xref: /openbmc/u-boot/common/dlmalloc.c (revision ee038c58d5196dc2eb2be7e08e766c50a7bc2619)
1  #include <common.h>
2  
3  #if defined(CONFIG_UNIT_TEST)
4  #define DEBUG
5  #endif
6  
7  #include <malloc.h>
8  #include <asm/io.h>
9  
10  #ifdef DEBUG
11  #if __STD_C
12  static void malloc_update_mallinfo (void);
13  void malloc_stats (void);
14  #else
15  static void malloc_update_mallinfo ();
16  void malloc_stats();
17  #endif
18  #endif	/* DEBUG */
19  
20  DECLARE_GLOBAL_DATA_PTR;
21  
22  /*
23    Emulation of sbrk for WIN32
24    All code within the ifdef WIN32 is untested by me.
25  
26    Thanks to Martin Fong and others for supplying this.
27  */
28  
29  
30  #ifdef WIN32
31  
32  #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
33  ~(malloc_getpagesize-1))
34  #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
35  
36  /* resrve 64MB to insure large contiguous space */
37  #define RESERVED_SIZE (1024*1024*64)
38  #define NEXT_SIZE (2048*1024)
39  #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
40  
41  struct GmListElement;
42  typedef struct GmListElement GmListElement;
43  
44  struct GmListElement
45  {
46  	GmListElement* next;
47  	void* base;
48  };
49  
50  static GmListElement* head = 0;
51  static unsigned int gNextAddress = 0;
52  static unsigned int gAddressBase = 0;
53  static unsigned int gAllocatedSize = 0;
54  
55  static
makeGmListElement(void * bas)56  GmListElement* makeGmListElement (void* bas)
57  {
58  	GmListElement* this;
59  	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
60  	assert (this);
61  	if (this)
62  	{
63  		this->base = bas;
64  		this->next = head;
65  		head = this;
66  	}
67  	return this;
68  }
69  
gcleanup()70  void gcleanup ()
71  {
72  	BOOL rval;
73  	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
74  	if (gAddressBase && (gNextAddress - gAddressBase))
75  	{
76  		rval = VirtualFree ((void*)gAddressBase,
77  							gNextAddress - gAddressBase,
78  							MEM_DECOMMIT);
79  	assert (rval);
80  	}
81  	while (head)
82  	{
83  		GmListElement* next = head->next;
84  		rval = VirtualFree (head->base, 0, MEM_RELEASE);
85  		assert (rval);
86  		LocalFree (head);
87  		head = next;
88  	}
89  }
90  
91  static
findRegion(void * start_address,unsigned long size)92  void* findRegion (void* start_address, unsigned long size)
93  {
94  	MEMORY_BASIC_INFORMATION info;
95  	if (size >= TOP_MEMORY) return NULL;
96  
97  	while ((unsigned long)start_address + size < TOP_MEMORY)
98  	{
99  		VirtualQuery (start_address, &info, sizeof (info));
100  		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
101  			return start_address;
102  		else
103  		{
104  			/* Requested region is not available so see if the */
105  			/* next region is available.  Set 'start_address' */
106  			/* to the next region and call 'VirtualQuery()' */
107  			/* again. */
108  
109  			start_address = (char*)info.BaseAddress + info.RegionSize;
110  
111  			/* Make sure we start looking for the next region */
112  			/* on the *next* 64K boundary.  Otherwise, even if */
113  			/* the new region is free according to */
114  			/* 'VirtualQuery()', the subsequent call to */
115  			/* 'VirtualAlloc()' (which follows the call to */
116  			/* this routine in 'wsbrk()') will round *down* */
117  			/* the requested address to a 64K boundary which */
118  			/* we already know is an address in the */
119  			/* unavailable region.  Thus, the subsequent call */
120  			/* to 'VirtualAlloc()' will fail and bring us back */
121  			/* here, causing us to go into an infinite loop. */
122  
123  			start_address =
124  				(void *) AlignPage64K((unsigned long) start_address);
125  		}
126  	}
127  	return NULL;
128  
129  }
130  
131  
wsbrk(long size)132  void* wsbrk (long size)
133  {
134  	void* tmp;
135  	if (size > 0)
136  	{
137  		if (gAddressBase == 0)
138  		{
139  			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
140  			gNextAddress = gAddressBase =
141  				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
142  											MEM_RESERVE, PAGE_NOACCESS);
143  		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
144  gAllocatedSize))
145  		{
146  			long new_size = max (NEXT_SIZE, AlignPage (size));
147  			void* new_address = (void*)(gAddressBase+gAllocatedSize);
148  			do
149  			{
150  				new_address = findRegion (new_address, new_size);
151  
152  				if (!new_address)
153  					return (void*)-1;
154  
155  				gAddressBase = gNextAddress =
156  					(unsigned int)VirtualAlloc (new_address, new_size,
157  												MEM_RESERVE, PAGE_NOACCESS);
158  				/* repeat in case of race condition */
159  				/* The region that we found has been snagged */
160  				/* by another thread */
161  			}
162  			while (gAddressBase == 0);
163  
164  			assert (new_address == (void*)gAddressBase);
165  
166  			gAllocatedSize = new_size;
167  
168  			if (!makeGmListElement ((void*)gAddressBase))
169  				return (void*)-1;
170  		}
171  		if ((size + gNextAddress) > AlignPage (gNextAddress))
172  		{
173  			void* res;
174  			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
175  								(size + gNextAddress -
176  								 AlignPage (gNextAddress)),
177  								MEM_COMMIT, PAGE_READWRITE);
178  			if (!res)
179  				return (void*)-1;
180  		}
181  		tmp = (void*)gNextAddress;
182  		gNextAddress = (unsigned int)tmp + size;
183  		return tmp;
184  	}
185  	else if (size < 0)
186  	{
187  		unsigned int alignedGoal = AlignPage (gNextAddress + size);
188  		/* Trim by releasing the virtual memory */
189  		if (alignedGoal >= gAddressBase)
190  		{
191  			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
192  						 MEM_DECOMMIT);
193  			gNextAddress = gNextAddress + size;
194  			return (void*)gNextAddress;
195  		}
196  		else
197  		{
198  			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
199  						 MEM_DECOMMIT);
200  			gNextAddress = gAddressBase;
201  			return (void*)-1;
202  		}
203  	}
204  	else
205  	{
206  		return (void*)gNextAddress;
207  	}
208  }
209  
210  #endif
211  
212  
213  
214  /*
215    Type declarations
216  */
217  
218  
219  struct malloc_chunk
220  {
221    INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
222    INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
223    struct malloc_chunk* fd;   /* double links -- used only if free. */
224    struct malloc_chunk* bk;
225  } __attribute__((__may_alias__)) ;
226  
227  typedef struct malloc_chunk* mchunkptr;
228  
229  /*
230  
231     malloc_chunk details:
232  
233      (The following includes lightly edited explanations by Colin Plumb.)
234  
235      Chunks of memory are maintained using a `boundary tag' method as
236      described in e.g., Knuth or Standish.  (See the paper by Paul
237      Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
238      survey of such techniques.)  Sizes of free chunks are stored both
239      in the front of each chunk and at the end.  This makes
240      consolidating fragmented chunks into bigger chunks very fast.  The
241      size fields also hold bits representing whether chunks are free or
242      in use.
243  
244      An allocated chunk looks like this:
245  
246  
247      chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
248  	    |             Size of previous chunk, if allocated            | |
249  	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
250  	    |             Size of chunk, in bytes                         |P|
251        mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
252  	    |             User data starts here...                          .
253  	    .                                                               .
254  	    .             (malloc_usable_space() bytes)                     .
255  	    .                                                               |
256  nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
257  	    |             Size of chunk                                     |
258  	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
259  
260  
261      Where "chunk" is the front of the chunk for the purpose of most of
262      the malloc code, but "mem" is the pointer that is returned to the
263      user.  "Nextchunk" is the beginning of the next contiguous chunk.
264  
265      Chunks always begin on even word boundries, so the mem portion
266      (which is returned to the user) is also on an even word boundary, and
267      thus double-word aligned.
268  
269      Free chunks are stored in circular doubly-linked lists, and look like this:
270  
271      chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
272  	    |             Size of previous chunk                            |
273  	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
274      `head:' |             Size of chunk, in bytes                         |P|
275        mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
276  	    |             Forward pointer to next chunk in list             |
277  	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
278  	    |             Back pointer to previous chunk in list            |
279  	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
280  	    |             Unused space (may be 0 bytes long)                .
281  	    .                                                               .
282  	    .                                                               |
283  nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
284      `foot:' |             Size of chunk, in bytes                           |
285  	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
286  
287      The P (PREV_INUSE) bit, stored in the unused low-order bit of the
288      chunk size (which is always a multiple of two words), is an in-use
289      bit for the *previous* chunk.  If that bit is *clear*, then the
290      word before the current chunk size contains the previous chunk
291      size, and can be used to find the front of the previous chunk.
292      (The very first chunk allocated always has this bit set,
293      preventing access to non-existent (or non-owned) memory.)
294  
295      Note that the `foot' of the current chunk is actually represented
296      as the prev_size of the NEXT chunk. (This makes it easier to
297      deal with alignments etc).
298  
299      The two exceptions to all this are
300  
301       1. The special chunk `top', which doesn't bother using the
302  	trailing size field since there is no
303  	next contiguous chunk that would have to index off it. (After
304  	initialization, `top' is forced to always exist.  If it would
305  	become less than MINSIZE bytes long, it is replenished via
306  	malloc_extend_top.)
307  
308       2. Chunks allocated via mmap, which have the second-lowest-order
309  	bit (IS_MMAPPED) set in their size fields.  Because they are
310  	never merged or traversed from any other chunk, they have no
311  	foot size or inuse information.
