xref: /openbmc/linux/include/linux/hugetlb.h (revision 512b420a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 #ifndef CONFIG_ARCH_HAS_HUGEPD
24 typedef struct { unsigned long pd; } hugepd_t;
25 #define is_hugepd(hugepd) (0)
26 #define __hugepd(x) ((hugepd_t) { (x) })
27 #endif
28 
29 void free_huge_folio(struct folio *folio);
30 
31 #ifdef CONFIG_HUGETLB_PAGE
32 
33 #include <linux/mempolicy.h>
34 #include <linux/shm.h>
35 #include <asm/tlbflush.h>
36 
37 /*
38  * For HugeTLB page, there are more metadata to save in the struct page. But
39  * the head struct page cannot meet our needs, so we have to abuse other tail
40  * struct page to store the metadata.
41  */
42 #define __NR_USED_SUBPAGE 3
43 
44 struct hugepage_subpool {
45 	spinlock_t lock;
46 	long count;
47 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
48 	long used_hpages;	/* Used count against maximum, includes */
49 				/* both allocated and reserved pages. */
50 	struct hstate *hstate;
51 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
52 	long rsv_hpages;	/* Pages reserved against global pool to */
53 				/* satisfy minimum size. */
54 };
55 
56 struct resv_map {
57 	struct kref refs;
58 	spinlock_t lock;
59 	struct list_head regions;
60 	long adds_in_progress;
61 	struct list_head region_cache;
62 	long region_cache_count;
63 	struct rw_semaphore rw_sema;
64 #ifdef CONFIG_CGROUP_HUGETLB
65 	/*
66 	 * On private mappings, the counter to uncharge reservations is stored
67 	 * here. If these fields are 0, then either the mapping is shared, or
68 	 * cgroup accounting is disabled for this resv_map.
69 	 */
70 	struct page_counter *reservation_counter;
71 	unsigned long pages_per_hpage;
72 	struct cgroup_subsys_state *css;
73 #endif
74 };
75 
76 /*
77  * Region tracking -- allows tracking of reservations and instantiated pages
78  *                    across the pages in a mapping.
79  *
80  * The region data structures are embedded into a resv_map and protected
81  * by a resv_map's lock.  The set of regions within the resv_map represent
82  * reservations for huge pages, or huge pages that have already been
83  * instantiated within the map.  The from and to elements are huge page
84  * indices into the associated mapping.  from indicates the starting index
85  * of the region.  to represents the first index past the end of  the region.
86  *
87  * For example, a file region structure with from == 0 and to == 4 represents
88  * four huge pages in a mapping.  It is important to note that the to element
89  * represents the first element past the end of the region. This is used in
90  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
91  *
92  * Interval notation of the form [from, to) will be used to indicate that
93  * the endpoint from is inclusive and to is exclusive.
94  */
95 struct file_region {
96 	struct list_head link;
97 	long from;
98 	long to;
99 #ifdef CONFIG_CGROUP_HUGETLB
100 	/*
101 	 * On shared mappings, each reserved region appears as a struct
102 	 * file_region in resv_map. These fields hold the info needed to
103 	 * uncharge each reservation.
104 	 */
105 	struct page_counter *reservation_counter;
106 	struct cgroup_subsys_state *css;
107 #endif
108 };
109 
110 struct hugetlb_vma_lock {
111 	struct kref refs;
112 	struct rw_semaphore rw_sema;
113 	struct vm_area_struct *vma;
114 };
115 
116 extern struct resv_map *resv_map_alloc(void);
117 void resv_map_release(struct kref *ref);
118 
119 extern spinlock_t hugetlb_lock;
120 extern int hugetlb_max_hstate __read_mostly;
121 #define for_each_hstate(h) \
122 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
123 
124 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
125 						long min_hpages);
126 void hugepage_put_subpool(struct hugepage_subpool *spool);
127 
128 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
129 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
130 int move_hugetlb_page_tables(struct vm_area_struct *vma,
131 			     struct vm_area_struct *new_vma,
132 			     unsigned long old_addr, unsigned long new_addr,
133 			     unsigned long len);
134 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
135 			    struct vm_area_struct *, struct vm_area_struct *);
136 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
137 				      unsigned long address, unsigned int flags,
138 				      unsigned int *page_mask);
139 void unmap_hugepage_range(struct vm_area_struct *,
140 			  unsigned long, unsigned long, struct page *,
141 			  zap_flags_t);
142 void __unmap_hugepage_range(struct mmu_gather *tlb,
143 			  struct vm_area_struct *vma,
144 			  unsigned long start, unsigned long end,
145 			  struct page *ref_page, zap_flags_t zap_flags);
146 void hugetlb_report_meminfo(struct seq_file *);
147 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
148 void hugetlb_show_meminfo_node(int nid);
149 unsigned long hugetlb_total_pages(void);
150 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
151 			unsigned long address, unsigned int flags);
152 #ifdef CONFIG_USERFAULTFD
153 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
154 			     struct vm_area_struct *dst_vma,
155 			     unsigned long dst_addr,
156 			     unsigned long src_addr,
157 			     uffd_flags_t flags,
158 			     struct folio **foliop);
159 #endif /* CONFIG_USERFAULTFD */
160 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
161 						struct vm_area_struct *vma,
162 						vm_flags_t vm_flags);
163 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
164 						long freed);
165 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
166 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
167 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
