1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <linux/prefetch.h>
6 #include <linux/sctp.h>
7 #include <net/mpls.h>
8 #include <net/xdp.h>
9 #include "i40e_txrx_common.h"
10 #include "i40e_trace.h"
11 #include "i40e_xsk.h"
12
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 struct i40e_fdir_filter *fdata, bool add)
23 {
24 struct i40e_filter_program_desc *fdir_desc;
25 struct i40e_pf *pf = tx_ring->vsi->back;
26 u32 flex_ptype, dtype_cmd;
27 u16 i;
28
29 /* grab the next descriptor */
30 i = tx_ring->next_to_use;
31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33 i++;
34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38
39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41
42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44
45 /* Use LAN VSI Id if not programmed by user */
46 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
47 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
48 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
49
50 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
51
52 dtype_cmd |= add ?
53 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
54 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
55 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
56 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
57
58 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
59 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
60
61 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
62 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
63
64 if (fdata->cnt_index) {
65 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
67 ((u32)fdata->cnt_index <<
68 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
69 }
70
71 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
72 fdir_desc->rsvd = cpu_to_le32(0);
73 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
74 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
75 }
76
77 #define I40E_FD_CLEAN_DELAY 10
78 /**
79 * i40e_program_fdir_filter - Program a Flow Director filter
80 * @fdir_data: Packet data that will be filter parameters
81 * @raw_packet: the pre-allocated packet buffer for FDir
82 * @pf: The PF pointer
83 * @add: True for add/update, False for remove
84 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)85 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
86 u8 *raw_packet, struct i40e_pf *pf,
87 bool add)
88 {
89 struct i40e_tx_buffer *tx_buf, *first;
90 struct i40e_tx_desc *tx_desc;
91 struct i40e_ring *tx_ring;
92 struct i40e_vsi *vsi;
93 struct device *dev;
94 dma_addr_t dma;
95 u32 td_cmd = 0;
96 u16 i;
97
98 /* find existing FDIR VSI */
99 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
100 if (!vsi)
101 return -ENOENT;
102
103 tx_ring = vsi->tx_rings[0];
104 dev = tx_ring->dev;
105
106 /* we need two descriptors to add/del a filter and we can wait */
107 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
108 if (!i)
109 return -EAGAIN;
110 msleep_interruptible(1);
111 }
112
113 dma = dma_map_single(dev, raw_packet,
114 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
115 if (dma_mapping_error(dev, dma))
116 goto dma_fail;
117
118 /* grab the next descriptor */
119 i = tx_ring->next_to_use;
120 first = &tx_ring->tx_bi[i];
121 i40e_fdir(tx_ring, fdir_data, add);
122
123 /* Now program a dummy descriptor */
124 i = tx_ring->next_to_use;
125 tx_desc = I40E_TX_DESC(tx_ring, i);
126 tx_buf = &tx_ring->tx_bi[i];
127
128 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
129
130 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
131
132 /* record length, and DMA address */
133 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
134 dma_unmap_addr_set(tx_buf, dma, dma);
135
136 tx_desc->buffer_addr = cpu_to_le64(dma);
137 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
138
139 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
140 tx_buf->raw_buf = (void *)raw_packet;
141
142 tx_desc->cmd_type_offset_bsz =
143 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
144
145 /* Force memory writes to complete before letting h/w
146 * know there are new descriptors to fetch.
147 */
148 wmb();
149
150 /* Mark the data descriptor to be watched */
151 first->next_to_watch = tx_desc;
152
153 writel(tx_ring->next_to_use, tx_ring->tail);
154 return 0;
155
156 dma_fail:
157 return -1;
158 }
159
160 /**
161 * i40e_create_dummy_packet - Constructs dummy packet for HW
162 * @dummy_packet: preallocated space for dummy packet
163 * @ipv4: is layer 3 packet of version 4 or 6
164 * @l4proto: next level protocol used in data portion of l3
165 * @data: filter data
166 *
167 * Returns address of layer 4 protocol dummy packet.
168 **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)169 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
170 struct i40e_fdir_filter *data)
171 {
172 bool is_vlan = !!data->vlan_tag;
173 struct vlan_hdr vlan = {};
174 struct ipv6hdr ipv6 = {};
175 struct ethhdr eth = {};
176 struct iphdr ip = {};
177 u8 *tmp;
178
179 if (ipv4) {
180 eth.h_proto = cpu_to_be16(ETH_P_IP);
181 ip.protocol = l4proto;
182 ip.version = 0x4;
183 ip.ihl = 0x5;
184
185 ip.daddr = data->dst_ip;
186 ip.saddr = data->src_ip;
187 } else {
188 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
189 ipv6.nexthdr = l4proto;
190 ipv6.version = 0x6;
191
192 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
193 sizeof(__be32) * 4);
194 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
195 sizeof(__be32) * 4);
196 }
197
198 if (is_vlan) {
199 vlan.h_vlan_TCI = data->vlan_tag;
200 vlan.h_vlan_encapsulated_proto = eth.h_proto;
201 eth.h_proto = data->vlan_etype;
202 }
203
204 tmp = dummy_packet;
205 memcpy(tmp, ð, sizeof(eth));
206 tmp += sizeof(eth);
207
208 if (is_vlan) {
209 memcpy(tmp, &vlan, sizeof(vlan));
210 tmp += sizeof(vlan);
211 }
212
213 if (ipv4) {
214 memcpy(tmp, &ip, sizeof(ip));
215 tmp += sizeof(ip);
216 } else {
217 memcpy(tmp, &ipv6, sizeof(ipv6));
218 tmp += sizeof(ipv6);
219 }
220
221 return tmp;
222 }
223
224 /**
225 * i40e_create_dummy_udp_packet - helper function to create UDP packet
226 * @raw_packet: preallocated space for dummy packet
227 * @ipv4: is layer 3 packet of version 4 or 6
228 * @l4proto: next level protocol used in data portion of l3
229 * @data: filter data
230 *
231 * Helper function to populate udp fields.
232 **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)233 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
234 struct i40e_fdir_filter *data)
235 {
236 struct udphdr *udp;
237 u8 *tmp;
238
239 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
240 udp = (struct udphdr *)(tmp);
241 udp->dest = data->dst_port;
242 udp->source = data->src_port;
243 }
244
245 /**
246 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
247 * @raw_packet: preallocated space for dummy packet
248 * @ipv4: is layer 3 packet of version 4 or 6
249 * @l4proto: next level protocol used in data portion of l3
250 * @data: filter data
251 *
252 * Helper function to populate tcp fields.
253 **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)254 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
255 struct i40e_fdir_filter *data)
256 {
257 struct tcphdr *tcp;
258 u8 *tmp;
259 /* Dummy tcp packet */
260 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
261 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
262
263 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
264
265 tcp = (struct tcphdr *)tmp;
266 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
267 tcp->dest = data->dst_port;
268 tcp->source = data->src_port;
269 }
270
271 /**
272 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
273 * @raw_packet: preallocated space for dummy packet
274 * @ipv4: is layer 3 packet of version 4 or 6
275 * @l4proto: next level protocol used in data portion of l3
276 * @data: filter data
277 *
278 * Helper function to populate sctp fields.
279 **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)280 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
281 u8 l4proto,
282 struct i40e_fdir_filter *data)
283 {
284 struct sctphdr *sctp;
285 u8 *tmp;
286
287 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
288
289 sctp = (struct sctphdr *)tmp;
290 sctp->dest = data->dst_port;
291 sctp->source = data->src_port;
292 }
293
294 /**
295 * i40e_prepare_fdir_filter - Prepare and program fdir filter
296 * @pf: physical function to attach filter to
297 * @fd_data: filter data
298 * @add: add or delete filter
299 * @packet_addr: address of dummy packet, used in filtering
300 * @payload_offset: offset from dummy packet address to user defined data
301 * @pctype: Packet type for which filter is used
302 *
303 * Helper function to offset data of dummy packet, program it and
304 * handle errors.
305 **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)306 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
307 struct i40e_fdir_filter *fd_data,
308 bool add, char *packet_addr,
309 int payload_offset, u8 pctype)
310 {
311 int ret;
312
313 if (fd_data->flex_filter) {
314 u8 *payload;
315 __be16 pattern = fd_data->flex_word;
316 u16 off = fd_data->flex_offset;
317
318 payload = packet_addr + payload_offset;
319
320 /* If user provided vlan, offset payload by vlan header length */
321 if (!!fd_data->vlan_tag)
322 payload += VLAN_HLEN;
323
324 *((__force __be16 *)(payload + off)) = pattern;
325 }
326
327 fd_data->pctype = pctype;
328 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
329 if (ret) {
330 dev_info(&pf->pdev->dev,
331 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
332 fd_data->pctype, fd_data->fd_id, ret);
333 /* Free the packet buffer since it wasn't added to the ring */
334 return -EOPNOTSUPP;
335 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
336 if (add)
337 dev_info(&pf->pdev->dev,
338 "Filter OK for PCTYPE %d loc = %d\n",
339 fd_data->pctype, fd_data->fd_id);
340 else
341 dev_info(&pf->pdev->dev,
342 "Filter deleted for PCTYPE %d loc = %d\n",
343 fd_data->pctype, fd_data->fd_id);
344 }
345
346 return ret;
347 }
348
349 /**
350 * i40e_change_filter_num - Prepare and program fdir filter
351 * @ipv4: is layer 3 packet of version 4 or 6
352 * @add: add or delete filter
353 * @ipv4_filter_num: field to update
354 * @ipv6_filter_num: field to update
355 *
356 * Update filter number field for pf.
357 **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)358 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
359 u16 *ipv6_filter_num)
360 {
361 if (add) {
362 if (ipv4)
363 (*ipv4_filter_num)++;
364 else
365 (*ipv6_filter_num)++;
366 } else {
367 if (ipv4)
368 (*ipv4_filter_num)--;
369 else
370 (*ipv6_filter_num)--;
371 }
372 }
373
374 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
375 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
376 /**
377 * i40e_add_del_fdir_udp - Add/Remove UDP filters
378 * @vsi: pointer to the targeted VSI
379 * @fd_data: the flow director data required for the FDir descriptor
380 * @add: true adds a filter, false removes it
381 * @ipv4: true is v4, false is v6
382 *
383 * Returns 0 if the filters were successfully added or removed
384 **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)385 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
386 struct i40e_fdir_filter *fd_data,
387 bool add,
388 bool ipv4)
389 {
390 struct i40e_pf *pf = vsi->back;
391 u8 *raw_packet;
392 int ret;
393
394 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
395 if (!raw_packet)
396 return -ENOMEM;
397
398 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
399
400 if (ipv4)
401 ret = i40e_prepare_fdir_filter
402 (pf, fd_data, add, raw_packet,
403 I40E_UDPIP_DUMMY_PACKET_LEN,
404 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
405 else
406 ret = i40e_prepare_fdir_filter
407 (pf, fd_data, add, raw_packet,
408 I40E_UDPIP6_DUMMY_PACKET_LEN,
409 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
410
411 if (ret) {
412 kfree(raw_packet);
413 return ret;
414 }
415
416 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
417 &pf->fd_udp6_filter_cnt);
418
419 return 0;
420 }
421
422 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
423 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
424 /**
425 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
426 * @vsi: pointer to the targeted VSI
427 * @fd_data: the flow director data required for the FDir descriptor
428 * @add: true adds a filter, false removes it
429 * @ipv4: true is v4, false is v6
430 *
431 * Returns 0 if the filters were successfully added or removed
432 **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)433 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
434 struct i40e_fdir_filter *fd_data,
435 bool add,
436 bool ipv4)
437 {
438 struct i40e_pf *pf = vsi->back;
439 u8 *raw_packet;
440 int ret;
441
442 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
443 if (!raw_packet)
444 return -ENOMEM;
445
446 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
447 if (ipv4)
448 ret = i40e_prepare_fdir_filter
449 (pf, fd_data, add, raw_packet,
450 I40E_TCPIP_DUMMY_PACKET_LEN,
451 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
452 else
453 ret = i40e_prepare_fdir_filter
454 (pf, fd_data, add, raw_packet,
455 I40E_TCPIP6_DUMMY_PACKET_LEN,
456 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
457
458 if (ret) {
459 kfree(raw_packet);
460 return ret;
461 }
462
463 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
464 &pf->fd_tcp6_filter_cnt);
465
466 if (add) {
467 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
468 I40E_DEBUG_FD & pf->hw.debug_mask)
469 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
470 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
471 }
472 return 0;
473 }
474
475 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
476 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
477 /**
478 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
479 * a specific flow spec
480 * @vsi: pointer to the targeted VSI
481 * @fd_data: the flow director data required for the FDir descriptor
482 * @add: true adds a filter, false removes it
483 * @ipv4: true is v4, false is v6
484 *
485 * Returns 0 if the filters were successfully added or removed
486 **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)487 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
488 struct i40e_fdir_filter *fd_data,
489 bool add,
490 bool ipv4)
491 {
492 struct i40e_pf *pf = vsi->back;
493 u8 *raw_packet;
494 int ret;
495
496 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
497 if (!raw_packet)
498 return -ENOMEM;
499
500 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
501
502 if (ipv4)
503 ret = i40e_prepare_fdir_filter
504 (pf, fd_data, add, raw_packet,
505 I40E_SCTPIP_DUMMY_PACKET_LEN,
506 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
507 else
508 ret = i40e_prepare_fdir_filter
509 (pf, fd_data, add, raw_packet,
510 I40E_SCTPIP6_DUMMY_PACKET_LEN,
511 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
512
513 if (ret) {
514 kfree(raw_packet);
515 return ret;
516 }
517
518 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
519 &pf->fd_sctp6_filter_cnt);
520
521 return 0;
522 }
523
524 #define I40E_IP_DUMMY_PACKET_LEN 34
525 #define I40E_IP6_DUMMY_PACKET_LEN 54
526 /**
527 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
528 * a specific flow spec
529 * @vsi: pointer to the targeted VSI
530 * @fd_data: the flow director data required for the FDir descriptor
531 * @add: true adds a filter, false removes it
532 * @ipv4: true is v4, false is v6
533 *
534 * Returns 0 if the filters were successfully added or removed
535 **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)536 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
537 struct i40e_fdir_filter *fd_data,
538 bool add,
539 bool ipv4)
540 {
541 struct i40e_pf *pf = vsi->back;
542 int payload_offset;
543 u8 *raw_packet;
544 int iter_start;
545 int iter_end;
546 int ret;
547 int i;
548
549 if (ipv4) {
550 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
551 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
552 } else {
553 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
554 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
555 }
556
557 for (i = iter_start; i <= iter_end; i++) {
558 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
559 if (!raw_packet)
560 return -ENOMEM;
561
562 /* IPv6 no header option differs from IPv4 */
563 (void)i40e_create_dummy_packet
564 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
565 fd_data);
566
567 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
568 I40E_IP6_DUMMY_PACKET_LEN;
569 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
570 payload_offset, i);
571 if (ret)
572 goto err;
573 }
574
575 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
576 &pf->fd_ip6_filter_cnt);
577
578 return 0;
579 err:
580 kfree(raw_packet);
581 return ret;
582 }
583
584 /**
585 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
586 * @vsi: pointer to the targeted VSI
587 * @input: filter to add or delete
588 * @add: true adds a filter, false removes it
589 *
590 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)591 int i40e_add_del_fdir(struct i40e_vsi *vsi,
592 struct i40e_fdir_filter *input, bool add)
593 {
594 enum ip_ver { ipv6 = 0, ipv4 = 1 };
595 struct i40e_pf *pf = vsi->back;
596 int ret;
597
598 switch (input->flow_type & ~FLOW_EXT) {
599 case TCP_V4_FLOW:
600 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
601 break;
602 case UDP_V4_FLOW:
603 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
604 break;
605 case SCTP_V4_FLOW:
606 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
607 break;
608 case TCP_V6_FLOW:
609 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
610 break;
611 case UDP_V6_FLOW:
612 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
613 break;
614 case SCTP_V6_FLOW:
615 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
616 break;
617 case IP_USER_FLOW:
618 switch (input->ipl4_proto) {
619 case IPPROTO_TCP:
620 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
621 break;
622 case IPPROTO_UDP:
623 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
624 break;
625 case IPPROTO_SCTP:
626 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
627 break;
628 case IPPROTO_IP:
629 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
630 break;
631 default:
632 /* We cannot support masking based on protocol */
633 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
634 input->ipl4_proto);
635 return -EINVAL;
636 }
637 break;
638 case IPV6_USER_FLOW:
639 switch (input->ipl4_proto) {
640 case IPPROTO_TCP:
641 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
642 break;
643 case IPPROTO_UDP:
644 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
645 break;
646 case IPPROTO_SCTP:
647 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
648 break;
649 case IPPROTO_IP:
650 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
651 break;
652 default:
653 /* We cannot support masking based on protocol */
654 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
655 input->ipl4_proto);
656 return -EINVAL;
657 }
658 break;
659 default:
660 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
661 input->flow_type);
662 return -EINVAL;
663 }
664
665 /* The buffer allocated here will be normally be freed by
666 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
667 * completion. In the event of an error adding the buffer to the FDIR
668 * ring, it will immediately be freed. It may also be freed by
669 * i40e_clean_tx_ring() when closing the VSI.