312  
313      Available chunks are kept in any of several places (all declared below):
314  
315      * `av': An array of chunks serving as bin headers for consolidated
316         chunks. Each bin is doubly linked.  The bins are approximately
317         proportionally (log) spaced.  There are a lot of these bins
318         (128). This may look excessive, but works very well in
319         practice.  All procedures maintain the invariant that no
320         consolidated chunk physically borders another one. Chunks in
321         bins are kept in size order, with ties going to the
322         approximately least recently used chunk.
323  
324         The chunks in each bin are maintained in decreasing sorted order by
325         size.  This is irrelevant for the small bins, which all contain
326         the same-sized chunks, but facilitates best-fit allocation for
327         larger chunks. (These lists are just sequential. Keeping them in
328         order almost never requires enough traversal to warrant using
329         fancier ordered data structures.)  Chunks of the same size are
330         linked with the most recently freed at the front, and allocations
331         are taken from the back.  This results in LRU or FIFO allocation
332         order, which tends to give each chunk an equal opportunity to be
333         consolidated with adjacent freed chunks, resulting in larger free
334         chunks and less fragmentation.
335  
336      * `top': The top-most available chunk (i.e., the one bordering the
337         end of available memory) is treated specially. It is never
338         included in any bin, is used only if no other chunk is
339         available, and is released back to the system if it is very
340         large (see M_TRIM_THRESHOLD).
341  
342      * `last_remainder': A bin holding only the remainder of the
343         most recently split (non-top) chunk. This bin is checked
344         before other non-fitting chunks, so as to provide better
345         locality for runs of sequentially allocated chunks.
346  
347      *  Implicitly, through the host system's memory mapping tables.
348         If supported, requests greater than a threshold are usually
349         serviced via calls to mmap, and then later released via munmap.
350  
351  */
352  
353  /*  sizes, alignments */
354  
355  #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
356  #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
357  #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
358  #define MINSIZE                (sizeof(struct malloc_chunk))
359  
360  /* conversion from malloc headers to user pointers, and back */
361  
362  #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
363  #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
364  
365  /* pad request bytes into a usable size */
366  
367  #define request2size(req) \
368   (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
369    (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
370     (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
371  
372  /* Check if m has acceptable alignment */
373  
374  #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
375  
376  
377  
378  
379  /*
380    Physical chunk operations
381  */
382  
383  
384  /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
385  
386  #define PREV_INUSE 0x1
387  
388  /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
389  
390  #define IS_MMAPPED 0x2
391  
392  /* Bits to mask off when extracting size */
393  
394  #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
395  
396  
397  /* Ptr to next physical malloc_chunk. */
398  
399  #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
400  
401  /* Ptr to previous physical malloc_chunk */
402  
403  #define prev_chunk(p)\
404     ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
405  
406  
407  /* Treat space at ptr + offset as a chunk */
408  
409  #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
410  
411  
412  
413  
414  /*
415    Dealing with use bits
416  */
417  
418  /* extract p's inuse bit */
419  
420  #define inuse(p)\
421  ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
422  
423  /* extract inuse bit of previous chunk */
424  
425  #define prev_inuse(p)  ((p)->size & PREV_INUSE)
426  
427  /* check for mmap()'ed chunk */
428  
429  #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
430  
431  /* set/clear chunk as in use without otherwise disturbing */
432  
433  #define set_inuse(p)\
434  ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
435  
436  #define clear_inuse(p)\
437  ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
438  
439  /* check/set/clear inuse bits in known places */
440  
441  #define inuse_bit_at_offset(p, s)\
442   (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
443  
444  #define set_inuse_bit_at_offset(p, s)\
445   (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
446  
447  #define clear_inuse_bit_at_offset(p, s)\
448   (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
449  
450  
451  
452  
453  /*
454    Dealing with size fields
455  */
456  
457  /* Get size, ignoring use bits */
458  
459  #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
460  
461  /* Set size at head, without disturbing its use bit */
462  
463  #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
464  
465  /* Set size/use ignoring previous bits in header */
466  
467  #define set_head(p, s)        ((p)->size = (s))
468  
469  /* Set size at footer (only when chunk is not in use) */
470  
471  #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
472  
473  
474  
475  
476  
477  /*
478     Bins
479  
480      The bins, `av_' are an array of pairs of pointers serving as the
481      heads of (initially empty) doubly-linked lists of chunks, laid out
482      in a way so that each pair can be treated as if it were in a
483      malloc_chunk. (This way, the fd/bk offsets for linking bin heads
484      and chunks are the same).
485  
486      Bins for sizes < 512 bytes contain chunks of all the same size, spaced
487      8 bytes apart. Larger bins are approximately logarithmically
488      spaced. (See the table below.) The `av_' array is never mentioned
489      directly in the code, but instead via bin access macros.
490  
491      Bin layout:
492  
493      64 bins of size       8
494      32 bins of size      64
495      16 bins of size     512
496       8 bins of size    4096
497       4 bins of size   32768
498       2 bins of size  262144
499       1 bin  of size what's left
500  
501      There is actually a little bit of slop in the numbers in bin_index
502      for the sake of speed. This makes no difference elsewhere.
503  
504      The special chunks `top' and `last_remainder' get their own bins,
505      (this is implemented via yet more trickery with the av_ array),
506      although `top' is never properly linked to its bin since it is
507      always handled specially.
508  
509  */
510  
511  #define NAV             128   /* number of bins */
512  
513  typedef struct malloc_chunk* mbinptr;
514  
515  /* access macros */
516  
517  #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
518  #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
519  #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
520  
521  /*
522     The first 2 bins are never indexed. The corresponding av_ cells are instead
523     used for bookkeeping. This is not to save space, but to simplify
524     indexing, maintain locality, and avoid some initialization tests.
525  */
526  
527  #define top            (av_[2])          /* The topmost chunk */
528  #define last_remainder (bin_at(1))       /* remainder from last split */
529  
530  
531  /*
532     Because top initially points to its own bin with initial
533     zero size, thus forcing extension on the first malloc request,
534     we avoid having any special code in malloc to check whether
535     it even exists yet. But we still need to in malloc_extend_top.
536  */
537  
538  #define initial_top    ((mchunkptr)(bin_at(0)))
539  
540  /* Helper macro to initialize bins */
541  
542  #define IAV(i)  bin_at(i), bin_at(i)
543  
544  static mbinptr av_[NAV * 2 + 2] = {
545   NULL, NULL,
546   IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
547   IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
548   IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
549   IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
550   IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
551   IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
552   IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
553   IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
554   IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
555   IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
556   IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
557   IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
558   IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
559   IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
560   IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
561   IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
562  };
563  
564  #ifdef CONFIG_NEEDS_MANUAL_RELOC
malloc_bin_reloc(void)565  static void malloc_bin_reloc(void)
566  {
567  	mbinptr *p = &av_[2];
568  	size_t i;
569  
570  	for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
571  		*p = (mbinptr)((ulong)*p + gd->reloc_off);
572  }
573  #else
malloc_bin_reloc(void)574  static inline void malloc_bin_reloc(void) {}
575  #endif
576  
577  ulong mem_malloc_start = 0;
578  ulong mem_malloc_end = 0;
579  ulong mem_malloc_brk = 0;
580  
sbrk(ptrdiff_t increment)581  void *sbrk(ptrdiff_t increment)
582  {
583  	ulong old = mem_malloc_brk;
584  	ulong new = old + increment;
585  
586  	/*
587  	 * if we are giving memory back make sure we clear it out since
588  	 * we set MORECORE_CLEARS to 1
589  	 */
590  	if (increment < 0)
591  		memset((void *)new, 0, -increment);
592  
593  	if ((new < mem_malloc_start) || (new > mem_malloc_end))
594  		return (void *)MORECORE_FAILURE;
595  
596  	mem_malloc_brk = new;
597  
598  	return (void *)old;
599  }
600  
mem_malloc_init(ulong start,ulong size)601  void mem_malloc_init(ulong start, ulong size)
602  {
603  	mem_malloc_start = start;
604  	mem_malloc_end = start + size;
605  	mem_malloc_brk = start;
606  
607  	debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
608  	      mem_malloc_end);
609  #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
610  	memset((void *)mem_malloc_start, 0x0, size);
611  #endif
612  	malloc_bin_reloc();
613  }
614  
615  /* field-extraction macros */
616  
617  #define first(b) ((b)->fd)
618  #define last(b)  ((b)->bk)
619  
620  /*
621    Indexing into bins
622  */
623  
624  #define bin_index(sz)                                                          \
625  (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
626   ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
627   ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
628   ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
629   ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
630   ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
631  					  126)
632  /*
633    bins for chunks < 512 are all spaced 8 bytes apart, and hold
634    identically sized chunks. This is exploited in malloc.
635  */
636  
637  #define MAX_SMALLBIN         63
638  #define MAX_SMALLBIN_SIZE   512
639  #define SMALLBIN_WIDTH        8
640  
641  #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
642  
643  /*
644     Requests are `small' if both the corresponding and the next bin are small
645  */
646  
647  #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
648  
649  
650  
651  /*
652      To help compensate for the large number of bins, a one-level index
653      structure is used for bin-by-bin searching.  `binblocks' is a
654      one-word bitvector recording whether groups of BINBLOCKWIDTH bins
655      have any (possibly) non-empty bins, so they can be skipped over
656      all at once during during traversals. The bits are NOT always
657      cleared as soon as all bins in a block are empty, but instead only
658      when all are noticed to be empty during traversal in malloc.