168 				bool *migratable_cleared);
169 void folio_putback_active_hugetlb(struct folio *folio);
170 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
171 void hugetlb_fix_reserve_counts(struct inode *inode);
172 extern struct mutex *hugetlb_fault_mutex_table;
173 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
174 
175 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
176 		      unsigned long addr, pud_t *pud);
177 
178 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
179 
180 extern int sysctl_hugetlb_shm_group;
181 extern struct list_head huge_boot_pages;
182 
183 /* arch callbacks */
184 
185 #ifndef CONFIG_HIGHPTE
186 /*
187  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188  * which may go down to the lowest PTE level in their huge_pte_offset() and
189  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190  */
pte_offset_huge(pmd_t * pmd,unsigned long address)191 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192 {
193 	return pte_offset_kernel(pmd, address);
194 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)195 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 				    unsigned long address)
197 {
198 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199 }
200 #endif
201 
202 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
203 			unsigned long addr, unsigned long sz);
204 /*
205  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206  * Returns the pte_t* if found, or NULL if the address is not mapped.
207  *
208  * IMPORTANT: we should normally not directly call this function, instead
209  * this is only a common interface to implement arch-specific
210  * walker. Please use hugetlb_walk() instead, because that will attempt to
211  * verify the locking for you.
212  *
213  * Since this function will walk all the pgtable pages (including not only
214  * high-level pgtable page, but also PUD entry that can be unshared
215  * concurrently for VM_SHARED), the caller of this function should be
216  * responsible of its thread safety.  One can follow this rule:
217  *
218  *  (1) For private mappings: pmd unsharing is not possible, so holding the
219  *      mmap_lock for either read or write is sufficient. Most callers
220  *      already hold the mmap_lock, so normally, no special action is
221  *      required.
222  *
223  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224  *      pgtable page can go away from under us!  It can be done by a pmd
225  *      unshare with a follow up munmap() on the other process), then we
226  *      need either:
227  *
228  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229  *           won't happen upon the range (it also makes sure the pte_t we
230  *           read is the right and stable one), or,
231  *
232  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233  *           sure even if unshare happened the racy unmap() will wait until
234  *           i_mmap_rwsem is released.
235  *
236  * Option (2.1) is the safest, which guarantees pte stability from pmd
237  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
238  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239  * access.
240  */
241 pte_t *huge_pte_offset(struct mm_struct *mm,
242 		       unsigned long addr, unsigned long sz);
243 unsigned long hugetlb_mask_last_page(struct hstate *h);
244 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
245 				unsigned long addr, pte_t *ptep);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 				unsigned long *start, unsigned long *end);
248 
249 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 				unsigned long *begin, unsigned long *end);
251 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 			      struct zap_details *details);
253 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)254 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 				     unsigned long *start, unsigned long *end)
256 {
257 	if (is_vm_hugetlb_page(vma))
258 		__hugetlb_zap_begin(vma, start, end);
259 }
260 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)261 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 				   struct zap_details *details)
263 {
264 	if (is_vm_hugetlb_page(vma))
265 		__hugetlb_zap_end(vma, details);
266 }
267 
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274 void hugetlb_vma_lock_release(struct kref *kref);
275 
276 int pmd_huge(pmd_t pmd);
277 int pud_huge(pud_t pud);
278 long hugetlb_change_protection(struct vm_area_struct *vma,
279 		unsigned long address, unsigned long end, pgprot_t newprot,
280 		unsigned long cp_flags);
281 
282 bool is_hugetlb_entry_migration(pte_t pte);
283 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
284 
285 #else /* !CONFIG_HUGETLB_PAGE */
286 
hugetlb_dup_vma_private(struct vm_area_struct * vma)287 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
288 {
289 }
290 
clear_vma_resv_huge_pages(struct vm_area_struct * vma)291 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
292 {
293 }
294 
hugetlb_total_pages(void)295 static inline unsigned long hugetlb_total_pages(void)
296 {
297 	return 0;
298 }
299 
hugetlb_page_mapping_lock_write(struct page * hpage)300 static inline struct address_space *hugetlb_page_mapping_lock_write(
301 							struct page *hpage)
302 {
303 	return NULL;
304 }
305 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)306 static inline int huge_pmd_unshare(struct mm_struct *mm,
307 					struct vm_area_struct *vma,
308 					unsigned long addr, pte_t *ptep)
309 {
310 	return 0;
311 }
312 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)313 static inline void adjust_range_if_pmd_sharing_possible(
314 				struct vm_area_struct *vma,
315 				unsigned long *start, unsigned long *end)
316 {