670 */
671 return ret;
672 }
673
674 /**
675 * i40e_fd_handle_status - check the Programming Status for FD
676 * @rx_ring: the Rx ring for this descriptor
677 * @qword0_raw: qword0
678 * @qword1: qword1 after le_to_cpu
679 * @prog_id: the id originally used for programming
680 *
681 * This is used to verify if the FD programming or invalidation
682 * requested by SW to the HW is successful or not and take actions accordingly.
683 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)684 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
685 u64 qword1, u8 prog_id)
686 {
687 struct i40e_pf *pf = rx_ring->vsi->back;
688 struct pci_dev *pdev = pf->pdev;
689 struct i40e_16b_rx_wb_qw0 *qw0;
690 u32 fcnt_prog, fcnt_avail;
691 u32 error;
692
693 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
694 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
695 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
696
697 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
698 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
699 if (qw0->hi_dword.fd_id != 0 ||
700 (I40E_DEBUG_FD & pf->hw.debug_mask))
701 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
702 pf->fd_inv);
703
704 /* Check if the programming error is for ATR.
705 * If so, auto disable ATR and set a state for
706 * flush in progress. Next time we come here if flush is in
707 * progress do nothing, once flush is complete the state will
708 * be cleared.
709 */
710 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
711 return;
712
713 pf->fd_add_err++;
714 /* store the current atr filter count */
715 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
716
717 if (qw0->hi_dword.fd_id == 0 &&
718 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
719 /* These set_bit() calls aren't atomic with the
720 * test_bit() here, but worse case we potentially
721 * disable ATR and queue a flush right after SB
722 * support is re-enabled. That shouldn't cause an
723 * issue in practice
724 */
725 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
726 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
727 }
728
729 /* filter programming failed most likely due to table full */
730 fcnt_prog = i40e_get_global_fd_count(pf);
731 fcnt_avail = pf->fdir_pf_filter_count;
732 /* If ATR is running fcnt_prog can quickly change,
733 * if we are very close to full, it makes sense to disable
734 * FD ATR/SB and then re-enable it when there is room.
735 */
736 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
737 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
738 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
739 pf->state))
740 if (I40E_DEBUG_FD & pf->hw.debug_mask)
741 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
742 }
743 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
744 if (I40E_DEBUG_FD & pf->hw.debug_mask)
745 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
746 qw0->hi_dword.fd_id);
747 }
748 }
749
750 /**
751 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
752 * @ring: the ring that owns the buffer
753 * @tx_buffer: the buffer to free
754 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)755 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
756 struct i40e_tx_buffer *tx_buffer)
757 {
758 if (tx_buffer->skb) {
759 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
760 kfree(tx_buffer->raw_buf);
761 else if (ring_is_xdp(ring))
762 xdp_return_frame(tx_buffer->xdpf);
763 else
764 dev_kfree_skb_any(tx_buffer->skb);
765 if (dma_unmap_len(tx_buffer, len))
766 dma_unmap_single(ring->dev,
767 dma_unmap_addr(tx_buffer, dma),
768 dma_unmap_len(tx_buffer, len),
769 DMA_TO_DEVICE);
770 } else if (dma_unmap_len(tx_buffer, len)) {
771 dma_unmap_page(ring->dev,
772 dma_unmap_addr(tx_buffer, dma),
773 dma_unmap_len(tx_buffer, len),
774 DMA_TO_DEVICE);
775 }
776
777 tx_buffer->next_to_watch = NULL;
778 tx_buffer->skb = NULL;
779 dma_unmap_len_set(tx_buffer, len, 0);
780 /* tx_buffer must be completely set up in the transmit path */
781 }
782
783 /**
784 * i40e_clean_tx_ring - Free any empty Tx buffers
785 * @tx_ring: ring to be cleaned
786 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)787 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
788 {
789 unsigned long bi_size;
790 u16 i;
791
792 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
793 i40e_xsk_clean_tx_ring(tx_ring);
794 } else {
795 /* ring already cleared, nothing to do */
796 if (!tx_ring->tx_bi)
797 return;
798
799 /* Free all the Tx ring sk_buffs */
800 for (i = 0; i < tx_ring->count; i++)
801 i40e_unmap_and_free_tx_resource(tx_ring,
802 &tx_ring->tx_bi[i]);
803 }
804
805 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
806 memset(tx_ring->tx_bi, 0, bi_size);
807
808 /* Zero out the descriptor ring */
809 memset(tx_ring->desc, 0, tx_ring->size);
810
811 tx_ring->next_to_use = 0;
812 tx_ring->next_to_clean = 0;
813
814 if (!tx_ring->netdev)
815 return;
816
817 /* cleanup Tx queue statistics */
818 netdev_tx_reset_queue(txring_txq(tx_ring));
819 }
820
821 /**
822 * i40e_free_tx_resources - Free Tx resources per queue
823 * @tx_ring: Tx descriptor ring for a specific queue
824 *
825 * Free all transmit software resources
826 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)827 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
828 {
829 i40e_clean_tx_ring(tx_ring);
830 kfree(tx_ring->tx_bi);
831 tx_ring->tx_bi = NULL;
832
833 if (tx_ring->desc) {
834 dma_free_coherent(tx_ring->dev, tx_ring->size,
835 tx_ring->desc, tx_ring->dma);
836 tx_ring->desc = NULL;
837 }
838 }
839
840 /**
841 * i40e_get_tx_pending - how many tx descriptors not processed
842 * @ring: the ring of descriptors
843 * @in_sw: use SW variables
844 *
845 * Since there is no access to the ring head register
846 * in XL710, we need to use our local copies
847 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)848 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
849 {
850 u32 head, tail;
851
852 if (!in_sw) {
853 head = i40e_get_head(ring);
854 tail = readl(ring->tail);
855 } else {
856 head = ring->next_to_clean;
857 tail = ring->next_to_use;
858 }
859
860 if (head != tail)
861 return (head < tail) ?
862 tail - head : (tail + ring->count - head);
863
864 return 0;
865 }
866
867 /**
868 * i40e_detect_recover_hung - Function to detect and recover hung_queues
869 * @vsi: pointer to vsi struct with tx queues
870 *
871 * VSI has netdev and netdev has TX queues. This function is to check each of
872 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
873 **/
i40e_detect_recover_hung(struct i40e_vsi * vsi)874 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
875 {
876 struct i40e_ring *tx_ring = NULL;
877 struct net_device *netdev;
878 unsigned int i;
879 int packets;
880
881 if (!vsi)
882 return;
883
884 if (test_bit(__I40E_VSI_DOWN, vsi->state))
885 return;
886
887 netdev = vsi->netdev;
888 if (!netdev)
889 return;
890
891 if (!netif_carrier_ok(netdev))
892 return;
893
894 for (i = 0; i < vsi->num_queue_pairs; i++) {
895 tx_ring = vsi->tx_rings[i];
896 if (tx_ring && tx_ring->desc) {
897 /* If packet counter has not changed the queue is
898 * likely stalled, so force an interrupt for this
899 * queue.
900 *
901 * prev_pkt_ctr would be negative if there was no
902 * pending work.
903 */
904 packets = tx_ring->stats.packets & INT_MAX;
905 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
906 i40e_force_wb(vsi, tx_ring->q_vector);
907 continue;
908 }
909
910 /* Memory barrier between read of packet count and call
911 * to i40e_get_tx_pending()
912 */
913 smp_rmb();
914 tx_ring->tx_stats.prev_pkt_ctr =
915 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
916 }
917 }
918 }
919
920 /**
921 * i40e_clean_tx_irq - Reclaim resources after transmit completes
922 * @vsi: the VSI we care about
923 * @tx_ring: Tx ring to clean
924 * @napi_budget: Used to determine if we are in netpoll
925 * @tx_cleaned: Out parameter set to the number of TXes cleaned
926 *
927 * Returns true if there's any budget left (e.g. the clean is finished)
928 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget,unsigned int * tx_cleaned)929 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
930 struct i40e_ring *tx_ring, int napi_budget,
931 unsigned int *tx_cleaned)
932 {
933 int i = tx_ring->next_to_clean;
934 struct i40e_tx_buffer *tx_buf;
935 struct i40e_tx_desc *tx_head;
936 struct i40e_tx_desc *tx_desc;
937 unsigned int total_bytes = 0, total_packets = 0;
938 unsigned int budget = vsi->work_limit;
939
940 tx_buf = &tx_ring->tx_bi[i];
941 tx_desc = I40E_TX_DESC(tx_ring, i);
942 i -= tx_ring->count;
943
944 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
945
946 do {
947 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
948
949 /* if next_to_watch is not set then there is no work pending */
950 if (!eop_desc)
951 break;
952
953 /* prevent any other reads prior to eop_desc */
954 smp_rmb();
955
956 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
957 /* we have caught up to head, no work left to do */
958 if (tx_head == tx_desc)
959 break;
960
961 /* clear next_to_watch to prevent false hangs */
962 tx_buf->next_to_watch = NULL;
963
964 /* update the statistics for this packet */
965 total_bytes += tx_buf->bytecount;
966 total_packets += tx_buf->gso_segs;
967
968 /* free the skb/XDP data */
969 if (ring_is_xdp(tx_ring))
970 xdp_return_frame(tx_buf->xdpf);
971 else
972 napi_consume_skb(tx_buf->skb, napi_budget);
973
974 /* unmap skb header data */
975 dma_unmap_single(tx_ring->dev,
976 dma_unmap_addr(tx_buf, dma),
977 dma_unmap_len(tx_buf, len),
978 DMA_TO_DEVICE);
979
980 /* clear tx_buffer data */
981 tx_buf->skb = NULL;
982 dma_unmap_len_set(tx_buf, len, 0);
983
984 /* unmap remaining buffers */
985 while (tx_desc != eop_desc) {
986 i40e_trace(clean_tx_irq_unmap,
987 tx_ring, tx_desc, tx_buf);
988
989 tx_buf++;
990 tx_desc++;
991 i++;
992 if (unlikely(!i)) {
993 i -= tx_ring->count;
994 tx_buf = tx_ring->tx_bi;
995 tx_desc = I40E_TX_DESC(tx_ring, 0);
996 }
997
998 /* unmap any remaining paged data */
999 if (dma_unmap_len(tx_buf, len)) {
1000 dma_unmap_page(tx_ring->dev,
1001 dma_unmap_addr(tx_buf, dma),
1002 dma_unmap_len(tx_buf, len),
1003 DMA_TO_DEVICE);
1004 dma_unmap_len_set(tx_buf, len, 0);
1005 }
1006 }
1007
1008 /* move us one more past the eop_desc for start of next pkt */
1009 tx_buf++;
1010 tx_desc++;
1011 i++;
1012 if (unlikely(!i)) {
1013 i -= tx_ring->count;
1014 tx_buf = tx_ring->tx_bi;
1015 tx_desc = I40E_TX_DESC(tx_ring, 0);
1016 }
1017
1018 prefetch(tx_desc);
1019
1020 /* update budget accounting */
1021 budget--;
1022 } while (likely(budget));
1023
1024 i += tx_ring->count;
1025 tx_ring->next_to_clean = i;
1026 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1027 i40e_arm_wb(tx_ring, vsi, budget);
1028
1029 if (ring_is_xdp(tx_ring))
1030 return !!budget;
1031
1032 /* notify netdev of completed buffers */
1033 netdev_tx_completed_queue(txring_txq(tx_ring),
1034 total_packets, total_bytes);
1035
1036 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1037 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1038 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1039 /* Make sure that anybody stopping the queue after this
1040 * sees the new next_to_clean.
1041 */
1042 smp_mb();
1043 if (__netif_subqueue_stopped(tx_ring->netdev,
1044 tx_ring->queue_index) &&
1045 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1046 netif_wake_subqueue(tx_ring->netdev,
1047 tx_ring->queue_index);
1048 ++tx_ring->tx_stats.restart_queue;
1049 }
1050 }
1051
1052 *tx_cleaned = total_packets;
1053 return !!budget;
1054 }
1055
1056 /**
1057 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1058 * @vsi: the VSI we care about
1059 * @q_vector: the vector on which to enable writeback
1060 *
1061 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1062 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1063 struct i40e_q_vector *q_vector)
1064 {
1065 u16 flags = q_vector->tx.ring[0].flags;
1066 u32 val;
1067
1068 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1069 return;
1070
1071 if (q_vector->arm_wb_state)
1072 return;
1073
1074 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1075 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1076 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1077
1078 wr32(&vsi->back->hw,
1079 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1080 val);
1081 } else {
1082 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1083 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1084
1085 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1086 }
1087 q_vector->arm_wb_state = true;
1088 }
1089
1090 /**
1091 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1092 * @vsi: the VSI we care about
1093 * @q_vector: the vector on which to force writeback
1094 *
1095 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1096 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1097 {
1098 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1099 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1100 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1101 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1102 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1103 /* allow 00 to be written to the index */
1104
1105 wr32(&vsi->back->hw,
1106 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1107 } else {
1108 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1109 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1110 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1111 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1112 /* allow 00 to be written to the index */
1113
1114 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1115 }
1116 }
1117
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1118 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1119 struct i40e_ring_container *rc)
1120 {
1121 return &q_vector->rx == rc;
1122 }
1123
i40e_itr_divisor(struct i40e_q_vector * q_vector)1124 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1125 {
1126 unsigned int divisor;
1127
1128 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1129 case I40E_LINK_SPEED_40GB:
1130 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1131 break;
1132 case I40E_LINK_SPEED_25GB:
1133 case I40E_LINK_SPEED_20GB:
1134 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1135 break;
1136 default:
1137 case I40E_LINK_SPEED_10GB:
1138 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1139 break;
1140 case I40E_LINK_SPEED_1GB:
1141 case I40E_LINK_SPEED_100MB:
1142 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1143 break;
1144 }
1145
1146 return divisor;
1147 }
1148
1149 /**
1150 * i40e_update_itr - update the dynamic ITR value based on statistics
1151 * @q_vector: structure containing interrupt and ring information
1152 * @rc: structure containing ring performance data
1153 *
1154 * Stores a new ITR value based on packets and byte
1155 * counts during the last interrupt. The advantage of per interrupt
1156 * computation is faster updates and more accurate ITR for the current
1157 * traffic pattern. Constants in this function were computed
1158 * based on theoretical maximum wire speed and thresholds were set based
1159 * on testing data as well as attempting to minimize response time
1160 * while increasing bulk throughput.