659  */
660  
661  #define BINBLOCKWIDTH     4   /* bins per block */
662  
663  #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
664  #define binblocks_w     (av_[1])
665  
666  /* bin<->block macros */
667  
668  #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
669  #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
670  #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
671  
672  
673  
674  
675  
676  /*  Other static bookkeeping data */
677  
678  /* variables holding tunable values */
679  
680  static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
681  static unsigned long top_pad          = DEFAULT_TOP_PAD;
682  static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
683  static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
684  
685  /* The first value returned from sbrk */
686  static char* sbrk_base = (char*)(-1);
687  
688  /* The maximum memory obtained from system via sbrk */
689  static unsigned long max_sbrked_mem = 0;
690  
691  /* The maximum via either sbrk or mmap */
692  static unsigned long max_total_mem = 0;
693  
694  /* internal working copy of mallinfo */
695  static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
696  
697  /* The total memory obtained from system via sbrk */
698  #define sbrked_mem  (current_mallinfo.arena)
699  
700  /* Tracking mmaps */
701  
702  #ifdef DEBUG
703  static unsigned int n_mmaps = 0;
704  #endif	/* DEBUG */
705  static unsigned long mmapped_mem = 0;
706  #if HAVE_MMAP
707  static unsigned int max_n_mmaps = 0;
708  static unsigned long max_mmapped_mem = 0;
709  #endif
710  
711  
712  
713  /*
714    Debugging support
715  */
716  
717  #ifdef DEBUG
718  
719  
720  /*
721    These routines make a number of assertions about the states
722    of data structures that should be true at all times. If any
723    are not true, it's very likely that a user program has somehow
724    trashed memory. (It's also possible that there is a coding error
725    in malloc. In which case, please report it!)
726  */
727  
728  #if __STD_C
do_check_chunk(mchunkptr p)729  static void do_check_chunk(mchunkptr p)
730  #else
731  static void do_check_chunk(p) mchunkptr p;
732  #endif
733  {
734    INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
735  
736    /* No checkable chunk is mmapped */
737    assert(!chunk_is_mmapped(p));
738  
739    /* Check for legal address ... */
740    assert((char*)p >= sbrk_base);
741    if (p != top)
742      assert((char*)p + sz <= (char*)top);
743    else
744      assert((char*)p + sz <= sbrk_base + sbrked_mem);
745  
746  }
747  
748  
749  #if __STD_C
do_check_free_chunk(mchunkptr p)750  static void do_check_free_chunk(mchunkptr p)
751  #else
752  static void do_check_free_chunk(p) mchunkptr p;
753  #endif
754  {
755    INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
756    mchunkptr next = chunk_at_offset(p, sz);
757  
758    do_check_chunk(p);
759  
760    /* Check whether it claims to be free ... */
761    assert(!inuse(p));
762  
763    /* Unless a special marker, must have OK fields */
764    if ((long)sz >= (long)MINSIZE)
765    {
766      assert((sz & MALLOC_ALIGN_MASK) == 0);
767      assert(aligned_OK(chunk2mem(p)));
768      /* ... matching footer field */
769      assert(next->prev_size == sz);
770      /* ... and is fully consolidated */
771      assert(prev_inuse(p));
772      assert (next == top || inuse(next));
773  
774      /* ... and has minimally sane links */
775      assert(p->fd->bk == p);
776      assert(p->bk->fd == p);
777    }
778    else /* markers are always of size SIZE_SZ */
779      assert(sz == SIZE_SZ);
780  }
781  
782  #if __STD_C
do_check_inuse_chunk(mchunkptr p)783  static void do_check_inuse_chunk(mchunkptr p)
784  #else
785  static void do_check_inuse_chunk(p) mchunkptr p;
786  #endif
787  {
788    mchunkptr next = next_chunk(p);
789    do_check_chunk(p);
790  
791    /* Check whether it claims to be in use ... */
792    assert(inuse(p));
793  
794    /* ... and is surrounded by OK chunks.
795      Since more things can be checked with free chunks than inuse ones,
796      if an inuse chunk borders them and debug is on, it's worth doing them.
797    */
798    if (!prev_inuse(p))
799    {
800      mchunkptr prv = prev_chunk(p);
801      assert(next_chunk(prv) == p);
802      do_check_free_chunk(prv);
803    }
804    if (next == top)
805    {
806      assert(prev_inuse(next));
807      assert(chunksize(next) >= MINSIZE);
808    }
809    else if (!inuse(next))
810      do_check_free_chunk(next);
811  
812  }
813  
814  #if __STD_C
do_check_malloced_chunk(mchunkptr p,INTERNAL_SIZE_T s)815  static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
816  #else
817  static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
818  #endif
819  {
820    INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
821    long room = sz - s;
822  
823    do_check_inuse_chunk(p);
824  
825    /* Legal size ... */
826    assert((long)sz >= (long)MINSIZE);
827    assert((sz & MALLOC_ALIGN_MASK) == 0);
828    assert(room >= 0);
829    assert(room < (long)MINSIZE);
830  
831    /* ... and alignment */
832    assert(aligned_OK(chunk2mem(p)));
833  
834  
835    /* ... and was allocated at front of an available chunk */
836    assert(prev_inuse(p));
837  
838  }
839  
840  
841  #define check_free_chunk(P)  do_check_free_chunk(P)
842  #define check_inuse_chunk(P) do_check_inuse_chunk(P)
843  #define check_chunk(P) do_check_chunk(P)
844  #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
845  #else
846  #define check_free_chunk(P)
847  #define check_inuse_chunk(P)
848  #define check_chunk(P)
849  #define check_malloced_chunk(P,N)
850  #endif
851  
852  
853  
854  /*
855    Macro-based internal utilities
856  */
857  
858  
859  /*
860    Linking chunks in bin lists.
861    Call these only with variables, not arbitrary expressions, as arguments.
862  */
863  
864  /*
865    Place chunk p of size s in its bin, in size order,
866    putting it ahead of others of same size.
867  */
868  
869  
870  #define frontlink(P, S, IDX, BK, FD)                                          \
871  {                                                                             \
872    if (S < MAX_SMALLBIN_SIZE)                                                  \
873    {                                                                           \
874      IDX = smallbin_index(S);                                                  \
875      mark_binblock(IDX);                                                       \
876      BK = bin_at(IDX);                                                         \
877      FD = BK->fd;                                                              \
878      P->bk = BK;                                                               \
879      P->fd = FD;                                                               \
880      FD->bk = BK->fd = P;                                                      \
881    }                                                                           \
882    else                                                                        \
883    {                                                                           \
884      IDX = bin_index(S);                                                       \
885      BK = bin_at(IDX);                                                         \
886      FD = BK->fd;                                                              \
887      if (FD == BK) mark_binblock(IDX);                                         \
888      else                                                                      \
889      {                                                                         \
890        while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
891        BK = FD->bk;                                                            \
892      }                                                                         \
893      P->bk = BK;                                                               \
894      P->fd = FD;                                                               \
895      FD->bk = BK->fd = P;                                                      \
896    }                                                                           \
897  }
898  
899  
900  /* take a chunk off a list */
901  
902  #define unlink(P, BK, FD)                                                     \
903  {                                                                             \
904    BK = P->bk;                                                                 \
905    FD = P->fd;                                                                 \
906    FD->bk = BK;                                                                \
907    BK->fd = FD;                                                                \
908  }                                                                             \
909  
910  /* Place p as the last remainder */
911  
912  #define link_last_remainder(P)                                                \
913  {                                                                             \
914    last_remainder->fd = last_remainder->bk =  P;                               \
915    P->fd = P->bk = last_remainder;                                             \
916  }
917  
918  /* Clear the last_remainder bin */
919  
920  #define clear_last_remainder \
921    (last_remainder->fd = last_remainder->bk = last_remainder)
922  
923  
924  
925  
926  
927  /* Routines dealing with mmap(). */
928  
929  #if HAVE_MMAP
930  
931  #if __STD_C
mmap_chunk(size_t size)932  static mchunkptr mmap_chunk(size_t size)
933  #else
934  static mchunkptr mmap_chunk(size) size_t size;
935  #endif
936  {
937    size_t page_mask = malloc_getpagesize - 1;
938    mchunkptr p;
939  
940  #ifndef MAP_ANONYMOUS
941    static int fd = -1;
942  #endif
943  
944    if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
945  
946    /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
947     * there is no following chunk whose prev_size field could be used.
948     */
949    size = (size + SIZE_SZ + page_mask) & ~page_mask;
950  
951  #ifdef MAP_ANONYMOUS
952    p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
953  		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
954  #else /* !MAP_ANONYMOUS */
955    if (fd < 0)
956    {
957      fd = open("/dev/zero", O_RDWR);
958      if(fd < 0) return 0;
959    }
960    p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
961  #endif
962  
963    if(p == (mchunkptr)-1) return 0;
964  
965    n_mmaps++;
966    if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
967  
968    /* We demand that eight bytes into a page must be 8-byte aligned. */
969    assert(aligned_OK(chunk2mem(p)));
970  
971    /* The offset to the start of the mmapped region is stored
972     * in the prev_size field of the chunk; normally it is zero,
973     * but that can be changed in memalign().