317 }
318 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)319 static inline void hugetlb_zap_begin(
320 				struct vm_area_struct *vma,
321 				unsigned long *start, unsigned long *end)
322 {
323 }
324 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)325 static inline void hugetlb_zap_end(
326 				struct vm_area_struct *vma,
327 				struct zap_details *details)
328 {
329 }
330 
hugetlb_follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)331 static inline struct page *hugetlb_follow_page_mask(
332     struct vm_area_struct *vma, unsigned long address, unsigned int flags,
333     unsigned int *page_mask)
334 {
335 	BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/
336 }
337 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)338 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
339 					  struct mm_struct *src,
340 					  struct vm_area_struct *dst_vma,
341 					  struct vm_area_struct *src_vma)
342 {
343 	BUG();
344 	return 0;
345 }
346 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)347 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
348 					   struct vm_area_struct *new_vma,
349 					   unsigned long old_addr,
350 					   unsigned long new_addr,
351 					   unsigned long len)
352 {
353 	BUG();
354 	return 0;
355 }
356 
hugetlb_report_meminfo(struct seq_file * m)357 static inline void hugetlb_report_meminfo(struct seq_file *m)
358 {
359 }
360 
hugetlb_report_node_meminfo(char * buf,int len,int nid)361 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
362 {
363 	return 0;
364 }
365 
hugetlb_show_meminfo_node(int nid)366 static inline void hugetlb_show_meminfo_node(int nid)
367 {
368 }
369 
prepare_hugepage_range(struct file * file,unsigned long addr,unsigned long len)370 static inline int prepare_hugepage_range(struct file *file,
371 				unsigned long addr, unsigned long len)
372 {
373 	return -EINVAL;
374 }
375 
hugetlb_vma_lock_read(struct vm_area_struct * vma)376 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
377 {
378 }
379 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)380 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
381 {
382 }
383 
hugetlb_vma_lock_write(struct vm_area_struct * vma)384 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
385 {
386 }
387 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)388 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
389 {
390 }
391 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)392 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
393 {
394 	return 1;
395 }
396 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)397 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
398 {
399 }
400 
pmd_huge(pmd_t pmd)401 static inline int pmd_huge(pmd_t pmd)
402 {
403 	return 0;
404 }
405 
pud_huge(pud_t pud)406 static inline int pud_huge(pud_t pud)
407 {
408 	return 0;
409 }
410 
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)411 static inline int is_hugepage_only_range(struct mm_struct *mm,
412 					unsigned long addr, unsigned long len)
413 {
414 	return 0;
415 }
416 
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)417 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
418 				unsigned long addr, unsigned long end,
419 				unsigned long floor, unsigned long ceiling)
420 {
421 	BUG();
422 }
423 
424 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)425 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
426 					   struct vm_area_struct *dst_vma,
427 					   unsigned long dst_addr,
428 					   unsigned long src_addr,
429 					   uffd_flags_t flags,
430 					   struct folio **foliop)
431 {
432 	BUG();
433 	return 0;
434 }
435 #endif /* CONFIG_USERFAULTFD */
436 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)437 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
438 					unsigned long sz)
439 {
440 	return NULL;
441 }
442 
isolate_hugetlb(struct folio * folio,struct list_head * list)443 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
444 {
445 	return false;
446 }
447 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)448 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
449 {
450 	return 0;
451 }
452 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)453 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
454 					bool *migratable_cleared)
455 {
456 	return 0;
457 }
458 
folio_putback_active_hugetlb(struct folio * folio)459 static inline void folio_putback_active_hugetlb(struct folio *folio)
460 {
461 }
462 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)463 static inline void move_hugetlb_state(struct folio *old_folio,
464 					struct folio *new_folio, int reason)
465 {
466 }
467 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)468 static inline long hugetlb_change_protection(
469 			struct vm_area_struct *vma, unsigned long address,
470 			unsigned long end, pgprot_t newprot,
471 			unsigned long cp_flags)
472 {
473 	return 0;
474 }
475 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)476 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
477 			struct vm_area_struct *vma, unsigned long start,
478 			unsigned long end, struct page *ref_page,
479 			zap_flags_t zap_flags)
480 {
481 	BUG();
482 }
483 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)484 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
485 			struct vm_area_struct *vma, unsigned long address,
486 			unsigned int flags)
487 {
488 	BUG();
489 	return 0;
490 }
491 
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)492 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
493 
494 #endif /* !CONFIG_HUGETLB_PAGE */
495 /*
496  * hugepages at page global directory. If arch support
497  * hugepages at pgd level, they need to define this.