1161 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1162 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1163 struct i40e_ring_container *rc)
1164 {
1165 unsigned int avg_wire_size, packets, bytes, itr;
1166 unsigned long next_update = jiffies;
1167
1168 /* If we don't have any rings just leave ourselves set for maximum
1169 * possible latency so we take ourselves out of the equation.
1170 */
1171 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1172 return;
1173
1174 /* For Rx we want to push the delay up and default to low latency.
1175 * for Tx we want to pull the delay down and default to high latency.
1176 */
1177 itr = i40e_container_is_rx(q_vector, rc) ?
1178 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1179 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1180
1181 /* If we didn't update within up to 1 - 2 jiffies we can assume
1182 * that either packets are coming in so slow there hasn't been
1183 * any work, or that there is so much work that NAPI is dealing
1184 * with interrupt moderation and we don't need to do anything.
1185 */
1186 if (time_after(next_update, rc->next_update))
1187 goto clear_counts;
1188
1189 /* If itr_countdown is set it means we programmed an ITR within
1190 * the last 4 interrupt cycles. This has a side effect of us
1191 * potentially firing an early interrupt. In order to work around
1192 * this we need to throw out any data received for a few
1193 * interrupts following the update.
1194 */
1195 if (q_vector->itr_countdown) {
1196 itr = rc->target_itr;
1197 goto clear_counts;
1198 }
1199
1200 packets = rc->total_packets;
1201 bytes = rc->total_bytes;
1202
1203 if (i40e_container_is_rx(q_vector, rc)) {
1204 /* If Rx there are 1 to 4 packets and bytes are less than
1205 * 9000 assume insufficient data to use bulk rate limiting
1206 * approach unless Tx is already in bulk rate limiting. We
1207 * are likely latency driven.
1208 */
1209 if (packets && packets < 4 && bytes < 9000 &&
1210 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1211 itr = I40E_ITR_ADAPTIVE_LATENCY;
1212 goto adjust_by_size;
1213 }
1214 } else if (packets < 4) {
1215 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1216 * bulk mode and we are receiving 4 or fewer packets just
1217 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1218 * that the Rx can relax.
1219 */
1220 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1221 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1222 I40E_ITR_ADAPTIVE_MAX_USECS)
1223 goto clear_counts;
1224 } else if (packets > 32) {
1225 /* If we have processed over 32 packets in a single interrupt
1226 * for Tx assume we need to switch over to "bulk" mode.
1227 */
1228 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1229 }
1230
1231 /* We have no packets to actually measure against. This means
1232 * either one of the other queues on this vector is active or
1233 * we are a Tx queue doing TSO with too high of an interrupt rate.
1234 *
1235 * Between 4 and 56 we can assume that our current interrupt delay
1236 * is only slightly too low. As such we should increase it by a small
1237 * fixed amount.
1238 */
1239 if (packets < 56) {
1240 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1241 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1242 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1243 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1244 }
1245 goto clear_counts;
1246 }
1247
1248 if (packets <= 256) {
1249 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1250 itr &= I40E_ITR_MASK;
1251
1252 /* Between 56 and 112 is our "goldilocks" zone where we are
1253 * working out "just right". Just report that our current
1254 * ITR is good for us.
1255 */
1256 if (packets <= 112)
1257 goto clear_counts;
1258
1259 /* If packet count is 128 or greater we are likely looking
1260 * at a slight overrun of the delay we want. Try halving
1261 * our delay to see if that will cut the number of packets
1262 * in half per interrupt.
1263 */
1264 itr /= 2;
1265 itr &= I40E_ITR_MASK;
1266 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1267 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1268
1269 goto clear_counts;
1270 }
1271
1272 /* The paths below assume we are dealing with a bulk ITR since
1273 * number of packets is greater than 256. We are just going to have
1274 * to compute a value and try to bring the count under control,
1275 * though for smaller packet sizes there isn't much we can do as
1276 * NAPI polling will likely be kicking in sooner rather than later.
1277 */
1278 itr = I40E_ITR_ADAPTIVE_BULK;
1279
1280 adjust_by_size:
1281 /* If packet counts are 256 or greater we can assume we have a gross
1282 * overestimation of what the rate should be. Instead of trying to fine
1283 * tune it just use the formula below to try and dial in an exact value
1284 * give the current packet size of the frame.
1285 */
1286 avg_wire_size = bytes / packets;
1287
1288 /* The following is a crude approximation of:
1289 * wmem_default / (size + overhead) = desired_pkts_per_int
1290 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1291 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1292 *
1293 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1294 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1295 * formula down to
1296 *
1297 * (170 * (size + 24)) / (size + 640) = ITR
1298 *
1299 * We first do some math on the packet size and then finally bitshift
1300 * by 8 after rounding up. We also have to account for PCIe link speed
1301 * difference as ITR scales based on this.
1302 */
1303 if (avg_wire_size <= 60) {
1304 /* Start at 250k ints/sec */
1305 avg_wire_size = 4096;
1306 } else if (avg_wire_size <= 380) {
1307 /* 250K ints/sec to 60K ints/sec */
1308 avg_wire_size *= 40;
1309 avg_wire_size += 1696;
1310 } else if (avg_wire_size <= 1084) {
1311 /* 60K ints/sec to 36K ints/sec */
1312 avg_wire_size *= 15;
1313 avg_wire_size += 11452;
1314 } else if (avg_wire_size <= 1980) {
1315 /* 36K ints/sec to 30K ints/sec */
1316 avg_wire_size *= 5;
1317 avg_wire_size += 22420;
1318 } else {
1319 /* plateau at a limit of 30K ints/sec */
1320 avg_wire_size = 32256;
1321 }
1322
1323 /* If we are in low latency mode halve our delay which doubles the
1324 * rate to somewhere between 100K to 16K ints/sec
1325 */
1326 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1327 avg_wire_size /= 2;
1328
1329 /* Resultant value is 256 times larger than it needs to be. This
1330 * gives us room to adjust the value as needed to either increase
1331 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1332 *
1333 * Use addition as we have already recorded the new latency flag
1334 * for the ITR value.
1335 */
1336 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1337 I40E_ITR_ADAPTIVE_MIN_INC;
1338
1339 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1340 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1341 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1342 }
1343
1344 clear_counts:
1345 /* write back value */
1346 rc->target_itr = itr;
1347
1348 /* next update should occur within next jiffy */
1349 rc->next_update = next_update + 1;
1350
1351 rc->total_bytes = 0;
1352 rc->total_packets = 0;
1353 }
1354
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1355 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1356 {
1357 return &rx_ring->rx_bi[idx];
1358 }
1359
1360 /**
1361 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1362 * @rx_ring: rx descriptor ring to store buffers on
1363 * @old_buff: donor buffer to have page reused
1364 *
1365 * Synchronizes page for reuse by the adapter
1366 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1367 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1368 struct i40e_rx_buffer *old_buff)
1369 {
1370 struct i40e_rx_buffer *new_buff;
1371 u16 nta = rx_ring->next_to_alloc;
1372
1373 new_buff = i40e_rx_bi(rx_ring, nta);
1374
1375 /* update, and store next to alloc */
1376 nta++;
1377 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1378
1379 /* transfer page from old buffer to new buffer */
1380 new_buff->dma = old_buff->dma;
1381 new_buff->page = old_buff->page;
1382 new_buff->page_offset = old_buff->page_offset;
1383 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1384
1385 /* clear contents of buffer_info */
1386 old_buff->page = NULL;
1387 }
1388
1389 /**
1390 * i40e_clean_programming_status - clean the programming status descriptor
1391 * @rx_ring: the rx ring that has this descriptor
1392 * @qword0_raw: qword0
1393 * @qword1: qword1 representing status_error_len in CPU ordering
1394 *
1395 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1396 * status being successful or not and take actions accordingly. FCoE should
1397 * handle its context/filter programming/invalidation status and take actions.
1398 *
1399 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1400 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1401 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1402 u64 qword1)
1403 {
1404 u8 id;
1405
1406 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1407 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1408
1409 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1410 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1411 }
1412
1413 /**
1414 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1415 * @tx_ring: the tx ring to set up
1416 *
1417 * Return 0 on success, negative on error
1418 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1419 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1420 {
1421 struct device *dev = tx_ring->dev;
1422 int bi_size;
1423
1424 if (!dev)
1425 return -ENOMEM;
1426
1427 /* warn if we are about to overwrite the pointer */
1428 WARN_ON(tx_ring->tx_bi);
1429 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1430 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1431 if (!tx_ring->tx_bi)
1432 goto err;
1433
1434 u64_stats_init(&tx_ring->syncp);
1435
1436 /* round up to nearest 4K */
1437 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1438 /* add u32 for head writeback, align after this takes care of
1439 * guaranteeing this is at least one cache line in size
1440 */
1441 tx_ring->size += sizeof(u32);
1442 tx_ring->size = ALIGN(tx_ring->size, 4096);
1443 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1444 &tx_ring->dma, GFP_KERNEL);
1445 if (!tx_ring->desc) {
1446 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1447 tx_ring->size);
1448 goto err;
1449 }
1450
1451 tx_ring->next_to_use = 0;
1452 tx_ring->next_to_clean = 0;
1453 tx_ring->tx_stats.prev_pkt_ctr = -1;
1454 return 0;
1455
1456 err:
1457 kfree(tx_ring->tx_bi);
1458 tx_ring->tx_bi = NULL;
1459 return -ENOMEM;
1460 }
1461
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1462 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1463 {
1464 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1465 }
1466
1467 /**
1468 * i40e_clean_rx_ring - Free Rx buffers
1469 * @rx_ring: ring to be cleaned
1470 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1471 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1472 {
1473 u16 i;
1474
1475 /* ring already cleared, nothing to do */
1476 if (!rx_ring->rx_bi)
1477 return;
1478
1479 if (rx_ring->xsk_pool) {
1480 i40e_xsk_clean_rx_ring(rx_ring);
1481 goto skip_free;
1482 }
1483
1484 /* Free all the Rx ring sk_buffs */
1485 for (i = 0; i < rx_ring->count; i++) {
1486 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1487
1488 if (!rx_bi->page)
1489 continue;
1490
1491 /* Invalidate cache lines that may have been written to by
1492 * device so that we avoid corrupting memory.
1493 */
1494 dma_sync_single_range_for_cpu(rx_ring->dev,
1495 rx_bi->dma,
1496 rx_bi->page_offset,
1497 rx_ring->rx_buf_len,
1498 DMA_FROM_DEVICE);
1499
1500 /* free resources associated with mapping */
1501 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1502 i40e_rx_pg_size(rx_ring),
1503 DMA_FROM_DEVICE,
1504 I40E_RX_DMA_ATTR);
1505
1506 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1507
1508 rx_bi->page = NULL;
1509 rx_bi->page_offset = 0;
1510 }
1511
1512 skip_free:
1513 if (rx_ring->xsk_pool)
1514 i40e_clear_rx_bi_zc(rx_ring);
1515 else
1516 i40e_clear_rx_bi(rx_ring);
1517
1518 /* Zero out the descriptor ring */
1519 memset(rx_ring->desc, 0, rx_ring->size);
1520
1521 rx_ring->next_to_alloc = 0;
1522 rx_ring->next_to_clean = 0;
1523 rx_ring->next_to_process = 0;
1524 rx_ring->next_to_use = 0;
1525 }
1526
1527 /**
1528 * i40e_free_rx_resources - Free Rx resources
1529 * @rx_ring: ring to clean the resources from
1530 *
1531 * Free all receive software resources
1532 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1533 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1534 {
1535 i40e_clean_rx_ring(rx_ring);
1536 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1537 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1538 rx_ring->xdp_prog = NULL;
1539 kfree(rx_ring->rx_bi);
1540 rx_ring->rx_bi = NULL;
1541
1542 if (rx_ring->desc) {
1543 dma_free_coherent(rx_ring->dev, rx_ring->size,
1544 rx_ring->desc, rx_ring->dma);
1545 rx_ring->desc = NULL;
1546 }
1547 }
1548
1549 /**
1550 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1551 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1552 *
1553 * Returns 0 on success, negative on failure
1554 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1555 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1556 {
1557 struct device *dev = rx_ring->dev;
1558
1559 u64_stats_init(&rx_ring->syncp);
1560
1561 /* Round up to nearest 4K */
1562 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1563 rx_ring->size = ALIGN(rx_ring->size, 4096);
1564 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1565 &rx_ring->dma, GFP_KERNEL);
1566
1567 if (!rx_ring->desc) {
1568 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1569 rx_ring->size);
1570 return -ENOMEM;
1571 }
1572
1573 rx_ring->next_to_alloc = 0;
1574 rx_ring->next_to_clean = 0;
1575 rx_ring->next_to_process = 0;
1576 rx_ring->next_to_use = 0;
1577
1578 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1579
1580 rx_ring->rx_bi =
1581 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1582 if (!rx_ring->rx_bi)
1583 return -ENOMEM;
1584
1585 return 0;
1586 }
1587
1588 /**
1589 * i40e_release_rx_desc - Store the new tail and head values
1590 * @rx_ring: ring to bump
1591 * @val: new head index
1592 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1593 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1594 {
1595 rx_ring->next_to_use = val;
1596
1597 /* update next to alloc since we have filled the ring */
1598 rx_ring->next_to_alloc = val;
1599
1600 /* Force memory writes to complete before letting h/w
1601 * know there are new descriptors to fetch. (Only
1602 * applicable for weak-ordered memory model archs,
1603 * such as IA-64).
1604 */
1605 wmb();
1606 writel(val, rx_ring->tail);
1607 }
1608
1609 #if (PAGE_SIZE >= 8192)
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1610 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1611 unsigned int size)
1612 {
1613 unsigned int truesize;
1614
1615 truesize = rx_ring->rx_offset ?
