1689  
1690  		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1691  			cccr = m_can_read(cdev, M_CAN_CCCR);
1692  			cccr &= ~CCCR_CMR_MASK;
1693  			if (can_is_canfd_skb(skb)) {
1694  				if (cf->flags & CANFD_BRS)
1695  					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1696  							   CCCR_CMR_CANFD_BRS);
1697  				else
1698  					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1699  							   CCCR_CMR_CANFD);
1700  			} else {
1701  				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1702  			}
1703  			m_can_write(cdev, M_CAN_CCCR, cccr);
1704  		}
1705  		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1706  
1707  		can_put_echo_skb(skb, dev, 0, 0);
1708  
1709  		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1710  		/* End of xmit function for version 3.0.x */
1711  	} else {
1712  		/* Transmit routine for version >= v3.1.x */
1713  
1714  		txfqs = m_can_read(cdev, M_CAN_TXFQS);
1715  
1716  		/* Check if FIFO full */
1717  		if (_m_can_tx_fifo_full(txfqs)) {
1718  			/* This shouldn't happen */
1719  			netif_stop_queue(dev);
1720  			netdev_warn(dev,
1721  				    "TX queue active although FIFO is full.");
1722  
1723  			if (cdev->is_peripheral) {
1724  				kfree_skb(skb);
1725  				dev->stats.tx_dropped++;
1726  				return NETDEV_TX_OK;
1727  			} else {
1728  				return NETDEV_TX_BUSY;
1729  			}
1730  		}
1731  
1732  		/* get put index for frame */
1733  		putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs);
1734  
1735  		/* Construct DLC Field, with CAN-FD configuration.
1736  		 * Use the put index of the fifo as the message marker,
1737  		 * used in the TX interrupt for sending the correct echo frame.
1738  		 */
1739  
1740  		/* get CAN FD configuration of frame */
1741  		fdflags = 0;
1742  		if (can_is_canfd_skb(skb)) {
1743  			fdflags |= TX_BUF_FDF;
1744  			if (cf->flags & CANFD_BRS)
1745  				fdflags |= TX_BUF_BRS;
1746  		}
1747  
1748  		fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1749  			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1750  			fdflags | TX_BUF_EFC;
1751  		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1752  		if (err)
1753  			goto out_fail;
1754  
1755  		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1756  				       cf->data, DIV_ROUND_UP(cf->len, 4));
1757  		if (err)
1758  			goto out_fail;
1759  
1760  		/* Push loopback echo.
1761  		 * Will be looped back on TX interrupt based on message marker
1762  		 */
1763  		can_put_echo_skb(skb, dev, putidx, 0);
1764  
1765  		/* Enable TX FIFO element to start transfer  */
1766  		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1767  
1768  		/* stop network queue if fifo full */
1769  		if (m_can_tx_fifo_full(cdev) ||
1770  		    m_can_next_echo_skb_occupied(dev, putidx))
1771  			netif_stop_queue(dev);
1772  	}
1773  
1774  	return NETDEV_TX_OK;
1775  
1776  out_fail:
1777  	netdev_err(dev, "FIFO write returned %d\n", err);
1778  	m_can_disable_all_interrupts(cdev);
1779  	return NETDEV_TX_BUSY;
1780  }
1781  
m_can_tx_work_queue(struct work_struct * ws)1782  static void m_can_tx_work_queue(struct work_struct *ws)
1783  {
1784  	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1785  						   tx_work);
1786  
1787  	m_can_tx_handler(cdev);
1788  }
1789  
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)1790  static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1791  				    struct net_device *dev)
1792  {
1793  	struct m_can_classdev *cdev = netdev_priv(dev);
1794  
1795  	if (can_dev_dropped_skb(dev, skb))
1796  		return NETDEV_TX_OK;
1797  
1798  	if (cdev->is_peripheral) {
1799  		if (cdev->tx_skb) {
1800  			netdev_err(dev, "hard_xmit called while tx busy\n");
1801  			return NETDEV_TX_BUSY;
1802  		}
1803  
1804  		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1805  			m_can_clean(dev);
1806  		} else {
1807  			/* Need to stop the queue to avoid numerous requests
1808  			 * from being sent.  Suggested improvement is to create
1809  			 * a queueing mechanism that will queue the skbs and
1810  			 * process them in order.