974     */
975    p->prev_size = 0;
976    set_head(p, size|IS_MMAPPED);
977  
978    mmapped_mem += size;
979    if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
980      max_mmapped_mem = mmapped_mem;
981    if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
982      max_total_mem = mmapped_mem + sbrked_mem;
983    return p;
984  }
985  
986  #if __STD_C
munmap_chunk(mchunkptr p)987  static void munmap_chunk(mchunkptr p)
988  #else
989  static void munmap_chunk(p) mchunkptr p;
990  #endif
991  {
992    INTERNAL_SIZE_T size = chunksize(p);
993    int ret;
994  
995    assert (chunk_is_mmapped(p));
996    assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
997    assert((n_mmaps > 0));
998    assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
999  
1000    n_mmaps--;
1001    mmapped_mem -= (size + p->prev_size);
1002  
1003    ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1004  
1005    /* munmap returns non-zero on failure */
1006    assert(ret == 0);
1007  }
1008  
1009  #if HAVE_MREMAP
1010  
1011  #if __STD_C
mremap_chunk(mchunkptr p,size_t new_size)1012  static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1013  #else
1014  static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1015  #endif
1016  {
1017    size_t page_mask = malloc_getpagesize - 1;
1018    INTERNAL_SIZE_T offset = p->prev_size;
1019    INTERNAL_SIZE_T size = chunksize(p);
1020    char *cp;
1021  
1022    assert (chunk_is_mmapped(p));
1023    assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1024    assert((n_mmaps > 0));
1025    assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1026  
1027    /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1028    new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1029  
1030    cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1031  
1032    if (cp == (char *)-1) return 0;
1033  
1034    p = (mchunkptr)(cp + offset);
1035  
1036    assert(aligned_OK(chunk2mem(p)));
1037  
1038    assert((p->prev_size == offset));
1039    set_head(p, (new_size - offset)|IS_MMAPPED);
1040  
1041    mmapped_mem -= size + offset;
1042    mmapped_mem += new_size;
1043    if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1044      max_mmapped_mem = mmapped_mem;
1045    if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1046      max_total_mem = mmapped_mem + sbrked_mem;
1047    return p;
1048  }
1049  
1050  #endif /* HAVE_MREMAP */
1051  
1052  #endif /* HAVE_MMAP */
1053  
1054  
1055  
1056  
1057  /*
1058    Extend the top-most chunk by obtaining memory from system.
1059    Main interface to sbrk (but see also malloc_trim).
1060  */
1061  
1062  #if __STD_C
malloc_extend_top(INTERNAL_SIZE_T nb)1063  static void malloc_extend_top(INTERNAL_SIZE_T nb)
1064  #else
1065  static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1066  #endif
1067  {
1068    char*     brk;                  /* return value from sbrk */
1069    INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1070    INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1071    char*     new_brk;              /* return of 2nd sbrk call */
1072    INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1073  
1074    mchunkptr old_top     = top;  /* Record state of old top */
1075    INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1076    char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
1077  
1078    /* Pad request with top_pad plus minimal overhead */
1079  
1080    INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
1081    unsigned long pagesz    = malloc_getpagesize;
1082  
1083    /* If not the first time through, round to preserve page boundary */
1084    /* Otherwise, we need to correct to a page size below anyway. */
1085    /* (We also correct below if an intervening foreign sbrk call.) */
1086  
1087    if (sbrk_base != (char*)(-1))
1088      sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1089  
1090    brk = (char*)(MORECORE (sbrk_size));
1091  
1092    /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1093    if (brk == (char*)(MORECORE_FAILURE) ||
1094        (brk < old_end && old_top != initial_top))
1095      return;
1096  
1097    sbrked_mem += sbrk_size;
1098  
1099    if (brk == old_end) /* can just add bytes to current top */
1100    {
1101      top_size = sbrk_size + old_top_size;
1102      set_head(top, top_size | PREV_INUSE);
1103    }
1104    else
1105    {
1106      if (sbrk_base == (char*)(-1))  /* First time through. Record base */
1107        sbrk_base = brk;
1108      else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
1109        sbrked_mem += brk - (char*)old_end;
1110  
1111      /* Guarantee alignment of first new chunk made from this space */
1112      front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1113      if (front_misalign > 0)
1114      {
1115        correction = (MALLOC_ALIGNMENT) - front_misalign;
1116        brk += correction;
1117      }
1118      else
1119        correction = 0;
1120  
1121      /* Guarantee the next brk will be at a page boundary */
1122  
1123      correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1124  		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1125  
1126      /* Allocate correction */
1127      new_brk = (char*)(MORECORE (correction));
1128      if (new_brk == (char*)(MORECORE_FAILURE)) return;
1129  
1130      sbrked_mem += correction;
1131  
1132      top = (mchunkptr)brk;
1133      top_size = new_brk - brk + correction;
1134      set_head(top, top_size | PREV_INUSE);
1135  
1136      if (old_top != initial_top)
1137      {
1138  
1139        /* There must have been an intervening foreign sbrk call. */
1140        /* A double fencepost is necessary to prevent consolidation */
1141  
1142        /* If not enough space to do this, then user did something very wrong */
1143        if (old_top_size < MINSIZE)
1144        {
1145  	set_head(top, PREV_INUSE); /* will force null return from malloc */
1146  	return;
1147        }
1148  
1149        /* Also keep size a multiple of MALLOC_ALIGNMENT */
1150        old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1151        set_head_size(old_top, old_top_size);
1152        chunk_at_offset(old_top, old_top_size          )->size =
1153  	SIZE_SZ|PREV_INUSE;
1154        chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1155  	SIZE_SZ|PREV_INUSE;
1156        /* If possible, release the rest. */
1157        if (old_top_size >= MINSIZE)
1158  	fREe(chunk2mem(old_top));
1159      }
1160    }
1161  
1162    if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1163      max_sbrked_mem = sbrked_mem;
1164    if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1165      max_total_mem = mmapped_mem + sbrked_mem;
1166  
1167    /* We always land on a page boundary */
1168    assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1169  }
1170  
1171  
1172  
1173  
1174  /* Main public routines */
1175  
1176  
1177  /*
1178    Malloc Algorthim:
1179  
1180      The requested size is first converted into a usable form, `nb'.
1181      This currently means to add 4 bytes overhead plus possibly more to
1182      obtain 8-byte alignment and/or to obtain a size of at least
1183      MINSIZE (currently 16 bytes), the smallest allocatable size.
1184      (All fits are considered `exact' if they are within MINSIZE bytes.)
1185  
1186      From there, the first successful of the following steps is taken:
1187  
1188        1. The bin corresponding to the request size is scanned, and if
1189  	 a chunk of exactly the right size is found, it is taken.
1190  
1191        2. The most recently remaindered chunk is used if it is big
1192  	 enough.  This is a form of (roving) first fit, used only in
1193  	 the absence of exact fits. Runs of consecutive requests use
1194  	 the remainder of the chunk used for the previous such request
1195  	 whenever possible. This limited use of a first-fit style
1196  	 allocation strategy tends to give contiguous chunks
1197  	 coextensive lifetimes, which improves locality and can reduce
1198  	 fragmentation in the long run.
1199  
1200        3. Other bins are scanned in increasing size order, using a
1201  	 chunk big enough to fulfill the request, and splitting off
1202  	 any remainder.  This search is strictly by best-fit; i.e.,
1203  	 the smallest (with ties going to approximately the least
1204  	 recently used) chunk that fits is selected.
1205  
1206        4. If large enough, the chunk bordering the end of memory
1207  	 (`top') is split off. (This use of `top' is in accord with
1208  	 the best-fit search rule.  In effect, `top' is treated as
1209  	 larger (and thus less well fitting) than any other available
1210  	 chunk since it can be extended to be as large as necessary
1211  	 (up to system limitations).
1212  
1213        5. If the request size meets the mmap threshold and the
1214  	 system supports mmap, and there are few enough currently
1215  	 allocated mmapped regions, and a call to mmap succeeds,
1216  	 the request is allocated via direct memory mapping.
1217  
1218        6. Otherwise, the top of memory is extended by
1219  	 obtaining more space from the system (normally using sbrk,
1220  	 but definable to anything else via the MORECORE macro).
1221  	 Memory is gathered from the system (in system page-sized
1222  	 units) in a way that allows chunks obtained across different
1223  	 sbrk calls to be consolidated, but does not require
1224  	 contiguous memory. Thus, it should be safe to intersperse
1225  	 mallocs with other sbrk calls.
1226  
1227  
1228        All allocations are made from the the `lowest' part of any found
1229        chunk. (The implementation invariant is that prev_inuse is
1230        always true of any allocated chunk; i.e., that each allocated
1231        chunk borders either a previously allocated and still in-use chunk,
1232        or the base of its memory arena.)