1616 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1617 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1618 SKB_DATA_ALIGN(size);
1619 return truesize;
1620 }
1621 #endif
1622
1623 /**
1624 * i40e_alloc_mapped_page - recycle or make a new page
1625 * @rx_ring: ring to use
1626 * @bi: rx_buffer struct to modify
1627 *
1628 * Returns true if the page was successfully allocated or
1629 * reused.
1630 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1631 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1632 struct i40e_rx_buffer *bi)
1633 {
1634 struct page *page = bi->page;
1635 dma_addr_t dma;
1636
1637 /* since we are recycling buffers we should seldom need to alloc */
1638 if (likely(page)) {
1639 rx_ring->rx_stats.page_reuse_count++;
1640 return true;
1641 }
1642
1643 /* alloc new page for storage */
1644 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1645 if (unlikely(!page)) {
1646 rx_ring->rx_stats.alloc_page_failed++;
1647 return false;
1648 }
1649
1650 rx_ring->rx_stats.page_alloc_count++;
1651
1652 /* map page for use */
1653 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1654 i40e_rx_pg_size(rx_ring),
1655 DMA_FROM_DEVICE,
1656 I40E_RX_DMA_ATTR);
1657
1658 /* if mapping failed free memory back to system since
1659 * there isn't much point in holding memory we can't use
1660 */
1661 if (dma_mapping_error(rx_ring->dev, dma)) {
1662 __free_pages(page, i40e_rx_pg_order(rx_ring));
1663 rx_ring->rx_stats.alloc_page_failed++;
1664 return false;
1665 }
1666
1667 bi->dma = dma;
1668 bi->page = page;
1669 bi->page_offset = rx_ring->rx_offset;
1670 page_ref_add(page, USHRT_MAX - 1);
1671 bi->pagecnt_bias = USHRT_MAX;
1672
1673 return true;
1674 }
1675
1676 /**
1677 * i40e_alloc_rx_buffers - Replace used receive buffers
1678 * @rx_ring: ring to place buffers on
1679 * @cleaned_count: number of buffers to replace
1680 *
1681 * Returns false if all allocations were successful, true if any fail
1682 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1683 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1684 {
1685 u16 ntu = rx_ring->next_to_use;
1686 union i40e_rx_desc *rx_desc;
1687 struct i40e_rx_buffer *bi;
1688
1689 /* do nothing if no valid netdev defined */
1690 if (!rx_ring->netdev || !cleaned_count)
1691 return false;
1692
1693 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1694 bi = i40e_rx_bi(rx_ring, ntu);
1695
1696 do {
1697 if (!i40e_alloc_mapped_page(rx_ring, bi))
1698 goto no_buffers;
1699
1700 /* sync the buffer for use by the device */
1701 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1702 bi->page_offset,
1703 rx_ring->rx_buf_len,
1704 DMA_FROM_DEVICE);
1705
1706 /* Refresh the desc even if buffer_addrs didn't change
1707 * because each write-back erases this info.
1708 */
1709 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1710
1711 rx_desc++;
1712 bi++;
1713 ntu++;
1714 if (unlikely(ntu == rx_ring->count)) {
1715 rx_desc = I40E_RX_DESC(rx_ring, 0);
1716 bi = i40e_rx_bi(rx_ring, 0);
1717 ntu = 0;
1718 }
1719
1720 /* clear the status bits for the next_to_use descriptor */
1721 rx_desc->wb.qword1.status_error_len = 0;
1722
1723 cleaned_count--;
1724 } while (cleaned_count);
1725
1726 if (rx_ring->next_to_use != ntu)
1727 i40e_release_rx_desc(rx_ring, ntu);
1728
1729 return false;
1730
1731 no_buffers:
1732 if (rx_ring->next_to_use != ntu)
1733 i40e_release_rx_desc(rx_ring, ntu);
1734
1735 /* make sure to come back via polling to try again after
1736 * allocation failure
1737 */
1738 return true;
1739 }
1740
1741 /**
1742 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1743 * @vsi: the VSI we care about
1744 * @skb: skb currently being received and modified
1745 * @rx_desc: the receive descriptor
1746 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1747 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1748 struct sk_buff *skb,
1749 union i40e_rx_desc *rx_desc)
1750 {
1751 struct i40e_rx_ptype_decoded decoded;
1752 u32 rx_error, rx_status;
1753 bool ipv4, ipv6;
1754 u8 ptype;
1755 u64 qword;
1756
1757 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1758 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1759 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1760 I40E_RXD_QW1_ERROR_SHIFT;
1761 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1762 I40E_RXD_QW1_STATUS_SHIFT;
1763 decoded = decode_rx_desc_ptype(ptype);
1764
1765 skb->ip_summed = CHECKSUM_NONE;
1766
1767 skb_checksum_none_assert(skb);
1768
1769 /* Rx csum enabled and ip headers found? */
1770 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1771 return;
1772
1773 /* did the hardware decode the packet and checksum? */
1774 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1775 return;
1776
1777 /* both known and outer_ip must be set for the below code to work */
1778 if (!(decoded.known && decoded.outer_ip))
1779 return;
1780
1781 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1782 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1783 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1784 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1785
1786 if (ipv4 &&
1787 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1788 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1789 goto checksum_fail;
1790
1791 /* likely incorrect csum if alternate IP extension headers found */
1792 if (ipv6 &&
1793 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1794 /* don't increment checksum err here, non-fatal err */
1795 return;
1796
1797 /* there was some L4 error, count error and punt packet to the stack */
1798 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1799 goto checksum_fail;
1800
1801 /* handle packets that were not able to be checksummed due
1802 * to arrival speed, in this case the stack can compute
1803 * the csum.
1804 */
1805 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1806 return;
1807
1808 /* If there is an outer header present that might contain a checksum
1809 * we need to bump the checksum level by 1 to reflect the fact that
1810 * we are indicating we validated the inner checksum.
1811 */
1812 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1813 skb->csum_level = 1;
1814
1815 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1816 switch (decoded.inner_prot) {
1817 case I40E_RX_PTYPE_INNER_PROT_TCP:
1818 case I40E_RX_PTYPE_INNER_PROT_UDP:
1819 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1820 skb->ip_summed = CHECKSUM_UNNECESSARY;
1821 fallthrough;
1822 default:
1823 break;
1824 }
1825
1826 return;
1827
1828 checksum_fail:
1829 vsi->back->hw_csum_rx_error++;
1830 }
1831
1832 /**
1833 * i40e_ptype_to_htype - get a hash type
1834 * @ptype: the ptype value from the descriptor
1835 *
1836 * Returns a hash type to be used by skb_set_hash
1837 **/
i40e_ptype_to_htype(u8 ptype)1838 static inline int i40e_ptype_to_htype(u8 ptype)
1839 {
1840 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1841
1842 if (!decoded.known)
1843 return PKT_HASH_TYPE_NONE;
1844
1845 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1846 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1847 return PKT_HASH_TYPE_L4;
1848 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1849 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1850 return PKT_HASH_TYPE_L3;
1851 else
1852 return PKT_HASH_TYPE_L2;
1853 }
1854
1855 /**
1856 * i40e_rx_hash - set the hash value in the skb
1857 * @ring: descriptor ring
1858 * @rx_desc: specific descriptor
1859 * @skb: skb currently being received and modified
1860 * @rx_ptype: Rx packet type
1861 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1862 static inline void i40e_rx_hash(struct i40e_ring *ring,
1863 union i40e_rx_desc *rx_desc,
1864 struct sk_buff *skb,
1865 u8 rx_ptype)
1866 {
1867 u32 hash;
1868 const __le64 rss_mask =
1869 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1870 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1871
1872 if (!(ring->netdev->features & NETIF_F_RXHASH))
1873 return;
1874
1875 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1876 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1877 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1878 }
1879 }
1880
1881 /**
1882 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1883 * @rx_ring: rx descriptor ring packet is being transacted on
1884 * @rx_desc: pointer to the EOP Rx descriptor
1885 * @skb: pointer to current skb being populated
1886 *
1887 * This function checks the ring, descriptor, and packet information in
1888 * order to populate the hash, checksum, VLAN, protocol, and
1889 * other fields within the skb.
1890 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1891 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1892 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1893 {
1894 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1895 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1896 I40E_RXD_QW1_STATUS_SHIFT;
1897 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1898 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1899 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1900 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1901 I40E_RXD_QW1_PTYPE_SHIFT;
1902
1903 if (unlikely(tsynvalid))
1904 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1905
1906 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1907
1908 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1909
1910 skb_record_rx_queue(skb, rx_ring->queue_index);
1911
1912 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1913 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1914
1915 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1916 le16_to_cpu(vlan_tag));
1917 }
1918
1919 /* modifies the skb - consumes the enet header */
1920 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1921 }
1922
1923 /**
1924 * i40e_cleanup_headers - Correct empty headers
1925 * @rx_ring: rx descriptor ring packet is being transacted on
1926 * @skb: pointer to current skb being fixed
1927 * @rx_desc: pointer to the EOP Rx descriptor
1928 *
1929 * In addition if skb is not at least 60 bytes we need to pad it so that
1930 * it is large enough to qualify as a valid Ethernet frame.
1931 *
1932 * Returns true if an error was encountered and skb was freed.
1933 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1934 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1935 union i40e_rx_desc *rx_desc)
1936
1937 {
1938 /* ERR_MASK will only have valid bits if EOP set, and
1939 * what we are doing here is actually checking
1940 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1941 * the error field
1942 */
1943 if (unlikely(i40e_test_staterr(rx_desc,
1944 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1945 dev_kfree_skb_any(skb);
1946 return true;
1947 }
1948
1949 /* if eth_skb_pad returns an error the skb was freed */
1950 if (eth_skb_pad(skb))
1951 return true;
1952
1953 return false;
1954 }
1955
1956 /**
1957 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1958 * @rx_buffer: buffer containing the page
1959 * @rx_stats: rx stats structure for the rx ring
1960 *
1961 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1962 * which will assign the current buffer to the buffer that next_to_alloc is
1963 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1964 * page freed.
1965 *
1966 * rx_stats will be updated to indicate whether the page was waived
1967 * or busy if it could not be reused.
1968 */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats)1969 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1970 struct i40e_rx_queue_stats *rx_stats)
1971 {
1972 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1973 struct page *page = rx_buffer->page;
1974
1975 /* Is any reuse possible? */
1976 if (!dev_page_is_reusable(page)) {
1977 rx_stats->page_waive_count++;
1978 return false;
1979 }
1980
1981 #if (PAGE_SIZE < 8192)
1982 /* if we are only owner of page we can reuse it */
1983 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1984 rx_stats->page_busy_count++;
1985 return false;
1986 }
1987 #else
1988 #define I40E_LAST_OFFSET \
1989 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1990 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1991 rx_stats->page_busy_count++;
1992 return false;
1993 }
1994 #endif
1995
1996 /* If we have drained the page fragment pool we need to update
1997 * the pagecnt_bias and page count so that we fully restock the
1998 * number of references the driver holds.
1999 */
2000 if (unlikely(pagecnt_bias == 1)) {
2001 page_ref_add(page, USHRT_MAX - 1);
2002 rx_buffer->pagecnt_bias = USHRT_MAX;
2003 }
2004
2005 return true;
2006 }
2007
2008 /**
2009 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2010 * @rx_buffer: Rx buffer to adjust
2011 * @truesize: Size of adjustment
2012 **/
i40e_rx_buffer_flip(struct i40e_rx_buffer * rx_buffer,unsigned int truesize)2013 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2014 unsigned int truesize)
2015 {
2016 #if (PAGE_SIZE < 8192)
2017 rx_buffer->page_offset ^= truesize;
2018 #else
2019 rx_buffer->page_offset += truesize;
2020 #endif
2021 }
2022
2023 /**
2024 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2025 * @rx_ring: rx descriptor ring to transact packets on
2026 * @size: size of buffer to add to skb
2027 *
2028 * This function will pull an Rx buffer from the ring and synchronize it
2029 * for use by the CPU.
2030 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size)2031 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2032 const unsigned int size)
2033 {
2034 struct i40e_rx_buffer *rx_buffer;
2035
2036 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2037 rx_buffer->page_count =
2038 #if (PAGE_SIZE < 8192)
2039 page_count(rx_buffer->page);
2040 #else
2041 0;
2042 #endif
2043 prefetch_page_address(rx_buffer->page);
2044
2045 /* we are reusing so sync this buffer for CPU use */
2046 dma_sync_single_range_for_cpu(rx_ring->dev,
2047 rx_buffer->dma,
2048 rx_buffer->page_offset,
2049 size,
2050 DMA_FROM_DEVICE);
2051
2052 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2053 rx_buffer->pagecnt_bias--;
2054
2055 return rx_buffer;
2056 }
2057
2058 /**
2059 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2060 * @rx_ring: rx descriptor ring to transact packets on
2061 * @rx_buffer: rx buffer to pull data from
2062 *
2063 * This function will clean up the contents of the rx_buffer. It will
2064 * either recycle the buffer or unmap it and free the associated resources.
2065 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer)2066 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2067 struct i40e_rx_buffer *rx_buffer)
2068 {
2069 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2070 /* hand second half of page back to the ring */
2071 i40e_reuse_rx_page(rx_ring, rx_buffer);
2072 } else {
2073 /* we are not reusing the buffer so unmap it */
2074 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2075 i40e_rx_pg_size(rx_ring),
2076 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2077 __page_frag_cache_drain(rx_buffer->page,
2078 rx_buffer->pagecnt_bias);
2079 /* clear contents of buffer_info */
2080 rx_buffer->page = NULL;
2081 }
2082 }
2083
2084 /**
2085 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2086 * @rx_ring: Rx descriptor ring to transact packets on
2087 * @xdp_res: Result of the XDP program
2088 * @xdp: xdp_buff pointing to the data
2089 **/
i40e_process_rx_buffs(struct i40e_ring * rx_ring,int xdp_res,struct xdp_buff * xdp)2090 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2091 struct xdp_buff *xdp)
2092 {
2093 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2094 u32 next = rx_ring->next_to_clean, i = 0;
2095 struct i40e_rx_buffer *rx_buffer;
2096
2097 xdp->flags = 0;
2098
2099 while (1) {
2100 rx_buffer = i40e_rx_bi(rx_ring, next);
2101 if (++next == rx_ring->count)
2102 next = 0;
2103
2104 if (!rx_buffer->page)
2105 continue;
2106
2107 if (xdp_res != I40E_XDP_CONSUMED)
2108 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2109 else if (i++ <= nr_frags)
2110 rx_buffer->pagecnt_bias++;
2111
2112 /* EOP buffer will be put in i40e_clean_rx_irq() */
2113 if (next == rx_ring->next_to_process)
2114 return;
2115
2116 i40e_put_rx_buffer(rx_ring, rx_buffer);
2117 }
2118 }
2119
2120 /**
2121 * i40e_construct_skb - Allocate skb and populate it
2122 * @rx_ring: rx descriptor ring to transact packets on
2123 * @xdp: xdp_buff pointing to the data
2124 *
2125 * This function allocates an skb. It then populates it with the page
2126 * data from the current receive descriptor, taking care to set up the
2127 * skb correctly.