498  */
499 #ifndef pgd_huge
500 #define pgd_huge(x)	0
501 #endif
502 #ifndef p4d_huge
503 #define p4d_huge(x)	0
504 #endif
505 
506 #ifndef pgd_write
pgd_write(pgd_t pgd)507 static inline int pgd_write(pgd_t pgd)
508 {
509 	BUG();
510 	return 0;
511 }
512 #endif
513 
514 #define HUGETLB_ANON_FILE "anon_hugepage"
515 
516 enum {
517 	/*
518 	 * The file will be used as an shm file so shmfs accounting rules
519 	 * apply
520 	 */
521 	HUGETLB_SHMFS_INODE     = 1,
522 	/*
523 	 * The file is being created on the internal vfs mount and shmfs
524 	 * accounting rules do not apply
525 	 */
526 	HUGETLB_ANONHUGE_INODE  = 2,
527 };
528 
529 #ifdef CONFIG_HUGETLBFS
530 struct hugetlbfs_sb_info {
531 	long	max_inodes;   /* inodes allowed */
532 	long	free_inodes;  /* inodes free */
533 	spinlock_t	stat_lock;
534 	struct hstate *hstate;
535 	struct hugepage_subpool *spool;
536 	kuid_t	uid;
537 	kgid_t	gid;
538 	umode_t mode;
539 };
540 
HUGETLBFS_SB(struct super_block * sb)541 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
542 {
543 	return sb->s_fs_info;
544 }
545 
546 struct hugetlbfs_inode_info {
547 	struct shared_policy policy;
548 	struct inode vfs_inode;
549 	unsigned int seals;
550 };
551 
HUGETLBFS_I(struct inode * inode)552 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
553 {
554 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
555 }
556 
557 extern const struct file_operations hugetlbfs_file_operations;
558 extern const struct vm_operations_struct hugetlb_vm_ops;
559 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
560 				int creat_flags, int page_size_log);
561 
is_file_hugepages(struct file * file)562 static inline bool is_file_hugepages(struct file *file)
563 {
564 	if (file->f_op == &hugetlbfs_file_operations)
565 		return true;
566 
567 	return is_file_shm_hugepages(file);
568 }
569 
hstate_inode(struct inode * i)570 static inline struct hstate *hstate_inode(struct inode *i)
571 {
572 	return HUGETLBFS_SB(i->i_sb)->hstate;
573 }
574 #else /* !CONFIG_HUGETLBFS */
575 
576 #define is_file_hugepages(file)			false
577 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)578 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
579 		int creat_flags, int page_size_log)
580 {
581 	return ERR_PTR(-ENOSYS);
582 }
583 
hstate_inode(struct inode * i)584 static inline struct hstate *hstate_inode(struct inode *i)
585 {
586 	return NULL;
587 }
588 #endif /* !CONFIG_HUGETLBFS */
589 
590 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
591 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
592 					unsigned long len, unsigned long pgoff,
593 					unsigned long flags);
594 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
595 
596 unsigned long
597 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
598 				  unsigned long len, unsigned long pgoff,
599 				  unsigned long flags);
600 
601 /*
602  * huegtlb page specific state flags.  These flags are located in page.private
603  * of the hugetlb head page.  Functions created via the below macros should be
604  * used to manipulate these flags.
605  *
606  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
607  *	allocation time.  Cleared when page is fully instantiated.  Free
608  *	routine checks flag to restore a reservation on error paths.
609  *	Synchronization:  Examined or modified by code that knows it has
610  *	the only reference to page.  i.e. After allocation but before use
611  *	or when the page is being freed.
612  * HPG_migratable  - Set after a newly allocated page is added to the page
613  *	cache and/or page tables.  Indicates the page is a candidate for
614  *	migration.