1811  			 */
1812  			cdev->tx_skb = skb;
1813  			netif_stop_queue(cdev->net);
1814  			queue_work(cdev->tx_wq, &cdev->tx_work);
1815  		}
1816  	} else {
1817  		cdev->tx_skb = skb;
1818  		return m_can_tx_handler(cdev);
1819  	}
1820  
1821  	return NETDEV_TX_OK;
1822  }
1823  
hrtimer_callback(struct hrtimer * timer)1824  static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
1825  {
1826  	struct m_can_classdev *cdev = container_of(timer, struct
1827  						   m_can_classdev, hrtimer);
1828  
1829  	m_can_isr(0, cdev->net);
1830  
1831  	hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
1832  
1833  	return HRTIMER_RESTART;
1834  }
1835  
m_can_open(struct net_device * dev)1836  static int m_can_open(struct net_device *dev)
1837  {
1838  	struct m_can_classdev *cdev = netdev_priv(dev);
1839  	int err;
1840  
1841  	err = phy_power_on(cdev->transceiver);
1842  	if (err)
1843  		return err;
1844  
1845  	err = m_can_clk_start(cdev);
1846  	if (err)
1847  		goto out_phy_power_off;
1848  
1849  	/* open the can device */
1850  	err = open_candev(dev);
1851  	if (err) {
1852  		netdev_err(dev, "failed to open can device\n");
1853  		goto exit_disable_clks;
1854  	}
1855  
1856  	if (cdev->is_peripheral)
1857  		can_rx_offload_enable(&cdev->offload);
1858  	else
1859  		napi_enable(&cdev->napi);
1860  
1861  	/* register interrupt handler */
1862  	if (cdev->is_peripheral) {
1863  		cdev->tx_skb = NULL;
1864  		cdev->tx_wq = alloc_workqueue("mcan_wq",
1865  					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1866  		if (!cdev->tx_wq) {
1867  			err = -ENOMEM;
1868  			goto out_wq_fail;
1869  		}
1870  
1871  		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1872  
1873  		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1874  					   IRQF_ONESHOT,
1875  					   dev->name, dev);
1876  	} else if (dev->irq) {
1877  		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1878  				  dev);
1879  	}
1880  
1881  	if (err < 0) {
1882  		netdev_err(dev, "failed to request interrupt\n");
1883  		goto exit_irq_fail;
1884  	}
1885  
1886  	/* start the m_can controller */
1887  	err = m_can_start(dev);
1888  	if (err)
1889  		goto exit_start_fail;
1890  
1891  	netif_start_queue(dev);
1892  
1893  	return 0;
1894  
1895  exit_start_fail:
1896  	if (cdev->is_peripheral || dev->irq)
1897  		free_irq(dev->irq, dev);
1898  exit_irq_fail:
1899  	if (cdev->is_peripheral)
1900  		destroy_workqueue(cdev->tx_wq);
1901  out_wq_fail:
1902  	if (cdev->is_peripheral)
1903  		can_rx_offload_disable(&cdev->offload);
1904  	else
1905  		napi_disable(&cdev->napi);
1906  	close_candev(dev);
1907  exit_disable_clks:
1908  	m_can_clk_stop(cdev);
1909  out_phy_power_off:
1910  	phy_power_off(cdev->transceiver);
1911  	return err;
1912  }
1913  
1914  static const struct net_device_ops m_can_netdev_ops = {
1915  	.ndo_open = m_can_open,
1916  	.ndo_stop = m_can_close,
1917  	.ndo_start_xmit = m_can_start_xmit,
1918  	.ndo_change_mtu = can_change_mtu,
1919  };
1920  
1921  static const struct ethtool_ops m_can_ethtool_ops = {
1922  	.get_ts_info = ethtool_op_get_ts_info,
1923  };
1924  
register_m_can_dev(struct net_device * dev)1925  static int register_m_can_dev(struct net_device *dev)
1926  {
1927  	dev->flags |= IFF_ECHO;	/* we support local echo */
1928  	dev->netdev_ops = &m_can_netdev_ops;
1929  	dev->ethtool_ops = &m_can_ethtool_ops;
1930  
1931  	return register_candev(dev);
1932  }
1933  
m_can_check_mram_cfg(struct m_can_classdev * cdev,u32 mram_max_size)1934  int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
1935  {
1936  	u32 total_size;
1937  
1938  	total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
1939  			cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1940  	if (total_size > mram_max_size) {
1941  		dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
1942  			total_size, mram_max_size);
1943  		return -EINVAL;
1944  	}
1945  
1946  	return 0;
1947  }
1948  EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