2128 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2129 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2130 struct xdp_buff *xdp)
2131 {
2132 unsigned int size = xdp->data_end - xdp->data;
2133 struct i40e_rx_buffer *rx_buffer;
2134 struct skb_shared_info *sinfo;
2135 unsigned int headlen;
2136 struct sk_buff *skb;
2137 u32 nr_frags = 0;
2138
2139 /* prefetch first cache line of first page */
2140 net_prefetch(xdp->data);
2141
2142 /* Note, we get here by enabling legacy-rx via:
2143 *
2144 * ethtool --set-priv-flags <dev> legacy-rx on
2145 *
2146 * In this mode, we currently get 0 extra XDP headroom as
2147 * opposed to having legacy-rx off, where we process XDP
2148 * packets going to stack via i40e_build_skb(). The latter
2149 * provides us currently with 192 bytes of headroom.
2150 *
2151 * For i40e_construct_skb() mode it means that the
2152 * xdp->data_meta will always point to xdp->data, since
2153 * the helper cannot expand the head. Should this ever
2154 * change in future for legacy-rx mode on, then lets also
2155 * add xdp->data_meta handling here.
2156 */
2157
2158 /* allocate a skb to store the frags */
2159 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2160 I40E_RX_HDR_SIZE,
2161 GFP_ATOMIC | __GFP_NOWARN);
2162 if (unlikely(!skb))
2163 return NULL;
2164
2165 /* Determine available headroom for copy */
2166 headlen = size;
2167 if (headlen > I40E_RX_HDR_SIZE)
2168 headlen = eth_get_headlen(skb->dev, xdp->data,
2169 I40E_RX_HDR_SIZE);
2170
2171 /* align pull length to size of long to optimize memcpy performance */
2172 memcpy(__skb_put(skb, headlen), xdp->data,
2173 ALIGN(headlen, sizeof(long)));
2174
2175 if (unlikely(xdp_buff_has_frags(xdp))) {
2176 sinfo = xdp_get_shared_info_from_buff(xdp);
2177 nr_frags = sinfo->nr_frags;
2178 }
2179 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2180 /* update all of the pointers */
2181 size -= headlen;
2182 if (size) {
2183 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2184 dev_kfree_skb(skb);
2185 return NULL;
2186 }
2187 skb_add_rx_frag(skb, 0, rx_buffer->page,
2188 rx_buffer->page_offset + headlen,
2189 size, xdp->frame_sz);
2190 /* buffer is used by skb, update page_offset */
2191 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2192 } else {
2193 /* buffer is unused, reset bias back to rx_buffer */
2194 rx_buffer->pagecnt_bias++;
2195 }
2196
2197 if (unlikely(xdp_buff_has_frags(xdp))) {
2198 struct skb_shared_info *skinfo = skb_shinfo(skb);
2199
2200 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2201 sizeof(skb_frag_t) * nr_frags);
2202
2203 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2204 sinfo->xdp_frags_size,
2205 nr_frags * xdp->frame_sz,
2206 xdp_buff_is_frag_pfmemalloc(xdp));
2207
2208 /* First buffer has already been processed, so bump ntc */
2209 if (++rx_ring->next_to_clean == rx_ring->count)
2210 rx_ring->next_to_clean = 0;
2211
2212 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2213 }
2214
2215 return skb;
2216 }
2217
2218 /**
2219 * i40e_build_skb - Build skb around an existing buffer
2220 * @rx_ring: Rx descriptor ring to transact packets on
2221 * @xdp: xdp_buff pointing to the data
2222 *
2223 * This function builds an skb around an existing Rx buffer, taking care
2224 * to set up the skb correctly and avoid any memcpy overhead.
2225 */
i40e_build_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2226 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2227 struct xdp_buff *xdp)
2228 {
2229 unsigned int metasize = xdp->data - xdp->data_meta;
2230 struct skb_shared_info *sinfo;
2231 struct sk_buff *skb;
2232 u32 nr_frags;
2233
2234 /* Prefetch first cache line of first page. If xdp->data_meta
2235 * is unused, this points exactly as xdp->data, otherwise we
2236 * likely have a consumer accessing first few bytes of meta
2237 * data, and then actual data.
2238 */
2239 net_prefetch(xdp->data_meta);
2240
2241 if (unlikely(xdp_buff_has_frags(xdp))) {
2242 sinfo = xdp_get_shared_info_from_buff(xdp);
2243 nr_frags = sinfo->nr_frags;
2244 }
2245
2246 /* build an skb around the page buffer */
2247 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2248 if (unlikely(!skb))
2249 return NULL;
2250
2251 /* update pointers within the skb to store the data */
2252 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2253 __skb_put(skb, xdp->data_end - xdp->data);
2254 if (metasize)
2255 skb_metadata_set(skb, metasize);
2256
2257 if (unlikely(xdp_buff_has_frags(xdp))) {
2258 xdp_update_skb_shared_info(skb, nr_frags,
2259 sinfo->xdp_frags_size,
2260 nr_frags * xdp->frame_sz,
2261 xdp_buff_is_frag_pfmemalloc(xdp));
2262
2263 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2264 } else {
2265 struct i40e_rx_buffer *rx_buffer;
2266
2267 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2268 /* buffer is used by skb, update page_offset */
2269 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2270 }
2271
2272 return skb;
2273 }
2274
2275 /**
2276 * i40e_is_non_eop - process handling of non-EOP buffers
2277 * @rx_ring: Rx ring being processed
2278 * @rx_desc: Rx descriptor for current buffer
2279 *
2280 * If the buffer is an EOP buffer, this function exits returning false,
2281 * otherwise return true indicating that this is in fact a non-EOP buffer.
2282 */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2283 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2284 union i40e_rx_desc *rx_desc)
2285 {
2286 /* if we are the last buffer then there is nothing else to do */
2287 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2288 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2289 return false;
2290
2291 rx_ring->rx_stats.non_eop_descs++;
2292
2293 return true;
2294 }
2295
2296 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2297 struct i40e_ring *xdp_ring);
2298
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2299 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2300 {
2301 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2302
2303 if (unlikely(!xdpf))
2304 return I40E_XDP_CONSUMED;
2305
2306 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2307 }
2308
2309 /**
2310 * i40e_run_xdp - run an XDP program
2311 * @rx_ring: Rx ring being processed
2312 * @xdp: XDP buffer containing the frame
2313 * @xdp_prog: XDP program to run
2314 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2315 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2316 {
2317 int err, result = I40E_XDP_PASS;
2318 struct i40e_ring *xdp_ring;
2319 u32 act;
2320
2321 if (!xdp_prog)
2322 goto xdp_out;
2323
2324 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2325
2326 act = bpf_prog_run_xdp(xdp_prog, xdp);
2327 switch (act) {
2328 case XDP_PASS:
2329 break;
2330 case XDP_TX:
2331 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2332 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2333 if (result == I40E_XDP_CONSUMED)
2334 goto out_failure;
2335 break;
2336 case XDP_REDIRECT:
2337 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2338 if (err)
2339 goto out_failure;
2340 result = I40E_XDP_REDIR;
2341 break;
2342 default:
2343 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2344 fallthrough;
2345 case XDP_ABORTED:
2346 out_failure:
2347 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2348 fallthrough; /* handle aborts by dropping packet */
2349 case XDP_DROP:
2350 result = I40E_XDP_CONSUMED;
2351 break;
2352 }
2353 xdp_out:
2354 return result;
2355 }
2356
2357 /**
2358 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2359 * @xdp_ring: XDP Tx ring
2360 *
2361 * This function updates the XDP Tx ring tail register.
2362 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2363 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2364 {
2365 /* Force memory writes to complete before letting h/w
2366 * know there are new descriptors to fetch.
2367 */
2368 wmb();
2369 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2370 }
2371
2372 /**
2373 * i40e_update_rx_stats - Update Rx ring statistics
2374 * @rx_ring: rx descriptor ring
2375 * @total_rx_bytes: number of bytes received
2376 * @total_rx_packets: number of packets received
2377 *
2378 * This function updates the Rx ring statistics.
2379 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2380 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2381 unsigned int total_rx_bytes,
2382 unsigned int total_rx_packets)
2383 {
2384 u64_stats_update_begin(&rx_ring->syncp);
2385 rx_ring->stats.packets += total_rx_packets;
2386 rx_ring->stats.bytes += total_rx_bytes;
2387 u64_stats_update_end(&rx_ring->syncp);
2388 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2389 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2390 }
2391
2392 /**
2393 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2394 * @rx_ring: Rx ring
2395 * @xdp_res: Result of the receive batch
2396 *
2397 * This function bumps XDP Tx tail and/or flush redirect map, and
2398 * should be called when a batch of packets has been processed in the
2399 * napi loop.
2400 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2401 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2402 {
2403 if (xdp_res & I40E_XDP_REDIR)
2404 xdp_do_flush_map();
2405
2406 if (xdp_res & I40E_XDP_TX) {
2407 struct i40e_ring *xdp_ring =
2408 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2409
2410 i40e_xdp_ring_update_tail(xdp_ring);
2411 }
2412 }
2413
2414 /**
2415 * i40e_inc_ntp: Advance the next_to_process index
2416 * @rx_ring: Rx ring
2417 **/
i40e_inc_ntp(struct i40e_ring * rx_ring)2418 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2419 {
2420 u32 ntp = rx_ring->next_to_process + 1;
2421
2422 ntp = (ntp < rx_ring->count) ? ntp : 0;
2423 rx_ring->next_to_process = ntp;
2424 prefetch(I40E_RX_DESC(rx_ring, ntp));
2425 }
2426
2427 /**
2428 * i40e_add_xdp_frag: Add a frag to xdp_buff
2429 * @xdp: xdp_buff pointing to the data
2430 * @nr_frags: return number of buffers for the packet
2431 * @rx_buffer: rx_buffer holding data of the current frag
2432 * @size: size of data of current frag
2433 */
i40e_add_xdp_frag(struct xdp_buff * xdp,u32 * nr_frags,struct i40e_rx_buffer * rx_buffer,u32 size)2434 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2435 struct i40e_rx_buffer *rx_buffer, u32 size)
2436 {
2437 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2438
2439 if (!xdp_buff_has_frags(xdp)) {
2440 sinfo->nr_frags = 0;
2441 sinfo->xdp_frags_size = 0;
2442 xdp_buff_set_frags_flag(xdp);
2443 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2444 /* Overflowing packet: All frags need to be dropped */
2445 return -ENOMEM;
2446 }
2447
2448 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2449 rx_buffer->page_offset, size);
2450
2451 sinfo->xdp_frags_size += size;
2452
2453 if (page_is_pfmemalloc(rx_buffer->page))
2454 xdp_buff_set_frag_pfmemalloc(xdp);
2455 *nr_frags = sinfo->nr_frags;
2456
2457 return 0;
2458 }
2459
2460 /**
2461 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2462 * @rx_ring: rx descriptor ring to transact packets on
2463 * @xdp: xdp_buff pointing to the data
2464 * @rx_buffer: rx_buffer of eop desc
2465 */
i40e_consume_xdp_buff(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct i40e_rx_buffer * rx_buffer)2466 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2467 struct xdp_buff *xdp,
2468 struct i40e_rx_buffer *rx_buffer)
2469 {
2470 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2471 i40e_put_rx_buffer(rx_ring, rx_buffer);
2472 rx_ring->next_to_clean = rx_ring->next_to_process;
2473 xdp->data = NULL;
2474 }
2475
2476 /**
2477 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2478 * @rx_ring: rx descriptor ring to transact packets on
2479 * @budget: Total limit on number of packets to process
2480 * @rx_cleaned: Out parameter of the number of packets processed
2481 *
2482 * This function provides a "bounce buffer" approach to Rx interrupt
2483 * processing. The advantage to this is that on systems that have
2484 * expensive overhead for IOMMU access this provides a means of avoiding
2485 * it by maintaining the mapping of the page to the system.
2486 *
2487 * Returns amount of work completed
2488 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget,unsigned int * rx_cleaned)2489 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2490 unsigned int *rx_cleaned)
2491 {
2492 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2493 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2494 u16 clean_threshold = rx_ring->count / 2;
2495 unsigned int offset = rx_ring->rx_offset;
2496 struct xdp_buff *xdp = &rx_ring->xdp;
2497 unsigned int xdp_xmit = 0;
2498 struct bpf_prog *xdp_prog;
2499 bool failure = false;
2500 int xdp_res = 0;
2501
2502 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2503
2504 while (likely(total_rx_packets < (unsigned int)budget)) {
2505 u16 ntp = rx_ring->next_to_process;
2506 struct i40e_rx_buffer *rx_buffer;
2507 union i40e_rx_desc *rx_desc;
2508 struct sk_buff *skb;
2509 unsigned int size;
2510 u32 nfrags = 0;
2511 bool neop;
2512 u64 qword;
2513
2514 /* return some buffers to hardware, one at a time is too slow */
2515 if (cleaned_count >= clean_threshold) {
2516 failure = failure ||
2517 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2518 cleaned_count = 0;
2519 }
2520
2521 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2522
2523 /* status_error_len will always be zero for unused descriptors
2524 * because it's cleared in cleanup, and overlaps with hdr_addr
2525 * which is always zero because packet split isn't used, if the
2526 * hardware wrote DD then the length will be non-zero
2527 */
2528 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2529
2530 /* This memory barrier is needed to keep us from reading
2531 * any other fields out of the rx_desc until we have
2532 * verified the descriptor has been written back.
2533 */
2534 dma_rmb();
2535
2536 if (i40e_rx_is_programming_status(qword)) {
2537 i40e_clean_programming_status(rx_ring,
2538 rx_desc->raw.qword[0],
2539 qword);
2540 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2541 i40e_inc_ntp(rx_ring);
2542 i40e_reuse_rx_page(rx_ring, rx_buffer);
2543 /* Update ntc and bump cleaned count if not in the
2544 * middle of mb packet.
