1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_4K_H
3 #define _ASM_POWERPC_BOOK3S_64_HASH_4K_H
4
5 #define H_PTE_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 4KB = 2MB
6 #define H_PMD_INDEX_SIZE 7 // size: 8B << 7 = 1KB, maps: 2^7 x 2MB = 256MB
7 #define H_PUD_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 256MB = 128GB
8 #define H_PGD_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 128GB = 64TB
9
10 /*
11 * Each context is 512TB. But on 4k we restrict our max TASK size to 64TB
12 * Hence also limit max EA bits to 64TB.
13 */
14 #define MAX_EA_BITS_PER_CONTEXT 46
15
16
17 /*
18 * Our page table limit us to 64TB. For 64TB physical memory, we only need 64GB
19 * of vmemmap space. To better support sparse memory layout, we use 61TB
20 * linear map range, 1TB of vmalloc, 1TB of I/O and 1TB of vmememmap.
21 */
22 #define REGION_SHIFT (40)
23 #define H_KERN_MAP_SIZE (ASM_CONST(1) << REGION_SHIFT)
24
25 /*
26 * Limits the linear mapping range
27 */
28 #define H_MAX_PHYSMEM_BITS 46
29
30 /*
31 * Define the address range of the kernel non-linear virtual area (61TB)
32 */
33 #define H_KERN_VIRT_START ASM_CONST(0xc0003d0000000000)
34
35 #ifndef __ASSEMBLY__
36 #define H_PTE_TABLE_SIZE (sizeof(pte_t) << H_PTE_INDEX_SIZE)
37 #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << H_PMD_INDEX_SIZE)
38 #define H_PUD_TABLE_SIZE (sizeof(pud_t) << H_PUD_INDEX_SIZE)
39 #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << H_PGD_INDEX_SIZE)
40
41 #define H_PAGE_F_GIX_SHIFT _PAGE_PA_MAX
42 #define H_PAGE_F_SECOND _RPAGE_PKEY_BIT0 /* HPTE is in 2ndary HPTEG */
43 #define H_PAGE_F_GIX (_RPAGE_RPN43 | _RPAGE_RPN42 | _RPAGE_RPN41)
44 #define H_PAGE_BUSY _RPAGE_RSV1
45 #define H_PAGE_HASHPTE _RPAGE_PKEY_BIT4
46
47 /* PTE flags to conserve for HPTE identification */
48 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | \
49 H_PAGE_F_SECOND | H_PAGE_F_GIX)
50 /*
51 * Not supported by 4k linux page size
52 */
53 #define H_PAGE_4K_PFN 0x0
54 #define H_PAGE_THP_HUGE 0x0
55 #define H_PAGE_COMBO 0x0
56
57 /* 8 bytes per each pte entry */
58 #define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3)
59 #define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
60 #define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3)
61 #define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
62
63 /* memory key bits, only 8 keys supported */
64 #define H_PTE_PKEY_BIT4 0
65 #define H_PTE_PKEY_BIT3 0
66 #define H_PTE_PKEY_BIT2 _RPAGE_PKEY_BIT3
67 #define H_PTE_PKEY_BIT1 _RPAGE_PKEY_BIT2
68 #define H_PTE_PKEY_BIT0 _RPAGE_PKEY_BIT1
69
70
71 /*
72 * On all 4K setups, remap_4k_pfn() equates to remap_pfn_range()
73 */
74 #define remap_4k_pfn(vma, addr, pfn, prot) \
75 remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, (prot))
76
77 #ifdef CONFIG_HUGETLB_PAGE
hash__hugepd_ok(hugepd_t hpd)78 static inline int hash__hugepd_ok(hugepd_t hpd)
79 {
80 unsigned long hpdval = hpd_val(hpd);
81 /*
82 * if it is not a pte and have hugepd shift mask
83 * set, then it is a hugepd directory pointer
84 */
85 if (!(hpdval & _PAGE_PTE) && (hpdval & _PAGE_PRESENT) &&
86 ((hpdval & HUGEPD_SHIFT_MASK) != 0))
87 return true;
88 return false;
89 }
90 #endif
91
92 /*
93 * 4K PTE format is different from 64K PTE format. Saving the hash_slot is just
94 * a matter of returning the PTE bits that need to be modified. On 64K PTE,
95 * things are a little more involved and hence needs many more parameters to
96 * accomplish the same. However we want to abstract this out from the caller by
97 * keeping the prototype consistent across the two formats.
98 */
pte_set_hidx(pte_t * ptep,real_pte_t rpte,unsigned int subpg_index,unsigned long hidx,int offset)99 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
100 unsigned int subpg_index, unsigned long hidx,
101 int offset)
102 {
103 return (hidx << H_PAGE_F_GIX_SHIFT) &
104 (H_PAGE_F_SECOND | H_PAGE_F_GIX);
105 }
106
107 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
108
get_hpte_slot_array(pmd_t * pmdp)109 static inline char *get_hpte_slot_array(pmd_t *pmdp)
110 {
111 BUG();
112 return NULL;
113 }
114
hpte_valid(unsigned char * hpte_slot_array,int index)115 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
116 {
117 BUG();
118 return 0;
119 }
120
hpte_hash_index(unsigned char * hpte_slot_array,int index)121 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
122 int index)
123 {
124 BUG();
125 return 0;
126 }
127
mark_hpte_slot_valid(unsigned char * hpte_slot_array,unsigned int index,unsigned int hidx)128 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
129 unsigned int index, unsigned int hidx)
130 {
131 BUG();
132 }
133
hash__pmd_trans_huge(pmd_t pmd)134 static inline int hash__pmd_trans_huge(pmd_t pmd)
135 {
136 return 0;
137 }
138
hash__pmd_mkhuge(pmd_t pmd)139 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
140 {
141 BUG();
142 return pmd;
143 }
144
145 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
146 unsigned long addr, pmd_t *pmdp,
147 unsigned long clr, unsigned long set);
148 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
149 unsigned long address, pmd_t *pmdp);
150 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
151 pgtable_t pgtable);
152 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
153 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
154 unsigned long addr, pmd_t *pmdp);
155 extern int hash__has_transparent_hugepage(void);
156 #endif
157
hash__pmd_mkdevmap(pmd_t pmd)158 static inline pmd_t hash__pmd_mkdevmap(pmd_t pmd)
159 {
160 BUG();
161 return pmd;
162 }
163
164 #endif /* !__ASSEMBLY__ */
165
166 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_4K_H */
167