1233  
1234  */
1235  
1236  #if __STD_C
mALLOc(size_t bytes)1237  Void_t* mALLOc(size_t bytes)
1238  #else
1239  Void_t* mALLOc(bytes) size_t bytes;
1240  #endif
1241  {
1242    mchunkptr victim;                  /* inspected/selected chunk */
1243    INTERNAL_SIZE_T victim_size;       /* its size */
1244    int       idx;                     /* index for bin traversal */
1245    mbinptr   bin;                     /* associated bin */
1246    mchunkptr remainder;               /* remainder from a split */
1247    long      remainder_size;          /* its size */
1248    int       remainder_index;         /* its bin index */
1249    unsigned long block;               /* block traverser bit */
1250    int       startidx;                /* first bin of a traversed block */
1251    mchunkptr fwd;                     /* misc temp for linking */
1252    mchunkptr bck;                     /* misc temp for linking */
1253    mbinptr q;                         /* misc temp */
1254  
1255    INTERNAL_SIZE_T nb;
1256  
1257  #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1258  	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1259  		return malloc_simple(bytes);
1260  #endif
1261  
1262    /* check if mem_malloc_init() was run */
1263    if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1264      /* not initialized yet */
1265      return NULL;
1266    }
1267  
1268    if ((long)bytes < 0) return NULL;
1269  
1270    nb = request2size(bytes);  /* padded request size; */
1271  
1272    /* Check for exact match in a bin */
1273  
1274    if (is_small_request(nb))  /* Faster version for small requests */
1275    {
1276      idx = smallbin_index(nb);
1277  
1278      /* No traversal or size check necessary for small bins.  */
1279  
1280      q = bin_at(idx);
1281      victim = last(q);
1282  
1283      /* Also scan the next one, since it would have a remainder < MINSIZE */
1284      if (victim == q)
1285      {
1286        q = next_bin(q);
1287        victim = last(q);
1288      }
1289      if (victim != q)
1290      {
1291        victim_size = chunksize(victim);
1292        unlink(victim, bck, fwd);
1293        set_inuse_bit_at_offset(victim, victim_size);
1294        check_malloced_chunk(victim, nb);
1295        return chunk2mem(victim);
1296      }
1297  
1298      idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1299  
1300    }
1301    else
1302    {
1303      idx = bin_index(nb);
1304      bin = bin_at(idx);
1305  
1306      for (victim = last(bin); victim != bin; victim = victim->bk)
1307      {
1308        victim_size = chunksize(victim);
1309        remainder_size = victim_size - nb;
1310  
1311        if (remainder_size >= (long)MINSIZE) /* too big */
1312        {
1313  	--idx; /* adjust to rescan below after checking last remainder */
1314  	break;
1315        }
1316  
1317        else if (remainder_size >= 0) /* exact fit */
1318        {
1319  	unlink(victim, bck, fwd);
1320  	set_inuse_bit_at_offset(victim, victim_size);
1321  	check_malloced_chunk(victim, nb);
1322  	return chunk2mem(victim);
1323        }
1324      }
1325  
1326      ++idx;
1327  
1328    }
1329  
1330    /* Try to use the last split-off remainder */
1331  
1332    if ( (victim = last_remainder->fd) != last_remainder)
1333    {
1334      victim_size = chunksize(victim);
1335      remainder_size = victim_size - nb;
1336  
1337      if (remainder_size >= (long)MINSIZE) /* re-split */
1338      {
1339        remainder = chunk_at_offset(victim, nb);
1340        set_head(victim, nb | PREV_INUSE);
1341        link_last_remainder(remainder);
1342        set_head(remainder, remainder_size | PREV_INUSE);
1343        set_foot(remainder, remainder_size);
1344        check_malloced_chunk(victim, nb);
1345        return chunk2mem(victim);
1346      }
1347  
1348      clear_last_remainder;
1349  
1350      if (remainder_size >= 0)  /* exhaust */
1351      {
1352        set_inuse_bit_at_offset(victim, victim_size);
1353        check_malloced_chunk(victim, nb);
1354        return chunk2mem(victim);
1355      }
1356  
1357      /* Else place in bin */
1358  
1359      frontlink(victim, victim_size, remainder_index, bck, fwd);
1360    }
1361  
1362    /*
1363       If there are any possibly nonempty big-enough blocks,
1364       search for best fitting chunk by scanning bins in blockwidth units.
1365    */
1366  
1367    if ( (block = idx2binblock(idx)) <= binblocks_r)
1368    {
1369  
1370      /* Get to the first marked block */
1371  
1372      if ( (block & binblocks_r) == 0)
1373      {
1374        /* force to an even block boundary */
1375        idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1376        block <<= 1;
1377        while ((block & binblocks_r) == 0)
1378        {
1379  	idx += BINBLOCKWIDTH;
1380  	block <<= 1;
1381        }
1382      }
1383  
1384      /* For each possibly nonempty block ... */
1385      for (;;)
1386      {
1387        startidx = idx;          /* (track incomplete blocks) */
1388        q = bin = bin_at(idx);
1389  
1390        /* For each bin in this block ... */
1391        do
1392        {
1393  	/* Find and use first big enough chunk ... */
1394  
1395  	for (victim = last(bin); victim != bin; victim = victim->bk)
1396  	{
1397  	  victim_size = chunksize(victim);
1398  	  remainder_size = victim_size - nb;
1399  
1400  	  if (remainder_size >= (long)MINSIZE) /* split */
1401  	  {
1402  	    remainder = chunk_at_offset(victim, nb);
1403  	    set_head(victim, nb | PREV_INUSE);
1404  	    unlink(victim, bck, fwd);
1405  	    link_last_remainder(remainder);
1406  	    set_head(remainder, remainder_size | PREV_INUSE);
1407  	    set_foot(remainder, remainder_size);
1408  	    check_malloced_chunk(victim, nb);
1409  	    return chunk2mem(victim);
1410  	  }
1411  
1412  	  else if (remainder_size >= 0)  /* take */
1413  	  {
1414  	    set_inuse_bit_at_offset(victim, victim_size);
1415  	    unlink(victim, bck, fwd);
1416  	    check_malloced_chunk(victim, nb);
1417  	    return chunk2mem(victim);
1418  	  }
1419  
1420  	}
1421  
1422         bin = next_bin(bin);
1423  
1424        } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1425  
1426        /* Clear out the block bit. */
1427  
1428        do   /* Possibly backtrack to try to clear a partial block */
1429        {
1430  	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1431  	{
1432  	  av_[1] = (mbinptr)(binblocks_r & ~block);
1433  	  break;
1434  	}
1435  	--startidx;
1436         q = prev_bin(q);
1437        } while (first(q) == q);
1438  
1439        /* Get to the next possibly nonempty block */
1440  
1441        if ( (block <<= 1) <= binblocks_r && (block != 0) )
1442        {
1443  	while ((block & binblocks_r) == 0)
1444  	{
1445  	  idx += BINBLOCKWIDTH;
1446  	  block <<= 1;
1447  	}
1448        }
1449        else
1450  	break;
1451      }
1452    }
1453  
1454  
1455    /* Try to use top chunk */
1456  
1457    /* Require that there be a remainder, ensuring top always exists  */
1458    if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1459    {
1460  
1461  #if HAVE_MMAP
1462      /* If big and would otherwise need to extend, try to use mmap instead */
1463      if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1464  	(victim = mmap_chunk(nb)))
1465        return chunk2mem(victim);
1466  #endif
1467  
1468      /* Try to extend */
1469      malloc_extend_top(nb);
1470      if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1471        return NULL; /* propagate failure */
1472    }
1473  
1474    victim = top;
1475    set_head(victim, nb | PREV_INUSE);
1476    top = chunk_at_offset(victim, nb);
1477    set_head(top, remainder_size | PREV_INUSE);
1478    check_malloced_chunk(victim, nb);
1479    return chunk2mem(victim);
1480  
1481  }
1482  
1483  
1484  
1485  
1486  /*
1487  
1488    free() algorithm :
1489  
1490      cases:
1491  
1492         1. free(0) has no effect.
1493  
1494         2. If the chunk was allocated via mmap, it is release via munmap().
1495  
1496         3. If a returned chunk borders the current high end of memory,
1497  	  it is consolidated into the top, and if the total unused
1498  	  topmost memory exceeds the trim threshold, malloc_trim is
1499  	  called.
1500  
1501         4. Other chunks are consolidated as they arrive, and
1502  	  placed in corresponding bins. (This includes the case of
1503  	  consolidating with the current `last_remainder').
1504  
1505  */
1506  
1507  
1508  #if __STD_C
fREe(Void_t * mem)1509  void fREe(Void_t* mem)
1510  #else
1511  void fREe(mem) Void_t* mem;
1512  #endif
1513  {
1514    mchunkptr p;         /* chunk corresponding to mem */
1515    INTERNAL_SIZE_T hd;  /* its head field */
1516    INTERNAL_SIZE_T sz;  /* its size */
1517    int       idx;       /* its bin index */
1518    mchunkptr next;      /* next contiguous chunk */
1519    INTERNAL_SIZE_T nextsz; /* its size */
1520    INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1521    mchunkptr bck;       /* misc temp for linking */
1522    mchunkptr fwd;       /* misc temp for linking */
1523    int       islr;      /* track whether merging with last_remainder */
1524  
1525  #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1526  	/* free() is a no-op - all the memory will be freed on relocation */
1527  	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1528  		return;
1529  #endif
1530  
1531    if (mem == NULL)                              /* free(0) has no effect */
1532      return;
1533  
1534    p = mem2chunk(mem);
1535    hd = p->size;
1536  
1537  #if HAVE_MMAP
1538    if (hd & IS_MMAPPED)                       /* release mmapped memory. */
1539    {
1540      munmap_chunk(p);
1541      return;
1542    }
1543  #endif
1544  
1545    check_inuse_chunk(p);
1546  
1547    sz = hd & ~PREV_INUSE;
1548    next = chunk_at_offset(p, sz);
1549    nextsz = chunksize(next);
1550  
1551    if (next == top)                            /* merge with top */
1552    {
1553      sz += nextsz;
1554  
1555      if (!(hd & PREV_INUSE))                    /* consolidate backward */
1556      {
1557        prevsz = p->prev_size;
1558        p = chunk_at_offset(p, -((long) prevsz));
1559        sz += prevsz;
1560        unlink(p, bck, fwd);
1561      }
1562  
1563      set_head(p, sz | PREV_INUSE);
1564      top = p;
1565      if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1566        malloc_trim(top_pad);
1567      return;
1568    }
1569  
1570    set_head(next, nextsz);                    /* clear inuse bit */
1571  
1572    islr = 0;
1573  
1574    if (!(hd & PREV_INUSE))                    /* consolidate backward */
1575    {
1576      prevsz = p->prev_size;
1577      p = chunk_at_offset(p, -((long) prevsz));
1578      sz += prevsz;
1579  
1580      if (p->fd == last_remainder)             /* keep as last_remainder */
1581        islr = 1;
1582      else
1583        unlink(p, bck, fwd);
1584    }
1585  
1586    if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
1587    {
1588      sz += nextsz;
1589  
1590      if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
1591      {
1592        islr = 1;
1593        link_last_remainder(p);
1594      }
1595      else
1596        unlink(next, bck, fwd);
1597    }
1598  
1599  
1600    set_head(p, sz | PREV_INUSE);
1601    set_foot(p, sz);
1602    if (!islr)
1603      frontlink(p, sz, idx, bck, fwd);
1604  }
1605  
1606  
1607  
1608  
1609  
1610  /*
1611  
1612    Realloc algorithm:
1613  
1614      Chunks that were obtained via mmap cannot be extended or shrunk
1615      unless HAVE_MREMAP is defined, in which case mremap is used.