2545 */
2546 if (rx_ring->next_to_clean == ntp) {
2547 rx_ring->next_to_clean =
2548 rx_ring->next_to_process;
2549 cleaned_count++;
2550 }
2551 continue;
2552 }
2553
2554 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2555 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2556 if (!size)
2557 break;
2558
2559 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2560 /* retrieve a buffer from the ring */
2561 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2562
2563 neop = i40e_is_non_eop(rx_ring, rx_desc);
2564 i40e_inc_ntp(rx_ring);
2565
2566 if (!xdp->data) {
2567 unsigned char *hard_start;
2568
2569 hard_start = page_address(rx_buffer->page) +
2570 rx_buffer->page_offset - offset;
2571 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2572 #if (PAGE_SIZE > 4096)
2573 /* At larger PAGE_SIZE, frame_sz depend on len size */
2574 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2575 #endif
2576 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2577 !neop) {
2578 /* Overflowing packet: Drop all frags on EOP */
2579 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2580 break;
2581 }
2582
2583 if (neop)
2584 continue;
2585
2586 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2587
2588 if (xdp_res) {
2589 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2590
2591 if (unlikely(xdp_buff_has_frags(xdp))) {
2592 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2593 size = xdp_get_buff_len(xdp);
2594 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2595 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2596 } else {
2597 rx_buffer->pagecnt_bias++;
2598 }
2599 total_rx_bytes += size;
2600 } else {
2601 if (ring_uses_build_skb(rx_ring))
2602 skb = i40e_build_skb(rx_ring, xdp);
2603 else
2604 skb = i40e_construct_skb(rx_ring, xdp);
2605
2606 /* drop if we failed to retrieve a buffer */
2607 if (!skb) {
2608 rx_ring->rx_stats.alloc_buff_failed++;
2609 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2610 break;
2611 }
2612
2613 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2614 goto process_next;
2615
2616 /* probably a little skewed due to removing CRC */
2617 total_rx_bytes += skb->len;
2618
2619 /* populate checksum, VLAN, and protocol */
2620 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2621
2622 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2623 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2624 }
2625
2626 /* update budget accounting */
2627 total_rx_packets++;
2628 process_next:
2629 cleaned_count += nfrags + 1;
2630 i40e_put_rx_buffer(rx_ring, rx_buffer);
2631 rx_ring->next_to_clean = rx_ring->next_to_process;
2632
2633 xdp->data = NULL;
2634 }
2635
2636 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2637
2638 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2639
2640 *rx_cleaned = total_rx_packets;
2641
2642 /* guarantee a trip back through this routine if there was a failure */
2643 return failure ? budget : (int)total_rx_packets;
2644 }
2645
2646 /**
2647 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2648 * @itr_idx: interrupt throttling index
2649 * @interval: interrupt throttling interval value in usecs
2650 * @force_swint: force software interrupt
2651 *
2652 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2653 * is used to update interrupt throttling interval for specified ITR index
2654 * and optionally enforces a software interrupt. If the @itr_idx is equal
2655 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2656 * parameter is taken into account. If the interval change and enforced
2657 * software interrupt are not requested then the built value just enables
2658 * appropriate vector interrupt.
2659 **/
i40e_buildreg_itr(enum i40e_dyn_idx itr_idx,u16 interval,bool force_swint)2660 static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2661 bool force_swint)
2662 {
2663 u32 val;
2664
2665 /* We don't bother with setting the CLEARPBA bit as the data sheet
2666 * points out doing so is "meaningless since it was already
2667 * auto-cleared". The auto-clearing happens when the interrupt is
2668 * asserted.
2669 *
2670 * Hardware errata 28 for also indicates that writing to a
2671 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2672 * an event in the PBA anyway so we need to rely on the automask
2673 * to hold pending events for us until the interrupt is re-enabled
2674 *
2675 * We have to shift the given value as it is reported in microseconds
2676 * and the register value is recorded in 2 microsecond units.
2677 */
2678 interval >>= 1;
2679
2680 /* 1. Enable vector interrupt
2681 * 2. Update the interval for the specified ITR index
2682 * (I40E_ITR_NONE in the register is used to indicate that
2683 * no interval update is requested)
2684 */
2685 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2686 FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2687 FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2688
2689 /* 3. Enforce software interrupt trigger if requested
2690 * (These software interrupts rate is limited by ITR2 that is
2691 * set to 20K interrupts per second)
2692 */
2693 if (force_swint)
2694 val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2695 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2696 FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2697 I40E_SW_ITR);
2698
2699 return val;
2700 }
2701
2702 /* The act of updating the ITR will cause it to immediately trigger. In order
2703 * to prevent this from throwing off adaptive update statistics we defer the
2704 * update so that it can only happen so often. So after either Tx or Rx are
2705 * updated we make the adaptive scheme wait until either the ITR completely
2706 * expires via the next_update expiration or we have been through at least
2707 * 3 interrupts.
2708 */
2709 #define ITR_COUNTDOWN_START 3
2710
2711 /**
2712 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2713 * @vsi: the VSI we care about
2714 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2715 *
2716 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2717 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2718 struct i40e_q_vector *q_vector)
2719 {
2720 enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2721 struct i40e_hw *hw = &vsi->back->hw;
2722 u16 interval = 0;
2723 u32 itr_val;
2724
2725 /* If we don't have MSIX, then we only need to re-enable icr0 */
2726 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2727 i40e_irq_dynamic_enable_icr0(vsi->back);
2728 return;
2729 }
2730
2731 /* These will do nothing if dynamic updates are not enabled */
2732 i40e_update_itr(q_vector, &q_vector->tx);
2733 i40e_update_itr(q_vector, &q_vector->rx);
2734
2735 /* This block of logic allows us to get away with only updating
2736 * one ITR value with each interrupt. The idea is to perform a
2737 * pseudo-lazy update with the following criteria.
2738 *
2739 * 1. Rx is given higher priority than Tx if both are in same state
2740 * 2. If we must reduce an ITR that is given highest priority.
2741 * 3. We then give priority to increasing ITR based on amount.
2742 */
2743 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2744 /* Rx ITR needs to be reduced, this is highest priority */
2745 itr_idx = I40E_RX_ITR;
2746 interval = q_vector->rx.target_itr;
2747 q_vector->rx.current_itr = q_vector->rx.target_itr;
2748 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2749 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2750 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2751 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2752 /* Tx ITR needs to be reduced, this is second priority
2753 * Tx ITR needs to be increased more than Rx, fourth priority
2754 */
2755 itr_idx = I40E_TX_ITR;
2756 interval = q_vector->tx.target_itr;
2757 q_vector->tx.current_itr = q_vector->tx.target_itr;
2758 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2759 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2760 /* Rx ITR needs to be increased, third priority */
2761 itr_idx = I40E_RX_ITR;
2762 interval = q_vector->rx.target_itr;
2763 q_vector->rx.current_itr = q_vector->rx.target_itr;
2764 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2765 } else {
2766 /* No ITR update, lowest priority */
2767 if (q_vector->itr_countdown)
2768 q_vector->itr_countdown--;
2769 }
2770
2771 /* Do not update interrupt control register if VSI is down */
2772 if (test_bit(__I40E_VSI_DOWN, vsi->state))
2773 return;
2774
2775 /* Update ITR interval if necessary and enforce software interrupt
2776 * if we are exiting busy poll.
2777 */
2778 if (q_vector->in_busy_poll) {
2779 itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2780 q_vector->in_busy_poll = false;
2781 } else {
2782 itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2783 }
2784 wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2785 }
2786
2787 /**
2788 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2789 * @napi: napi struct with our devices info in it
2790 * @budget: amount of work driver is allowed to do this pass, in packets
2791 *
2792 * This function will clean all queues associated with a q_vector.
2793 *
2794 * Returns the amount of work done
2795 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2796 int i40e_napi_poll(struct napi_struct *napi, int budget)
2797 {
2798 struct i40e_q_vector *q_vector =
2799 container_of(napi, struct i40e_q_vector, napi);
2800 struct i40e_vsi *vsi = q_vector->vsi;
2801 struct i40e_ring *ring;
2802 bool tx_clean_complete = true;
2803 bool rx_clean_complete = true;
2804 unsigned int tx_cleaned = 0;
2805 unsigned int rx_cleaned = 0;
2806 bool clean_complete = true;
2807 bool arm_wb = false;
2808 int budget_per_ring;
2809 int work_done = 0;
2810
2811 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2812 napi_complete(napi);
2813 return 0;
2814 }
2815
2816 /* Since the actual Tx work is minimal, we can give the Tx a larger
2817 * budget and be more aggressive about cleaning up the Tx descriptors.
2818 */
2819 i40e_for_each_ring(ring, q_vector->tx) {
2820 bool wd = ring->xsk_pool ?
2821 i40e_clean_xdp_tx_irq(vsi, ring) :
2822 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2823
2824 if (!wd) {
2825 clean_complete = tx_clean_complete = false;
2826 continue;
2827 }
2828 arm_wb |= ring->arm_wb;
2829 ring->arm_wb = false;
2830 }
2831
2832 /* Handle case where we are called by netpoll with a budget of 0 */
2833 if (budget <= 0)
2834 goto tx_only;
2835
2836 /* normally we have 1 Rx ring per q_vector */
2837 if (unlikely(q_vector->num_ringpairs > 1))
2838 /* We attempt to distribute budget to each Rx queue fairly, but
2839 * don't allow the budget to go below 1 because that would exit
2840 * polling early.
2841 */
2842 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2843 else
2844 /* Max of 1 Rx ring in this q_vector so give it the budget */
2845 budget_per_ring = budget;
2846
2847 i40e_for_each_ring(ring, q_vector->rx) {
2848 int cleaned = ring->xsk_pool ?
2849 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2850 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2851
2852 work_done += cleaned;
2853 /* if we clean as many as budgeted, we must not be done */
2854 if (cleaned >= budget_per_ring)
2855 clean_complete = rx_clean_complete = false;
2856 }
2857
2858 if (!i40e_enabled_xdp_vsi(vsi))
2859 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2860 tx_cleaned, rx_clean_complete, tx_clean_complete);
2861
2862 /* If work not completed, return budget and polling will return */
2863 if (!clean_complete) {
2864 int cpu_id = smp_processor_id();
2865
2866 /* It is possible that the interrupt affinity has changed but,
2867 * if the cpu is pegged at 100%, polling will never exit while
2868 * traffic continues and the interrupt will be stuck on this
2869 * cpu. We check to make sure affinity is correct before we
2870 * continue to poll, otherwise we must stop polling so the
2871 * interrupt can move to the correct cpu.
2872 */
2873 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2874 /* Tell napi that we are done polling */
2875 napi_complete_done(napi, work_done);
2876
2877 /* Force an interrupt */
2878 i40e_force_wb(vsi, q_vector);
2879
2880 /* Return budget-1 so that polling stops */
2881 return budget - 1;
2882 }
2883 tx_only:
2884 if (arm_wb) {
2885 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2886 i40e_enable_wb_on_itr(vsi, q_vector);
2887 }
2888 return budget;
2889 }
2890
2891 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2892 q_vector->arm_wb_state = false;
2893
2894 /* Exit the polling mode, but don't re-enable interrupts if stack might
2895 * poll us due to busy-polling
2896 */
2897 if (likely(napi_complete_done(napi, work_done)))
2898 i40e_update_enable_itr(vsi, q_vector);
2899 else
2900 q_vector->in_busy_poll = true;
2901
2902 return min(work_done, budget - 1);
2903 }
2904
2905 /**
2906 * i40e_atr - Add a Flow Director ATR filter
2907 * @tx_ring: ring to add programming descriptor to
2908 * @skb: send buffer
2909 * @tx_flags: send tx flags
2910 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2911 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2912 u32 tx_flags)
2913 {
2914 struct i40e_filter_program_desc *fdir_desc;
2915 struct i40e_pf *pf = tx_ring->vsi->back;
2916 union {
2917 unsigned char *network;
2918 struct iphdr *ipv4;
2919 struct ipv6hdr *ipv6;
2920 } hdr;
2921 struct tcphdr *th;
2922 unsigned int hlen;
2923 u32 flex_ptype, dtype_cmd;
2924 int l4_proto;
2925 u16 i;
2926
2927 /* make sure ATR is enabled */
2928 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2929 return;
2930
2931 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2932 return;
2933
2934 /* if sampling is disabled do nothing */
2935 if (!tx_ring->atr_sample_rate)
2936 return;
2937
2938 /* Currently only IPv4/IPv6 with TCP is supported */
2939 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2940 return;
2941
2942 /* snag network header to get L4 type and address */
2943 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2944 skb_inner_network_header(skb) : skb_network_header(skb);
2945
2946 /* Note: tx_flags gets modified to reflect inner protocols in
2947 * tx_enable_csum function if encap is enabled.
2948 */
2949 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2950 /* access ihl as u8 to avoid unaligned access on ia64 */
2951 hlen = (hdr.network[0] & 0x0F) << 2;
2952 l4_proto = hdr.ipv4->protocol;
2953 } else {
2954 /* find the start of the innermost ipv6 header */
2955 unsigned int inner_hlen = hdr.network - skb->data;
2956 unsigned int h_offset = inner_hlen;
2957
2958 /* this function updates h_offset to the end of the header */
2959 l4_proto =
2960 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2961 /* hlen will contain our best estimate of the tcp header */
2962 hlen = h_offset - inner_hlen;
2963 }
2964
2965 if (l4_proto != IPPROTO_TCP)
2966 return;
2967
2968 th = (struct tcphdr *)(hdr.network + hlen);
2969
2970 /* Due to lack of space, no more new filters can be programmed */
2971 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2972 return;
2973 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2974 /* HW ATR eviction will take care of removing filters on FIN
2975 * and RST packets.
2976 */
2977 if (th->fin || th->rst)
2978 return;
2979 }
2980
2981 tx_ring->atr_count++;
2982
2983 /* sample on all syn/fin/rst packets or once every atr sample rate */
2984 if (!th->fin &&
2985 !th->syn &&
2986 !th->rst &&
2987 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2988 return;
2989
2990 tx_ring->atr_count = 0;
2991
2992 /* grab the next descriptor */
2993 i = tx_ring->next_to_use;
2994 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2995
2996 i++;
2997 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2998
2999 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
3000 I40E_TXD_FLTR_QW0_QINDEX_MASK;
3001 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
3002 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
3003 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
3004 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
3005 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
3006
3007 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
3008
3009 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
3010
3011 dtype_cmd |= (th->fin || th->rst) ?
3012 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
3013 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
3014 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
3015 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
3016
3017 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
3018 I40E_TXD_FLTR_QW1_DEST_SHIFT;
3019
3020 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
3021 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
3022
3023 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
3024 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
3025 dtype_cmd |=
3026 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
3027 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
3028 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
3029 else
3030 dtype_cmd |=
3031 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
3032 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
3033 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
3034
3035 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
3036 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
3037
3038 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3039 fdir_desc->rsvd = cpu_to_le32(0);
3040 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3041 fdir_desc->fd_id = cpu_to_le32(0);
3042 }
3043
3044 /**
3045 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3046 * @skb: send buffer
3047 * @tx_ring: ring to send buffer on
3048 * @flags: the tx flags to be set
3049 *
3050 * Checks the skb and set up correspondingly several generic transmit flags
3051 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3052 *
3053 * Returns error code indicate the frame should be dropped upon error and the
3054 * otherwise returns 0 to indicate the flags has been set properly.
3055 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)3056 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3057 struct i40e_ring *tx_ring,
3058 u32 *flags)
3059 {
3060 __be16 protocol = skb->protocol;
3061 u32 tx_flags = 0;
3062
3063 if (protocol == htons(ETH_P_8021Q) &&
3064 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3065 /* When HW VLAN acceleration is turned off by the user the
3066 * stack sets the protocol to 8021q so that the driver
3067 * can take any steps required to support the SW only
3068 * VLAN handling. In our case the driver doesn't need
3069 * to take any further steps so just set the protocol
3070 * to the encapsulated ethertype.