1949  
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)1950  static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1951  				const u32 *mram_config_vals)
1952  {
1953  	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1954  	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1955  	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1956  		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1957  	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1958  	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1959  		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1960  	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1961  		FIELD_MAX(RXFC_FS_MASK);
1962  	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1963  		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1964  	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1965  		FIELD_MAX(RXFC_FS_MASK);
1966  	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1967  		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1968  	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1969  	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1970  		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1971  	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1972  	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1973  		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1974  	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1975  		FIELD_MAX(TXBC_NDTB_MASK);
1976  
1977  	dev_dbg(cdev->dev,
1978  		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1979  		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1980  		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1981  		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1982  		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1983  		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1984  		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1985  		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1986  }
1987  
m_can_init_ram(struct m_can_classdev * cdev)1988  int m_can_init_ram(struct m_can_classdev *cdev)
1989  {
1990  	int end, i, start;
1991  	int err = 0;
1992  
1993  	/* initialize the entire Message RAM in use to avoid possible
1994  	 * ECC/parity checksum errors when reading an uninitialized buffer
1995  	 */
1996  	start = cdev->mcfg[MRAM_SIDF].off;
1997  	end = cdev->mcfg[MRAM_TXB].off +
1998  		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1999  
2000  	for (i = start; i < end; i += 4) {
2001  		err = m_can_fifo_write_no_off(cdev, i, 0x0);
2002  		if (err)
2003  			break;
2004  	}
2005  
2006  	return err;
2007  }
2008  EXPORT_SYMBOL_GPL(m_can_init_ram);
2009  
m_can_class_get_clocks(struct m_can_classdev * cdev)2010  int m_can_class_get_clocks(struct m_can_classdev *cdev)
2011  {
2012  	int ret = 0;
2013  
2014  	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2015  	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2016  
2017  	if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2018  		dev_err(cdev->dev, "no clock found\n");
2019  		ret = -ENODEV;
2020  	}
2021  
2022  	return ret;
2023  }
2024  EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2025  
m_can_class_allocate_dev(struct device * dev,int sizeof_priv)2026  struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2027  						int sizeof_priv)
2028  {
2029  	struct m_can_classdev *class_dev = NULL;
2030  	u32 mram_config_vals[MRAM_CFG_LEN];
2031  	struct net_device *net_dev;
2032  	u32 tx_fifo_size;
2033  	int ret;
2034  
2035  	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2036  					     "bosch,mram-cfg",
2037  					     mram_config_vals,
2038  					     sizeof(mram_config_vals) / 4);
2039  	if (ret) {
2040  		dev_err(dev, "Could not get Message RAM configuration.");
2041  		goto out;
2042  	}
2043  
2044  	/* Get TX FIFO size
2045  	 * Defines the total amount of echo buffers for loopback
2046  	 */