1616      Otherwise, if their reallocation is for additional space, they are
1617      copied.  If for less, they are just left alone.
1618  
1619      Otherwise, if the reallocation is for additional space, and the
1620      chunk can be extended, it is, else a malloc-copy-free sequence is
1621      taken.  There are several different ways that a chunk could be
1622      extended. All are tried:
1623  
1624         * Extending forward into following adjacent free chunk.
1625         * Shifting backwards, joining preceding adjacent space
1626         * Both shifting backwards and extending forward.
1627         * Extending into newly sbrked space
1628  
1629      Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1630      size argument of zero (re)allocates a minimum-sized chunk.
1631  
1632      If the reallocation is for less space, and the new request is for
1633      a `small' (<512 bytes) size, then the newly unused space is lopped
1634      off and freed.
1635  
1636      The old unix realloc convention of allowing the last-free'd chunk
1637      to be used as an argument to realloc is no longer supported.
1638      I don't know of any programs still relying on this feature,
1639      and allowing it would also allow too many other incorrect
1640      usages of realloc to be sensible.
1641  
1642  
1643  */
1644  
1645  
1646  #if __STD_C
rEALLOc(Void_t * oldmem,size_t bytes)1647  Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1648  #else
1649  Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1650  #endif
1651  {
1652    INTERNAL_SIZE_T    nb;      /* padded request size */
1653  
1654    mchunkptr oldp;             /* chunk corresponding to oldmem */
1655    INTERNAL_SIZE_T    oldsize; /* its size */
1656  
1657    mchunkptr newp;             /* chunk to return */
1658    INTERNAL_SIZE_T    newsize; /* its size */
1659    Void_t*   newmem;           /* corresponding user mem */
1660  
1661    mchunkptr next;             /* next contiguous chunk after oldp */
1662    INTERNAL_SIZE_T  nextsize;  /* its size */
1663  
1664    mchunkptr prev;             /* previous contiguous chunk before oldp */
1665    INTERNAL_SIZE_T  prevsize;  /* its size */
1666  
1667    mchunkptr remainder;        /* holds split off extra space from newp */
1668    INTERNAL_SIZE_T  remainder_size;   /* its size */
1669  
1670    mchunkptr bck;              /* misc temp for linking */
1671    mchunkptr fwd;              /* misc temp for linking */
1672  
1673  #ifdef REALLOC_ZERO_BYTES_FREES
1674    if (!bytes) {
1675  	fREe(oldmem);
1676  	return NULL;
1677    }
1678  #endif
1679  
1680    if ((long)bytes < 0) return NULL;
1681  
1682    /* realloc of null is supposed to be same as malloc */
1683    if (oldmem == NULL) return mALLOc(bytes);
1684  
1685  #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1686  	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1687  		/* This is harder to support and should not be needed */
1688  		panic("pre-reloc realloc() is not supported");
1689  	}
1690  #endif
1691  
1692    newp    = oldp    = mem2chunk(oldmem);
1693    newsize = oldsize = chunksize(oldp);
1694  
1695  
1696    nb = request2size(bytes);
1697  
1698  #if HAVE_MMAP
1699    if (chunk_is_mmapped(oldp))
1700    {
1701  #if HAVE_MREMAP
1702      newp = mremap_chunk(oldp, nb);
1703      if(newp) return chunk2mem(newp);
1704  #endif
1705      /* Note the extra SIZE_SZ overhead. */
1706      if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1707      /* Must alloc, copy, free. */
1708      newmem = mALLOc(bytes);
1709      if (!newmem)
1710  	return NULL; /* propagate failure */
1711      MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1712      munmap_chunk(oldp);
1713      return newmem;
1714    }
1715  #endif
1716  
1717    check_inuse_chunk(oldp);
1718  
1719    if ((long)(oldsize) < (long)(nb))
1720    {
1721  
1722      /* Try expanding forward */
1723  
1724      next = chunk_at_offset(oldp, oldsize);
1725      if (next == top || !inuse(next))
1726      {
1727        nextsize = chunksize(next);
1728  
1729        /* Forward into top only if a remainder */
1730        if (next == top)
1731        {
1732  	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1733  	{
1734  	  newsize += nextsize;
1735  	  top = chunk_at_offset(oldp, nb);
1736  	  set_head(top, (newsize - nb) | PREV_INUSE);
1737  	  set_head_size(oldp, nb);
1738  	  return chunk2mem(oldp);
1739  	}
1740        }
1741  
1742        /* Forward into next chunk */
1743        else if (((long)(nextsize + newsize) >= (long)(nb)))
1744        {
1745  	unlink(next, bck, fwd);
1746  	newsize  += nextsize;
1747  	goto split;
1748        }
1749      }
1750      else
1751      {
1752        next = NULL;
1753        nextsize = 0;
1754      }
1755  
1756      /* Try shifting backwards. */
1757  
1758      if (!prev_inuse(oldp))
1759      {
1760        prev = prev_chunk(oldp);
1761        prevsize = chunksize(prev);
1762  
1763        /* try forward + backward first to save a later consolidation */
1764  
1765        if (next != NULL)
1766        {
1767  	/* into top */
1768  	if (next == top)
1769  	{
1770  	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1771  	  {
1772  	    unlink(prev, bck, fwd);
1773  	    newp = prev;
1774  	    newsize += prevsize + nextsize;
1775  	    newmem = chunk2mem(newp);
1776  	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1777  	    top = chunk_at_offset(newp, nb);
1778  	    set_head(top, (newsize - nb) | PREV_INUSE);
1779  	    set_head_size(newp, nb);
1780  	    return newmem;
1781  	  }
1782  	}
1783  
1784  	/* into next chunk */
1785  	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1786  	{
1787  	  unlink(next, bck, fwd);
1788  	  unlink(prev, bck, fwd);
1789  	  newp = prev;
1790  	  newsize += nextsize + prevsize;
1791  	  newmem = chunk2mem(newp);
1792  	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1793  	  goto split;
1794  	}
1795        }
1796  
1797        /* backward only */
1798        if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1799        {
1800  	unlink(prev, bck, fwd);
1801  	newp = prev;
1802  	newsize += prevsize;
1803  	newmem = chunk2mem(newp);
1804  	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1805  	goto split;
1806        }
1807      }
1808  
1809      /* Must allocate */
1810  
1811      newmem = mALLOc (bytes);
1812  
1813      if (newmem == NULL)  /* propagate failure */
1814        return NULL;
1815  
1816      /* Avoid copy if newp is next chunk after oldp. */
1817      /* (This can only happen when new chunk is sbrk'ed.) */
1818  
1819      if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1820      {
1821        newsize += chunksize(newp);
1822        newp = oldp;
1823        goto split;
1824      }
1825  
1826      /* Otherwise copy, free, and exit */
1827      MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1828      fREe(oldmem);
1829      return newmem;
1830    }
1831  
1832  
1833   split:  /* split off extra room in old or expanded chunk */
1834  
1835    if (newsize - nb >= MINSIZE) /* split off remainder */
1836    {
1837      remainder = chunk_at_offset(newp, nb);
1838      remainder_size = newsize - nb;
1839      set_head_size(newp, nb);
1840      set_head(remainder, remainder_size | PREV_INUSE);
1841      set_inuse_bit_at_offset(remainder, remainder_size);
1842      fREe(chunk2mem(remainder)); /* let free() deal with it */
1843    }
1844    else
1845    {
1846      set_head_size(newp, newsize);
1847      set_inuse_bit_at_offset(newp, newsize);
1848    }
1849  
1850    check_inuse_chunk(newp);
1851    return chunk2mem(newp);
1852  }
1853  
1854  
1855  
1856  
1857  /*
1858  
1859    memalign algorithm:
1860  
1861      memalign requests more than enough space from malloc, finds a spot
1862      within that chunk that meets the alignment request, and then
1863      possibly frees the leading and trailing space.
1864  
1865      The alignment argument must be a power of two. This property is not
1866      checked by memalign, so misuse may result in random runtime errors.
1867  
1868      8-byte alignment is guaranteed by normal malloc calls, so don't
1869      bother calling memalign with an argument of 8 or less.
1870  
1871      Overreliance on memalign is a sure way to fragment space.
1872  
1873  */
1874  
1875  
1876  #if __STD_C
mEMALIGn(size_t alignment,size_t bytes)1877  Void_t* mEMALIGn(size_t alignment, size_t bytes)
1878  #else
1879  Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1880  #endif
1881  {
1882    INTERNAL_SIZE_T    nb;      /* padded  request size */
1883    char*     m;                /* memory returned by malloc call */
1884    mchunkptr p;                /* corresponding chunk */
1885    char*     brk;              /* alignment point within p */
1886    mchunkptr newp;             /* chunk to return */
1887    INTERNAL_SIZE_T  newsize;   /* its size */
1888    INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
1889    mchunkptr remainder;        /* spare room at end to split off */
1890    long      remainder_size;   /* its size */
1891  
1892    if ((long)bytes < 0) return NULL;
1893  
1894  #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1895  	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1896  		nb = roundup(bytes, alignment);
1897  		return malloc_simple(nb);
1898  	}
1899  #endif
1900  
1901    /* If need less alignment than we give anyway, just relay to malloc */
1902  
1903    if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1904  
1905    /* Otherwise, ensure that it is at least a minimum chunk size */
1906  
1907    if (alignment <  MINSIZE) alignment = MINSIZE;
1908  
1909    /* Call malloc with worst case padding to hit alignment. */
1910  
1911    nb = request2size(bytes);
1912    m  = (char*)(mALLOc(nb + alignment + MINSIZE));
1913  
1914    /*
1915    * The attempt to over-allocate (with a size large enough to guarantee the
1916    * ability to find an aligned region within allocated memory) failed.