3071 */
3072 skb->protocol = vlan_get_protocol(skb);
3073 goto out;
3074 }
3075
3076 /* if we have a HW VLAN tag being added, default to the HW one */
3077 if (skb_vlan_tag_present(skb)) {
3078 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3079 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3080 /* else if it is a SW VLAN, check the next protocol and store the tag */
3081 } else if (protocol == htons(ETH_P_8021Q)) {
3082 struct vlan_hdr *vhdr, _vhdr;
3083
3084 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3085 if (!vhdr)
3086 return -EINVAL;
3087
3088 protocol = vhdr->h_vlan_encapsulated_proto;
3089 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3090 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3091 }
3092
3093 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
3094 goto out;
3095
3096 /* Insert 802.1p priority into VLAN header */
3097 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3098 (skb->priority != TC_PRIO_CONTROL)) {
3099 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3100 tx_flags |= (skb->priority & 0x7) <<
3101 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3102 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3103 struct vlan_ethhdr *vhdr;
3104 int rc;
3105
3106 rc = skb_cow_head(skb, 0);
3107 if (rc < 0)
3108 return rc;
3109 vhdr = skb_vlan_eth_hdr(skb);
3110 vhdr->h_vlan_TCI = htons(tx_flags >>
3111 I40E_TX_FLAGS_VLAN_SHIFT);
3112 } else {
3113 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3114 }
3115 }
3116
3117 out:
3118 *flags = tx_flags;
3119 return 0;
3120 }
3121
3122 /**
3123 * i40e_tso - set up the tso context descriptor
3124 * @first: pointer to first Tx buffer for xmit
3125 * @hdr_len: ptr to the size of the packet header
3126 * @cd_type_cmd_tso_mss: Quad Word 1
3127 *
3128 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3129 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3130 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3131 u64 *cd_type_cmd_tso_mss)
3132 {
3133 struct sk_buff *skb = first->skb;
3134 u64 cd_cmd, cd_tso_len, cd_mss;
3135 __be16 protocol;
3136 union {
3137 struct iphdr *v4;
3138 struct ipv6hdr *v6;
3139 unsigned char *hdr;
3140 } ip;
3141 union {
3142 struct tcphdr *tcp;
3143 struct udphdr *udp;
3144 unsigned char *hdr;
3145 } l4;
3146 u32 paylen, l4_offset;
3147 u16 gso_size;
3148 int err;
3149
3150 if (skb->ip_summed != CHECKSUM_PARTIAL)
3151 return 0;
3152
3153 if (!skb_is_gso(skb))
3154 return 0;
3155
3156 err = skb_cow_head(skb, 0);
3157 if (err < 0)
3158 return err;
3159
3160 protocol = vlan_get_protocol(skb);
3161
3162 if (eth_p_mpls(protocol))
3163 ip.hdr = skb_inner_network_header(skb);
3164 else
3165 ip.hdr = skb_network_header(skb);
3166 l4.hdr = skb_checksum_start(skb);
3167
3168 /* initialize outer IP header fields */
3169 if (ip.v4->version == 4) {
3170 ip.v4->tot_len = 0;
3171 ip.v4->check = 0;
3172
3173 first->tx_flags |= I40E_TX_FLAGS_TSO;
3174 } else {
3175 ip.v6->payload_len = 0;
3176 first->tx_flags |= I40E_TX_FLAGS_TSO;
3177 }
3178
3179 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3180 SKB_GSO_GRE_CSUM |
3181 SKB_GSO_IPXIP4 |
3182 SKB_GSO_IPXIP6 |
3183 SKB_GSO_UDP_TUNNEL |
3184 SKB_GSO_UDP_TUNNEL_CSUM)) {
3185 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3186 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3187 l4.udp->len = 0;
3188
3189 /* determine offset of outer transport header */
3190 l4_offset = l4.hdr - skb->data;
3191
3192 /* remove payload length from outer checksum */
3193 paylen = skb->len - l4_offset;
3194 csum_replace_by_diff(&l4.udp->check,
3195 (__force __wsum)htonl(paylen));
3196 }
3197
3198 /* reset pointers to inner headers */
3199 ip.hdr = skb_inner_network_header(skb);
3200 l4.hdr = skb_inner_transport_header(skb);
3201
3202 /* initialize inner IP header fields */
3203 if (ip.v4->version == 4) {
3204 ip.v4->tot_len = 0;
3205 ip.v4->check = 0;
3206 } else {
3207 ip.v6->payload_len = 0;
3208 }
3209 }
3210
3211 /* determine offset of inner transport header */
3212 l4_offset = l4.hdr - skb->data;
3213
3214 /* remove payload length from inner checksum */
3215 paylen = skb->len - l4_offset;
3216
3217 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3218 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3219 /* compute length of segmentation header */
3220 *hdr_len = sizeof(*l4.udp) + l4_offset;
3221 } else {
3222 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3223 /* compute length of segmentation header */
3224 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3225 }
3226
3227 /* pull values out of skb_shinfo */
3228 gso_size = skb_shinfo(skb)->gso_size;
3229
3230 /* update GSO size and bytecount with header size */
3231 first->gso_segs = skb_shinfo(skb)->gso_segs;
3232 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3233
3234 /* find the field values */
3235 cd_cmd = I40E_TX_CTX_DESC_TSO;
3236 cd_tso_len = skb->len - *hdr_len;
3237 cd_mss = gso_size;
3238 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3239 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3240 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3241 return 1;
3242 }
3243
3244 /**
3245 * i40e_tsyn - set up the tsyn context descriptor
3246 * @tx_ring: ptr to the ring to send
3247 * @skb: ptr to the skb we're sending
3248 * @tx_flags: the collected send information
3249 * @cd_type_cmd_tso_mss: Quad Word 1
3250 *
3251 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3252 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3253 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3254 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3255 {
3256 struct i40e_pf *pf;
3257
3258 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3259 return 0;
3260
3261 /* Tx timestamps cannot be sampled when doing TSO */
3262 if (tx_flags & I40E_TX_FLAGS_TSO)
3263 return 0;
3264
3265 /* only timestamp the outbound packet if the user has requested it and
3266 * we are not already transmitting a packet to be timestamped
3267 */
3268 pf = i40e_netdev_to_pf(tx_ring->netdev);
3269 if (!(pf->flags & I40E_FLAG_PTP))
3270 return 0;
3271
3272 if (pf->ptp_tx &&
3273 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3274 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3275 pf->ptp_tx_start = jiffies;
3276 pf->ptp_tx_skb = skb_get(skb);
3277 } else {
3278 pf->tx_hwtstamp_skipped++;
3279 return 0;
3280 }
3281
3282 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3283 I40E_TXD_CTX_QW1_CMD_SHIFT;
3284
3285 return 1;
3286 }
3287
3288 /**
3289 * i40e_tx_enable_csum - Enable Tx checksum offloads
3290 * @skb: send buffer
3291 * @tx_flags: pointer to Tx flags currently set
3292 * @td_cmd: Tx descriptor command bits to set
3293 * @td_offset: Tx descriptor header offsets to set
3294 * @tx_ring: Tx descriptor ring
3295 * @cd_tunneling: ptr to context desc bits
3296 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3297 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3298 u32 *td_cmd, u32 *td_offset,
3299 struct i40e_ring *tx_ring,
3300 u32 *cd_tunneling)
3301 {
3302 union {
3303 struct iphdr *v4;
3304 struct ipv6hdr *v6;
3305 unsigned char *hdr;
3306 } ip;
3307 union {
3308 struct tcphdr *tcp;
3309 struct udphdr *udp;
3310 unsigned char *hdr;
3311 } l4;
3312 unsigned char *exthdr;
3313 u32 offset, cmd = 0;
3314 __be16 frag_off;
3315 __be16 protocol;
3316 u8 l4_proto = 0;
3317
3318 if (skb->ip_summed != CHECKSUM_PARTIAL)
3319 return 0;
3320
3321 protocol = vlan_get_protocol(skb);
3322
3323 if (eth_p_mpls(protocol)) {
3324 ip.hdr = skb_inner_network_header(skb);
3325 l4.hdr = skb_checksum_start(skb);
3326 } else {
3327 ip.hdr = skb_network_header(skb);
3328 l4.hdr = skb_transport_header(skb);
3329 }
3330
3331 /* set the tx_flags to indicate the IP protocol type. this is
3332 * required so that checksum header computation below is accurate.
3333 */
3334 if (ip.v4->version == 4)
3335 *tx_flags |= I40E_TX_FLAGS_IPV4;
3336 else
3337 *tx_flags |= I40E_TX_FLAGS_IPV6;
3338
3339 /* compute outer L2 header size */
3340 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3341
3342 if (skb->encapsulation) {
3343 u32 tunnel = 0;
3344 /* define outer network header type */
3345 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3346 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3347 I40E_TX_CTX_EXT_IP_IPV4 :
3348 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3349
3350 l4_proto = ip.v4->protocol;
3351 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3352 int ret;
3353
3354 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3355
3356 exthdr = ip.hdr + sizeof(*ip.v6);
3357 l4_proto = ip.v6->nexthdr;
3358 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3359 &l4_proto, &frag_off);
3360 if (ret < 0)
3361 return -1;
3362 }
3363
3364 /* define outer transport */
3365 switch (l4_proto) {
3366 case IPPROTO_UDP:
3367 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3368 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3369 break;
3370 case IPPROTO_GRE:
3371 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3372 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3373 break;
3374 case IPPROTO_IPIP:
3375 case IPPROTO_IPV6:
3376 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3377 l4.hdr = skb_inner_network_header(skb);
3378 break;
3379 default:
3380 if (*tx_flags & I40E_TX_FLAGS_TSO)
3381 return -1;
3382
3383 skb_checksum_help(skb);
3384 return 0;
3385 }
3386
3387 /* compute outer L3 header size */
3388 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3389 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3390
3391 /* switch IP header pointer from outer to inner header */
3392 ip.hdr = skb_inner_network_header(skb);
3393
3394 /* compute tunnel header size */
3395 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3396 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3397
3398 /* indicate if we need to offload outer UDP header */
3399 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3400 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3401 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3402 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3403
3404 /* record tunnel offload values */
3405 *cd_tunneling |= tunnel;
3406
3407 /* switch L4 header pointer from outer to inner */
3408 l4.hdr = skb_inner_transport_header(skb);
3409 l4_proto = 0;
3410
3411 /* reset type as we transition from outer to inner headers */
3412 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3413 if (ip.v4->version == 4)
3414 *tx_flags |= I40E_TX_FLAGS_IPV4;
3415 if (ip.v6->version == 6)
3416 *tx_flags |= I40E_TX_FLAGS_IPV6;
3417 }
3418
3419 /* Enable IP checksum offloads */
3420 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3421 l4_proto = ip.v4->protocol;
3422 /* the stack computes the IP header already, the only time we
3423 * need the hardware to recompute it is in the case of TSO.
3424 */
3425 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3426 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3427 I40E_TX_DESC_CMD_IIPT_IPV4;
3428 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3429 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3430
3431 exthdr = ip.hdr + sizeof(*ip.v6);
3432 l4_proto = ip.v6->nexthdr;
3433 if (l4.hdr != exthdr)
3434 ipv6_skip_exthdr(skb, exthdr - skb->data,
3435 &l4_proto, &frag_off);
3436 }
3437
3438 /* compute inner L3 header size */
3439 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3440
3441 /* Enable L4 checksum offloads */
3442 switch (l4_proto) {
3443 case IPPROTO_TCP:
3444 /* enable checksum offloads */
3445 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3446 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3447 break;
3448 case IPPROTO_SCTP:
3449 /* enable SCTP checksum offload */
3450 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3451 offset |= (sizeof(struct sctphdr) >> 2) <<
3452 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3453 break;
3454 case IPPROTO_UDP:
3455 /* enable UDP checksum offload */
3456 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3457 offset |= (sizeof(struct udphdr) >> 2) <<
3458 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3459 break;
3460 default:
3461 if (*tx_flags & I40E_TX_FLAGS_TSO)
3462 return -1;
3463 skb_checksum_help(skb);
3464 return 0;
3465 }
3466
3467 *td_cmd |= cmd;
3468 *td_offset |= offset;
3469
3470 return 1;
3471 }
3472
3473 /**
3474 * i40e_create_tx_ctx - Build the Tx context descriptor
3475 * @tx_ring: ring to create the descriptor on
3476 * @cd_type_cmd_tso_mss: Quad Word 1
3477 * @cd_tunneling: Quad Word 0 - bits 0-31
3478 * @cd_l2tag2: Quad Word 0 - bits 32-63
3479 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3480 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3481 const u64 cd_type_cmd_tso_mss,
3482 const u32 cd_tunneling, const u32 cd_l2tag2)
3483 {
3484 struct i40e_tx_context_desc *context_desc;
3485 int i = tx_ring->next_to_use;
3486
3487 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3488 !cd_tunneling && !cd_l2tag2)
3489 return;
3490
3491 /* grab the next descriptor */
3492 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3493
3494 i++;
3495 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3496
3497 /* cpu_to_le32 and assign to struct fields */
3498 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3499 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3500 context_desc->rsvd = cpu_to_le16(0);
3501 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3502 }
3503
3504 /**
3505 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3506 * @tx_ring: the ring to be checked
3507 * @size: the size buffer we want to assure is available
3508 *
3509 * Returns -EBUSY if a stop is needed, else 0
3510 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3511 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3512 {
3513 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3514 /* Memory barrier before checking head and tail */
3515 smp_mb();
3516
3517 ++tx_ring->tx_stats.tx_stopped;
3518
3519 /* Check again in a case another CPU has just made room available. */
3520 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3521 return -EBUSY;
3522
3523 /* A reprieve! - use start_queue because it doesn't call schedule */
3524 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3525 ++tx_ring->tx_stats.restart_queue;
3526 return 0;
3527 }
3528
3529 /**
3530 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3531 * @skb: send buffer
3532 *
3533 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3534 * and so we need to figure out the cases where we need to linearize the skb.
3535 *
3536 * For TSO we need to count the TSO header and segment payload separately.
3537 * As such we need to check cases where we have 7 fragments or more as we
3538 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3539 * the segment payload in the first descriptor, and another 7 for the
3540 * fragments.
3541 **/
__i40e_chk_linearize(struct sk_buff * skb)3542 bool __i40e_chk_linearize(struct sk_buff *skb)
3543 {
3544 const skb_frag_t *frag, *stale;
3545 int nr_frags, sum;
3546
3547 /* no need to check if number of frags is less than 7 */
3548 nr_frags = skb_shinfo(skb)->nr_frags;
3549 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3550 return false;
3551
3552 /* We need to walk through the list and validate that each group
3553 * of 6 fragments totals at least gso_size.
3554 */
3555 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3556 frag = &skb_shinfo(skb)->frags[0];
3557
3558 /* Initialize size to the negative value of gso_size minus 1. We
3559 * use this as the worst case scenerio in which the frag ahead
3560 * of us only provides one byte which is why we are limited to 6
3561 * descriptors for a single transmit as the header and previous
3562 * fragment are already consuming 2 descriptors.
3563 */
3564 sum = 1 - skb_shinfo(skb)->gso_size;
3565
3566 /* Add size of frags 0 through 4 to create our initial sum */
3567 sum += skb_frag_size(frag++);
3568 sum += skb_frag_size(frag++);
3569 sum += skb_frag_size(frag++);
3570 sum += skb_frag_size(frag++);
3571 sum += skb_frag_size(frag++);
3572
3573 /* Walk through fragments adding latest fragment, testing it, and
3574 * then removing stale fragments from the sum.