2047  	tx_fifo_size = mram_config_vals[7];
2048  
2049  	/* allocate the m_can device */
2050  	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2051  	if (!net_dev) {
2052  		dev_err(dev, "Failed to allocate CAN device");
2053  		goto out;
2054  	}
2055  
2056  	class_dev = netdev_priv(net_dev);
2057  	class_dev->net = net_dev;
2058  	class_dev->dev = dev;
2059  	SET_NETDEV_DEV(net_dev, dev);
2060  
2061  	m_can_of_parse_mram(class_dev, mram_config_vals);
2062  out:
2063  	return class_dev;
2064  }
2065  EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2066  
m_can_class_free_dev(struct net_device * net)2067  void m_can_class_free_dev(struct net_device *net)
2068  {
2069  	free_candev(net);
2070  }
2071  EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2072  
m_can_class_register(struct m_can_classdev * cdev)2073  int m_can_class_register(struct m_can_classdev *cdev)
2074  {
2075  	int ret;
2076  
2077  	if (cdev->pm_clock_support) {
2078  		ret = m_can_clk_start(cdev);
2079  		if (ret)
2080  			return ret;
2081  	}
2082  
2083  	if (cdev->is_peripheral) {
2084  		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2085  						NAPI_POLL_WEIGHT);
2086  		if (ret)
2087  			goto clk_disable;
2088  	}
2089  
2090  	if (!cdev->net->irq)
2091  		cdev->hrtimer.function = &hrtimer_callback;
2092  
2093  	ret = m_can_dev_setup(cdev);
2094  	if (ret)
2095  		goto rx_offload_del;
2096  
2097  	ret = register_m_can_dev(cdev->net);
2098  	if (ret) {
2099  		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2100  			cdev->net->name, ret);
2101  		goto rx_offload_del;
2102  	}
2103  
2104  	of_can_transceiver(cdev->net);
2105  
2106  	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2107  		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2108  
2109  	/* Probe finished
2110  	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2111  	 */
2112  	m_can_clk_stop(cdev);
2113  
2114  	return 0;
2115  
2116  rx_offload_del:
2117  	if (cdev->is_peripheral)
2118  		can_rx_offload_del(&cdev->offload);
2119  clk_disable:
2120  	m_can_clk_stop(cdev);
2121  
2122  	return ret;
2123  }
2124  EXPORT_SYMBOL_GPL(m_can_class_register);
2125  
m_can_class_unregister(struct m_can_classdev * cdev)2126  void m_can_class_unregister(struct m_can_classdev *cdev)
2127  {
2128  	if (cdev->is_peripheral)
2129  		can_rx_offload_del(&cdev->offload);
2130  	unregister_candev(cdev->net);
2131  }
2132  EXPORT_SYMBOL_GPL(m_can_class_unregister);
2133  
m_can_class_suspend(struct device * dev)2134  int m_can_class_suspend(struct device *dev)
2135  {
2136  	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2137  	struct net_device *ndev = cdev->net;
2138  
2139  	if (netif_running(ndev)) {
2140  		netif_stop_queue(ndev);
2141  		netif_device_detach(ndev);
2142  		m_can_stop(ndev);
2143  		m_can_clk_stop(cdev);
2144  	}
2145  
2146  	pinctrl_pm_select_sleep_state(dev);
2147  
2148  	cdev->can.state = CAN_STATE_SLEEPING;
2149  
2150  	return 0;
2151  }
2152  EXPORT_SYMBOL_GPL(m_can_class_suspend);
2153  
m_can_class_resume(struct device * dev)2154  int m_can_class_resume(struct device *dev)
2155  {
2156  	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2157  	struct net_device *ndev = cdev->net;
2158  
2159  	pinctrl_pm_select_default_state(dev);
2160  
2161  	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2162  
2163  	if (netif_running(ndev)) {
2164  		int ret;
2165  
2166  		ret = m_can_clk_start(cdev);
2167  		if (ret)
2168  			return ret;
2169  		ret  = m_can_start(ndev);
2170  		if (ret) {
2171  			m_can_clk_stop(cdev);
2172  
2173  			return ret;
2174  		}
2175  
2176  		netif_device_attach(ndev);
2177  		netif_start_queue(ndev);
2178  	}
2179  
2180  	return 0;
2181  }
2182  EXPORT_SYMBOL_GPL(m_can_class_resume);
2183  
2184  MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2185  MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2186  MODULE_LICENSE("GPL v2");
2187  MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2188