1917    *
1918    * Try again, this time only allocating exactly the size the user wants. If
1919    * the allocation now succeeds and just happens to be aligned, we can still
1920    * fulfill the user's request.
1921    */
1922    if (m == NULL) {
1923      size_t extra, extra2;
1924      /*
1925       * Use bytes not nb, since mALLOc internally calls request2size too, and
1926       * each call increases the size to allocate, to account for the header.
1927       */
1928      m  = (char*)(mALLOc(bytes));
1929      /* Aligned -> return it */
1930      if ((((unsigned long)(m)) % alignment) == 0)
1931        return m;
1932      /*
1933       * Otherwise, try again, requesting enough extra space to be able to
1934       * acquire alignment.
1935       */
1936      fREe(m);
1937      /* Add in extra bytes to match misalignment of unexpanded allocation */
1938      extra = alignment - (((unsigned long)(m)) % alignment);
1939      m  = (char*)(mALLOc(bytes + extra));
1940      /*
1941       * m might not be the same as before. Validate that the previous value of
1942       * extra still works for the current value of m.
1943       * If (!m), extra2=alignment so
1944       */
1945      if (m) {
1946        extra2 = alignment - (((unsigned long)(m)) % alignment);
1947        if (extra2 > extra) {
1948          fREe(m);
1949          m = NULL;
1950        }
1951      }
1952      /* Fall through to original NULL check and chunk splitting logic */
1953    }
1954  
1955    if (m == NULL) return NULL; /* propagate failure */
1956  
1957    p = mem2chunk(m);
1958  
1959    if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
1960    {
1961  #if HAVE_MMAP
1962      if(chunk_is_mmapped(p))
1963        return chunk2mem(p); /* nothing more to do */
1964  #endif
1965    }
1966    else /* misaligned */
1967    {
1968      /*
1969        Find an aligned spot inside chunk.
1970        Since we need to give back leading space in a chunk of at
1971        least MINSIZE, if the first calculation places us at
1972        a spot with less than MINSIZE leader, we can move to the
1973        next aligned spot -- we've allocated enough total room so that
1974        this is always possible.
1975      */
1976  
1977      brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
1978      if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
1979  
1980      newp = (mchunkptr)brk;
1981      leadsize = brk - (char*)(p);
1982      newsize = chunksize(p) - leadsize;
1983  
1984  #if HAVE_MMAP
1985      if(chunk_is_mmapped(p))
1986      {
1987        newp->prev_size = p->prev_size + leadsize;
1988        set_head(newp, newsize|IS_MMAPPED);
1989        return chunk2mem(newp);
1990      }
1991  #endif
1992  
1993      /* give back leader, use the rest */
1994  
1995      set_head(newp, newsize | PREV_INUSE);
1996      set_inuse_bit_at_offset(newp, newsize);
1997      set_head_size(p, leadsize);
1998      fREe(chunk2mem(p));
1999      p = newp;
2000  
2001      assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2002    }
2003  
2004    /* Also give back spare room at the end */
2005  
2006    remainder_size = chunksize(p) - nb;
2007  
2008    if (remainder_size >= (long)MINSIZE)
2009    {
2010      remainder = chunk_at_offset(p, nb);
2011      set_head(remainder, remainder_size | PREV_INUSE);
2012      set_head_size(p, nb);
2013      fREe(chunk2mem(remainder));
2014    }
2015  
2016    check_inuse_chunk(p);
2017    return chunk2mem(p);
2018  
2019  }
2020  
2021  
2022  
2023  
2024  /*
2025      valloc just invokes memalign with alignment argument equal
2026      to the page size of the system (or as near to this as can
2027      be figured out from all the includes/defines above.)
2028  */
2029  
2030  #if __STD_C
vALLOc(size_t bytes)2031  Void_t* vALLOc(size_t bytes)
2032  #else
2033  Void_t* vALLOc(bytes) size_t bytes;
2034  #endif
2035  {
2036    return mEMALIGn (malloc_getpagesize, bytes);
2037  }
2038  
2039  /*
2040    pvalloc just invokes valloc for the nearest pagesize
2041    that will accommodate request
2042  */
2043  
2044  
2045  #if __STD_C
pvALLOc(size_t bytes)2046  Void_t* pvALLOc(size_t bytes)
2047  #else
2048  Void_t* pvALLOc(bytes) size_t bytes;
2049  #endif
2050  {
2051    size_t pagesize = malloc_getpagesize;
2052    return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2053  }
2054  
2055  /*
2056  
2057    calloc calls malloc, then zeroes out the allocated chunk.
2058  
2059  */
2060  
2061  #if __STD_C
cALLOc(size_t n,size_t elem_size)2062  Void_t* cALLOc(size_t n, size_t elem_size)
2063  #else
2064  Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2065  #endif
2066  {
2067    mchunkptr p;
2068    INTERNAL_SIZE_T csz;
2069  
2070    INTERNAL_SIZE_T sz = n * elem_size;
2071  
2072  
2073    /* check if expand_top called, in which case don't need to clear */
2074  #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2075  #if MORECORE_CLEARS
2076    mchunkptr oldtop = top;
2077    INTERNAL_SIZE_T oldtopsize = chunksize(top);
2078  #endif
2079  #endif
2080    Void_t* mem = mALLOc (sz);
2081  
2082    if ((long)n < 0) return NULL;
2083  
2084    if (mem == NULL)
2085      return NULL;
2086    else
2087    {
2088  #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2089  	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2090  		MALLOC_ZERO(mem, sz);
2091  		return mem;
2092  	}
2093  #endif
2094      p = mem2chunk(mem);
2095  
2096      /* Two optional cases in which clearing not necessary */
2097  
2098  
2099  #if HAVE_MMAP
2100      if (chunk_is_mmapped(p)) return mem;
2101  #endif
2102  
2103      csz = chunksize(p);
2104  
2105  #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2106  #if MORECORE_CLEARS
2107      if (p == oldtop && csz > oldtopsize)
2108      {
2109        /* clear only the bytes from non-freshly-sbrked memory */
2110        csz = oldtopsize;
2111      }
2112  #endif
2113  #endif
2114  
2115      MALLOC_ZERO(mem, csz - SIZE_SZ);
2116      return mem;
2117    }
2118  }
2119  
2120  /*
2121  
2122    cfree just calls free. It is needed/defined on some systems
2123    that pair it with calloc, presumably for odd historical reasons.
2124  
2125  */
2126  
2127  #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2128  #if __STD_C
cfree(Void_t * mem)2129  void cfree(Void_t *mem)
2130  #else
2131  void cfree(mem) Void_t *mem;
2132  #endif
2133  {
2134    fREe(mem);
2135  }
2136  #endif
2137  
2138  
2139  
2140  /*
2141  
2142      Malloc_trim gives memory back to the system (via negative
2143      arguments to sbrk) if there is unused memory at the `high' end of
2144      the malloc pool. You can call this after freeing large blocks of
2145      memory to potentially reduce the system-level memory requirements
2146      of a program. However, it cannot guarantee to reduce memory. Under
2147      some allocation patterns, some large free blocks of memory will be
2148      locked between two used chunks, so they cannot be given back to
2149      the system.
2150  
2151      The `pad' argument to malloc_trim represents the amount of free
2152      trailing space to leave untrimmed. If this argument is zero,
2153      only the minimum amount of memory to maintain internal data
2154      structures will be left (one page or less). Non-zero arguments
2155      can be supplied to maintain enough trailing space to service
2156      future expected allocations without having to re-obtain memory
2157      from the system.
2158  
2159      Malloc_trim returns 1 if it actually released any memory, else 0.
2160  
2161  */
2162  
2163  #if __STD_C
malloc_trim(size_t pad)2164  int malloc_trim(size_t pad)
2165  #else
2166  int malloc_trim(pad) size_t pad;
2167  #endif
2168  {
2169    long  top_size;        /* Amount of top-most memory */
2170    long  extra;           /* Amount to release */
2171    char* current_brk;     /* address returned by pre-check sbrk call */
2172    char* new_brk;         /* address returned by negative sbrk call */
2173  
2174    unsigned long pagesz = malloc_getpagesize;
2175  
2176    top_size = chunksize(top);
2177    extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2178  
2179    if (extra < (long)pagesz)  /* Not enough memory to release */
2180      return 0;
2181  
2182    else
2183    {
2184      /* Test to make sure no one else called sbrk */
2185      current_brk = (char*)(MORECORE (0));
2186      if (current_brk != (char*)(top) + top_size)
2187        return 0;     /* Apparently we don't own memory; must fail */
2188  
2189      else
2190      {
2191        new_brk = (char*)(MORECORE (-extra));
2192  
2193        if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2194        {
2195  	/* Try to figure out what we have */
2196  	current_brk = (char*)(MORECORE (0));
2197  	top_size = current_brk - (char*)top;
2198  	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2199  	{
2200  	  sbrked_mem = current_brk - sbrk_base;
2201  	  set_head(top, top_size | PREV_INUSE);
2202  	}
2203  	check_chunk(top);
2204  	return 0;
2205        }
2206  
2207        else
2208        {
2209  	/* Success. Adjust top accordingly. */
2210  	set_head(top, (top_size - extra) | PREV_INUSE);
2211  	sbrked_mem -= extra;
2212  	check_chunk(top);
2213  	return 1;
2214        }
2215      }
2216    }
2217  }
2218  
2219  
2220  
2221  /*
2222    malloc_usable_size:
2223  
2224      This routine tells you how many bytes you can actually use in an
2225      allocated chunk, which may be more than you requested (although
2226      often not). You can use this many bytes without worrying about
2227      overwriting other allocated objects. Not a particularly great
2228      programming practice, but still sometimes useful.