3575 */
3576 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3577 int stale_size = skb_frag_size(stale);
3578
3579 sum += skb_frag_size(frag++);
3580
3581 /* The stale fragment may present us with a smaller
3582 * descriptor than the actual fragment size. To account
3583 * for that we need to remove all the data on the front and
3584 * figure out what the remainder would be in the last
3585 * descriptor associated with the fragment.
3586 */
3587 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3588 int align_pad = -(skb_frag_off(stale)) &
3589 (I40E_MAX_READ_REQ_SIZE - 1);
3590
3591 sum -= align_pad;
3592 stale_size -= align_pad;
3593
3594 do {
3595 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3596 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3597 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3598 }
3599
3600 /* if sum is negative we failed to make sufficient progress */
3601 if (sum < 0)
3602 return true;
3603
3604 if (!nr_frags--)
3605 break;
3606
3607 sum -= stale_size;
3608 }
3609
3610 return false;
3611 }
3612
3613 /**
3614 * i40e_tx_map - Build the Tx descriptor
3615 * @tx_ring: ring to send buffer on
3616 * @skb: send buffer
3617 * @first: first buffer info buffer to use
3618 * @tx_flags: collected send information
3619 * @hdr_len: size of the packet header
3620 * @td_cmd: the command field in the descriptor
3621 * @td_offset: offset for checksum or crc
3622 *
3623 * Returns 0 on success, -1 on failure to DMA
3624 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3625 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3626 struct i40e_tx_buffer *first, u32 tx_flags,
3627 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3628 {
3629 unsigned int data_len = skb->data_len;
3630 unsigned int size = skb_headlen(skb);
3631 skb_frag_t *frag;
3632 struct i40e_tx_buffer *tx_bi;
3633 struct i40e_tx_desc *tx_desc;
3634 u16 i = tx_ring->next_to_use;
3635 u32 td_tag = 0;
3636 dma_addr_t dma;
3637 u16 desc_count = 1;
3638
3639 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3640 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3641 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3642 I40E_TX_FLAGS_VLAN_SHIFT;
3643 }
3644
3645 first->tx_flags = tx_flags;
3646
3647 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3648
3649 tx_desc = I40E_TX_DESC(tx_ring, i);
3650 tx_bi = first;
3651
3652 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3653 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3654
3655 if (dma_mapping_error(tx_ring->dev, dma))
3656 goto dma_error;
3657
3658 /* record length, and DMA address */
3659 dma_unmap_len_set(tx_bi, len, size);
3660 dma_unmap_addr_set(tx_bi, dma, dma);
3661
3662 /* align size to end of page */
3663 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3664 tx_desc->buffer_addr = cpu_to_le64(dma);
3665
3666 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3667 tx_desc->cmd_type_offset_bsz =
3668 build_ctob(td_cmd, td_offset,
3669 max_data, td_tag);
3670
3671 tx_desc++;
3672 i++;
3673 desc_count++;
3674
3675 if (i == tx_ring->count) {
3676 tx_desc = I40E_TX_DESC(tx_ring, 0);
3677 i = 0;
3678 }
3679
3680 dma += max_data;
3681 size -= max_data;
3682
3683 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3684 tx_desc->buffer_addr = cpu_to_le64(dma);
3685 }
3686
3687 if (likely(!data_len))
3688 break;
3689
3690 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3691 size, td_tag);
3692
3693 tx_desc++;
3694 i++;
3695 desc_count++;
3696
3697 if (i == tx_ring->count) {
3698 tx_desc = I40E_TX_DESC(tx_ring, 0);
3699 i = 0;
3700 }
3701
3702 size = skb_frag_size(frag);
3703 data_len -= size;
3704
3705 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3706 DMA_TO_DEVICE);
3707
3708 tx_bi = &tx_ring->tx_bi[i];
3709 }
3710
3711 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3712
3713 i++;
3714 if (i == tx_ring->count)
3715 i = 0;
3716
3717 tx_ring->next_to_use = i;
3718
3719 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3720
3721 /* write last descriptor with EOP bit */
3722 td_cmd |= I40E_TX_DESC_CMD_EOP;
3723
3724 /* We OR these values together to check both against 4 (WB_STRIDE)
3725 * below. This is safe since we don't re-use desc_count afterwards.
3726 */
3727 desc_count |= ++tx_ring->packet_stride;
3728
3729 if (desc_count >= WB_STRIDE) {
3730 /* write last descriptor with RS bit set */
3731 td_cmd |= I40E_TX_DESC_CMD_RS;
3732 tx_ring->packet_stride = 0;
3733 }
3734
3735 tx_desc->cmd_type_offset_bsz =
3736 build_ctob(td_cmd, td_offset, size, td_tag);
3737
3738 skb_tx_timestamp(skb);
3739
3740 /* Force memory writes to complete before letting h/w know there
3741 * are new descriptors to fetch.
3742 *
3743 * We also use this memory barrier to make certain all of the
3744 * status bits have been updated before next_to_watch is written.
3745 */
3746 wmb();
3747
3748 /* set next_to_watch value indicating a packet is present */
3749 first->next_to_watch = tx_desc;
3750
3751 /* notify HW of packet */
3752 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3753 writel(i, tx_ring->tail);
3754 }
3755
3756 return 0;
3757
3758 dma_error:
3759 dev_info(tx_ring->dev, "TX DMA map failed\n");
3760
3761 /* clear dma mappings for failed tx_bi map */
3762 for (;;) {
3763 tx_bi = &tx_ring->tx_bi[i];
3764 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3765 if (tx_bi == first)
3766 break;
3767 if (i == 0)
3768 i = tx_ring->count;
3769 i--;
3770 }
3771
3772 tx_ring->next_to_use = i;
3773
3774 return -1;
3775 }
3776
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3777 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3778 const struct sk_buff *skb,
3779 u16 num_tx_queues)
3780 {
3781 u32 jhash_initval_salt = 0xd631614b;
3782 u32 hash;
3783
3784 if (skb->sk && skb->sk->sk_hash)
3785 hash = skb->sk->sk_hash;
3786 else
3787 hash = (__force u16)skb->protocol ^ skb->hash;
3788
3789 hash = jhash_1word(hash, jhash_initval_salt);
3790
3791 return (u16)(((u64)hash * num_tx_queues) >> 32);
3792 }
3793
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3794 u16 i40e_lan_select_queue(struct net_device *netdev,
3795 struct sk_buff *skb,
3796 struct net_device __always_unused *sb_dev)
3797 {
3798 struct i40e_netdev_priv *np = netdev_priv(netdev);
3799 struct i40e_vsi *vsi = np->vsi;
3800 struct i40e_hw *hw;
3801 u16 qoffset;
3802 u16 qcount;
3803 u8 tclass;
3804 u16 hash;
3805 u8 prio;
3806
3807 /* is DCB enabled at all? */
3808 if (vsi->tc_config.numtc == 1 ||
3809 i40e_is_tc_mqprio_enabled(vsi->back))
3810 return netdev_pick_tx(netdev, skb, sb_dev);
3811
3812 prio = skb->priority;
3813 hw = &vsi->back->hw;
3814 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3815 /* sanity check */
3816 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3817 tclass = 0;
3818
3819 /* select a queue assigned for the given TC */
3820 qcount = vsi->tc_config.tc_info[tclass].qcount;
3821 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3822
3823 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3824 return qoffset + hash;
3825 }
3826
3827 /**
3828 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3829 * @xdpf: data to transmit
3830 * @xdp_ring: XDP Tx ring
3831 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3832 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3833 struct i40e_ring *xdp_ring)
3834 {
3835 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3836 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3837 u16 i = 0, index = xdp_ring->next_to_use;
3838 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3839 struct i40e_tx_buffer *tx_bi = tx_head;
3840 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3841 void *data = xdpf->data;
3842 u32 size = xdpf->len;
3843
3844 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3845 xdp_ring->tx_stats.tx_busy++;
3846 return I40E_XDP_CONSUMED;
3847 }
3848
3849 tx_head->bytecount = xdp_get_frame_len(xdpf);
3850 tx_head->gso_segs = 1;
3851 tx_head->xdpf = xdpf;
3852
3853 for (;;) {
3854 dma_addr_t dma;
3855
3856 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3857 if (dma_mapping_error(xdp_ring->dev, dma))
3858 goto unmap;
3859
3860 /* record length, and DMA address */
3861 dma_unmap_len_set(tx_bi, len, size);
3862 dma_unmap_addr_set(tx_bi, dma, dma);
3863
3864 tx_desc->buffer_addr = cpu_to_le64(dma);
3865 tx_desc->cmd_type_offset_bsz =
3866 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3867
3868 if (++index == xdp_ring->count)
3869 index = 0;
3870
3871 if (i == nr_frags)
3872 break;
3873
3874 tx_bi = &xdp_ring->tx_bi[index];
3875 tx_desc = I40E_TX_DESC(xdp_ring, index);
3876
3877 data = skb_frag_address(&sinfo->frags[i]);
3878 size = skb_frag_size(&sinfo->frags[i]);
3879 i++;
3880 }
3881
3882 tx_desc->cmd_type_offset_bsz |=
3883 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3884
3885 /* Make certain all of the status bits have been updated
3886 * before next_to_watch is written.
3887 */
3888 smp_wmb();
3889
3890 xdp_ring->xdp_tx_active++;
3891
3892 tx_head->next_to_watch = tx_desc;
3893 xdp_ring->next_to_use = index;
3894
3895 return I40E_XDP_TX;
3896
3897 unmap:
3898 for (;;) {
3899 tx_bi = &xdp_ring->tx_bi[index];
3900 if (dma_unmap_len(tx_bi, len))
3901 dma_unmap_page(xdp_ring->dev,
3902 dma_unmap_addr(tx_bi, dma),
3903 dma_unmap_len(tx_bi, len),
3904 DMA_TO_DEVICE);
3905 dma_unmap_len_set(tx_bi, len, 0);
3906 if (tx_bi == tx_head)
3907 break;
3908
3909 if (!index)
3910 index += xdp_ring->count;
3911 index--;
3912 }
3913
3914 return I40E_XDP_CONSUMED;
3915 }
3916
3917 /**
3918 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3919 * @skb: send buffer
3920 * @tx_ring: ring to send buffer on
3921 *
3922 * Returns NETDEV_TX_OK if sent, else an error code
3923 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3924 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3925 struct i40e_ring *tx_ring)
3926 {
3927 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3928 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3929 struct i40e_tx_buffer *first;
3930 u32 td_offset = 0;
3931 u32 tx_flags = 0;
3932 u32 td_cmd = 0;
3933 u8 hdr_len = 0;
3934 int tso, count;
3935 int tsyn;
3936
3937 /* prefetch the data, we'll need it later */
3938 prefetch(skb->data);
3939
3940 i40e_trace(xmit_frame_ring, skb, tx_ring);
3941
3942 count = i40e_xmit_descriptor_count(skb);
3943 if (i40e_chk_linearize(skb, count)) {
3944 if (__skb_linearize(skb)) {
3945 dev_kfree_skb_any(skb);
3946 return NETDEV_TX_OK;
3947 }
3948 count = i40e_txd_use_count(skb->len);
3949 tx_ring->tx_stats.tx_linearize++;
3950 }
3951
3952 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3953 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3954 * + 4 desc gap to avoid the cache line where head is,
3955 * + 1 desc for context descriptor,
3956 * otherwise try next time
3957 */
3958 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3959 tx_ring->tx_stats.tx_busy++;
3960 return NETDEV_TX_BUSY;
3961 }
3962
3963 /* record the location of the first descriptor for this packet */
3964 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3965 first->skb = skb;
3966 first->bytecount = skb->len;
3967 first->gso_segs = 1;
3968
3969 /* prepare the xmit flags */
3970 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3971 goto out_drop;
3972
3973 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3974
3975 if (tso < 0)
3976 goto out_drop;
3977 else if (tso)
3978 tx_flags |= I40E_TX_FLAGS_TSO;
3979
3980 /* Always offload the checksum, since it's in the data descriptor */
3981 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3982 tx_ring, &cd_tunneling);
3983 if (tso < 0)
3984 goto out_drop;
3985
3986 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3987
3988 if (tsyn)
3989 tx_flags |= I40E_TX_FLAGS_TSYN;
3990
3991 /* always enable CRC insertion offload */
3992 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3993
3994 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3995 cd_tunneling, cd_l2tag2);
3996
3997 /* Add Flow Director ATR if it's enabled.
3998 *
3999 * NOTE: this must always be directly before the data descriptor.
4000 */
4001 i40e_atr(tx_ring, skb, tx_flags);
4002
4003 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
4004 td_cmd, td_offset))
4005 goto cleanup_tx_tstamp;
4006
4007 return NETDEV_TX_OK;
4008
4009 out_drop:
4010 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
4011 dev_kfree_skb_any(first->skb);
4012 first->skb = NULL;
4013 cleanup_tx_tstamp:
4014 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
4015 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
4016
4017 dev_kfree_skb_any(pf->ptp_tx_skb);
4018 pf->ptp_tx_skb = NULL;
4019 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
4020 }
4021
4022 return NETDEV_TX_OK;
4023 }
4024
4025 /**
4026 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
4027 * @skb: send buffer
4028 * @netdev: network interface device structure
4029 *
4030 * Returns NETDEV_TX_OK if sent, else an error code
4031 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)4032 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4033 {
4034 struct i40e_netdev_priv *np = netdev_priv(netdev);
4035 struct i40e_vsi *vsi = np->vsi;
4036 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
4037
4038 /* hardware can't handle really short frames, hardware padding works
4039 * beyond this point
4040 */
4041 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4042 return NETDEV_TX_OK;
4043
4044 return i40e_xmit_frame_ring(skb, tx_ring);
4045 }
4046
4047 /**
4048 * i40e_xdp_xmit - Implements ndo_xdp_xmit
4049 * @dev: netdev
4050 * @n: number of frames
4051 * @frames: array of XDP buffer pointers
4052 * @flags: XDP extra info
4053 *
4054 * Returns number of frames successfully sent. Failed frames
4055 * will be free'ed by XDP core.
4056 *
4057 * For error cases, a negative errno code is returned and no-frames
4058 * are transmitted (caller must handle freeing frames).
4059 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)4060 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4061 u32 flags)
4062 {
4063 struct i40e_netdev_priv *np = netdev_priv(dev);
4064 unsigned int queue_index = smp_processor_id();
4065 struct i40e_vsi *vsi = np->vsi;
4066 struct i40e_pf *pf = vsi->back;
4067 struct i40e_ring *xdp_ring;
4068 int nxmit = 0;
4069 int i;
4070
4071 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4072 return -ENETDOWN;
4073
4074 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4075 test_bit(__I40E_CONFIG_BUSY, pf->state))
4076 return -ENXIO;
4077
4078 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4079 return -EINVAL;
4080
4081 xdp_ring = vsi->xdp_rings[queue_index];
4082
4083 for (i = 0; i < n; i++) {
4084 struct xdp_frame *xdpf = frames[i];
4085 int err;
4086
4087 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4088 if (err != I40E_XDP_TX)
4089 break;
4090 nxmit++;
4091 }
4092
4093 if (unlikely(flags & XDP_XMIT_FLUSH))
4094 i40e_xdp_ring_update_tail(xdp_ring);
4095
4096 return nxmit;
4097 }
4098