2229  
2230  */
2231  
2232  #if __STD_C
malloc_usable_size(Void_t * mem)2233  size_t malloc_usable_size(Void_t* mem)
2234  #else
2235  size_t malloc_usable_size(mem) Void_t* mem;
2236  #endif
2237  {
2238    mchunkptr p;
2239    if (mem == NULL)
2240      return 0;
2241    else
2242    {
2243      p = mem2chunk(mem);
2244      if(!chunk_is_mmapped(p))
2245      {
2246        if (!inuse(p)) return 0;
2247        check_inuse_chunk(p);
2248        return chunksize(p) - SIZE_SZ;
2249      }
2250      return chunksize(p) - 2*SIZE_SZ;
2251    }
2252  }
2253  
2254  
2255  
2256  
2257  /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2258  
2259  #ifdef DEBUG
malloc_update_mallinfo()2260  static void malloc_update_mallinfo()
2261  {
2262    int i;
2263    mbinptr b;
2264    mchunkptr p;
2265  #ifdef DEBUG
2266    mchunkptr q;
2267  #endif
2268  
2269    INTERNAL_SIZE_T avail = chunksize(top);
2270    int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2271  
2272    for (i = 1; i < NAV; ++i)
2273    {
2274      b = bin_at(i);
2275      for (p = last(b); p != b; p = p->bk)
2276      {
2277  #ifdef DEBUG
2278        check_free_chunk(p);
2279        for (q = next_chunk(p);
2280  	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2281  	   q = next_chunk(q))
2282  	check_inuse_chunk(q);
2283  #endif
2284        avail += chunksize(p);
2285        navail++;
2286      }
2287    }
2288  
2289    current_mallinfo.ordblks = navail;
2290    current_mallinfo.uordblks = sbrked_mem - avail;
2291    current_mallinfo.fordblks = avail;
2292    current_mallinfo.hblks = n_mmaps;
2293    current_mallinfo.hblkhd = mmapped_mem;
2294    current_mallinfo.keepcost = chunksize(top);
2295  
2296  }
2297  #endif	/* DEBUG */
2298  
2299  
2300  
2301  /*
2302  
2303    malloc_stats:
2304  
2305      Prints on the amount of space obtain from the system (both
2306      via sbrk and mmap), the maximum amount (which may be more than
2307      current if malloc_trim and/or munmap got called), the maximum
2308      number of simultaneous mmap regions used, and the current number
2309      of bytes allocated via malloc (or realloc, etc) but not yet
2310      freed. (Note that this is the number of bytes allocated, not the
2311      number requested. It will be larger than the number requested
2312      because of alignment and bookkeeping overhead.)
2313  
2314  */
2315  
2316  #ifdef DEBUG
malloc_stats()2317  void malloc_stats()
2318  {
2319    malloc_update_mallinfo();
2320    printf("max system bytes = %10u\n",
2321  	  (unsigned int)(max_total_mem));
2322    printf("system bytes     = %10u\n",
2323  	  (unsigned int)(sbrked_mem + mmapped_mem));
2324    printf("in use bytes     = %10u\n",
2325  	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2326  #if HAVE_MMAP
2327    printf("max mmap regions = %10u\n",
2328  	  (unsigned int)max_n_mmaps);
2329  #endif
2330  }
2331  #endif	/* DEBUG */
2332  
2333  /*
2334    mallinfo returns a copy of updated current mallinfo.
2335  */
2336  
2337  #ifdef DEBUG
mALLINFo()2338  struct mallinfo mALLINFo()
2339  {
2340    malloc_update_mallinfo();
2341    return current_mallinfo;
2342  }
2343  #endif	/* DEBUG */
2344  
2345  
2346  
2347  
2348  /*
2349    mallopt:
2350  
2351      mallopt is the general SVID/XPG interface to tunable parameters.
2352      The format is to provide a (parameter-number, parameter-value) pair.
2353      mallopt then sets the corresponding parameter to the argument
2354      value if it can (i.e., so long as the value is meaningful),
2355      and returns 1 if successful else 0.
2356  
2357      See descriptions of tunable parameters above.
2358  
2359  */
2360  
2361  #if __STD_C
mALLOPt(int param_number,int value)2362  int mALLOPt(int param_number, int value)
2363  #else
2364  int mALLOPt(param_number, value) int param_number; int value;
2365  #endif
2366  {
2367    switch(param_number)
2368    {
2369      case M_TRIM_THRESHOLD:
2370        trim_threshold = value; return 1;
2371      case M_TOP_PAD:
2372        top_pad = value; return 1;
2373      case M_MMAP_THRESHOLD:
2374        mmap_threshold = value; return 1;
2375      case M_MMAP_MAX:
2376  #if HAVE_MMAP
2377        n_mmaps_max = value; return 1;
2378  #else
2379        if (value != 0) return 0; else  n_mmaps_max = value; return 1;
2380  #endif
2381  
2382      default:
2383        return 0;
2384    }
2385  }
2386  
initf_malloc(void)2387  int initf_malloc(void)
2388  {
2389  #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2390  	assert(gd->malloc_base);	/* Set up by crt0.S */
2391  	gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2392  	gd->malloc_ptr = 0;
2393  #endif
2394  
2395  	return 0;
2396  }
2397  
2398  /*
2399  
2400  History:
2401  
2402      V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
2403        * return null for negative arguments
2404        * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2405  	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2406  	  (e.g. WIN32 platforms)
2407  	 * Cleanup up header file inclusion for WIN32 platforms
2408  	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2409  	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2410  	   memory allocation routines
2411  	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2412  	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2413  	   usage of 'assert' in non-WIN32 code
2414  	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2415  	   avoid infinite loop
2416        * Always call 'fREe()' rather than 'free()'
2417  
2418      V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
2419        * Fixed ordering problem with boundary-stamping
2420  
2421      V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
2422        * Added pvalloc, as recommended by H.J. Liu
2423        * Added 64bit pointer support mainly from Wolfram Gloger
2424        * Added anonymously donated WIN32 sbrk emulation
2425        * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2426        * malloc_extend_top: fix mask error that caused wastage after
2427  	foreign sbrks
2428        * Add linux mremap support code from HJ Liu
2429  
2430      V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
2431        * Integrated most documentation with the code.
2432        * Add support for mmap, with help from
2433  	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2434        * Use last_remainder in more cases.
2435        * Pack bins using idea from  colin@nyx10.cs.du.edu
2436        * Use ordered bins instead of best-fit threshhold
2437        * Eliminate block-local decls to simplify tracing and debugging.
2438        * Support another case of realloc via move into top
2439        * Fix error occuring when initial sbrk_base not word-aligned.
2440        * Rely on page size for units instead of SBRK_UNIT to
2441  	avoid surprises about sbrk alignment conventions.
2442        * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2443  	(raymond@es.ele.tue.nl) for the suggestion.
2444        * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2445        * More precautions for cases where other routines call sbrk,
2446  	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2447        * Added macros etc., allowing use in linux libc from
2448  	H.J. Lu (hjl@gnu.ai.mit.edu)
2449        * Inverted this history list
2450  
2451      V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
2452        * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2453        * Removed all preallocation code since under current scheme
2454  	the work required to undo bad preallocations exceeds
2455  	the work saved in good cases for most test programs.
2456        * No longer use return list or unconsolidated bins since
2457  	no scheme using them consistently outperforms those that don't
2458  	given above changes.
2459        * Use best fit for very large chunks to prevent some worst-cases.
2460        * Added some support for debugging
2461  
2462      V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
2463        * Removed footers when chunks are in use. Thanks to
2464  	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2465  
2466      V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
2467        * Added malloc_trim, with help from Wolfram Gloger
2468  	(wmglo@Dent.MED.Uni-Muenchen.DE).
2469  
2470      V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
2471  
2472      V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
2473        * realloc: try to expand in both directions
2474        * malloc: swap order of clean-bin strategy;
2475        * realloc: only conditionally expand backwards
2476        * Try not to scavenge used bins
2477        * Use bin counts as a guide to preallocation
2478        * Occasionally bin return list chunks in first scan
2479        * Add a few optimizations from colin@nyx10.cs.du.edu
2480  
2481      V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
2482        * faster bin computation & slightly different binning
2483        * merged all consolidations to one part of malloc proper
2484  	 (eliminating old malloc_find_space & malloc_clean_bin)
2485        * Scan 2 returns chunks (not just 1)
2486        * Propagate failure in realloc if malloc returns 0
2487        * Add stuff to allow compilation on non-ANSI compilers
2488  	  from kpv@research.att.com
2489  
2490      V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
2491        * removed potential for odd address access in prev_chunk
2492        * removed dependency on getpagesize.h
2493        * misc cosmetics and a bit more internal documentation
2494        * anticosmetics: mangled names in macros to evade debugger strangeness
2495        * tested on sparc, hp-700, dec-mips, rs6000
2496  	  with gcc & native cc (hp, dec only) allowing
2497  	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2498  
2499      Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
2500        * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2501  	 structure of old version,  but most details differ.)
2502  
2503  */
2504