615  *	Synchronization:  Initially set after new page allocation with no
616  *	locking.  When examined and modified during migration processing
617  *	(isolate, migrate, putback) the hugetlb_lock is held.
618  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
619  *	allocator.  Typically used for migration target pages when no pages
620  *	are available in the pool.  The hugetlb free page path will
621  *	immediately free pages with this flag set to the buddy allocator.
622  *	Synchronization: Can be set after huge page allocation from buddy when
623  *	code knows it has only reference.  All other examinations and
624  *	modifications require hugetlb_lock.
625  * HPG_freed - Set when page is on the free lists.
626  *	Synchronization: hugetlb_lock held for examination and modification.
627  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
628  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
629  *     that is not tracked by raw_hwp_page list.
630  */
631 enum hugetlb_page_flags {
632 	HPG_restore_reserve = 0,
633 	HPG_migratable,
634 	HPG_temporary,
635 	HPG_freed,
636 	HPG_vmemmap_optimized,
637 	HPG_raw_hwp_unreliable,
638 	__NR_HPAGEFLAGS,
639 };
640 
641 /*
642  * Macros to create test, set and clear function definitions for
643  * hugetlb specific page flags.
644  */
645 #ifdef CONFIG_HUGETLB_PAGE
646 #define TESTHPAGEFLAG(uname, flname)				\
647 static __always_inline						\
648 bool folio_test_hugetlb_##flname(struct folio *folio)		\
649 	{	void *private = &folio->private;		\
650 		return test_bit(HPG_##flname, private);		\
651 	}							\
652 static inline int HPage##uname(struct page *page)		\
653 	{ return test_bit(HPG_##flname, &(page->private)); }
654 
655 #define SETHPAGEFLAG(uname, flname)				\
656 static __always_inline						\
657 void folio_set_hugetlb_##flname(struct folio *folio)		\
658 	{	void *private = &folio->private;		\
659 		set_bit(HPG_##flname, private);			\
660 	}							\
661 static inline void SetHPage##uname(struct page *page)		\
662 	{ set_bit(HPG_##flname, &(page->private)); }
663 
664 #define CLEARHPAGEFLAG(uname, flname)				\
665 static __always_inline						\
666 void folio_clear_hugetlb_##flname(struct folio *folio)		\
667 	{	void *private = &folio->private;		\
668 		clear_bit(HPG_##flname, private);		\
669 	}							\
670 static inline void ClearHPage##uname(struct page *page)		\
671 	{ clear_bit(HPG_##flname, &(page->private)); }
672 #else
673 #define TESTHPAGEFLAG(uname, flname)				\
674 static inline bool						\
675 folio_test_hugetlb_##flname(struct folio *folio)		\
676 	{ return 0; }						\
677 static inline int HPage##uname(struct page *page)		\
678 	{ return 0; }
679 
680 #define SETHPAGEFLAG(uname, flname)				\
681 static inline void						\
682 folio_set_hugetlb_##flname(struct folio *folio) 		\
683 	{ }							\
684 static inline void SetHPage##uname(struct page *page)		\
685 	{ }
686 
687 #define CLEARHPAGEFLAG(uname, flname)				\
688 static inline void						\
689 folio_clear_hugetlb_##flname(struct folio *folio)		\
690 	{ }							\
691 static inline void ClearHPage##uname(struct page *page)		\
692 	{ }
693 #endif
694 
695 #define HPAGEFLAG(uname, flname)				\
696 	TESTHPAGEFLAG(uname, flname)				\
697 	SETHPAGEFLAG(uname, flname)				\
698 	CLEARHPAGEFLAG(uname, flname)				\
699 
700 /*
701  * Create functions associated with hugetlb page flags
702  */
703 HPAGEFLAG(RestoreReserve, restore_reserve)
704 HPAGEFLAG(Migratable, migratable)
705 HPAGEFLAG(Temporary, temporary)
706 HPAGEFLAG(Freed, freed)
707 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
708 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
709 
710 #ifdef CONFIG_HUGETLB_PAGE
711 
712 #define HSTATE_NAME_LEN 32
713 /* Defines one hugetlb page size */
714 struct hstate {
715 	struct mutex resize_lock;
716 	int next_nid_to_alloc;
717 	int next_nid_to_free;
718 	unsigned int order;
719 	unsigned int demote_order;
720 	unsigned long mask;
721 	unsigned long max_huge_pages;
722 	unsigned long nr_huge_pages;
723 	unsigned long free_huge_pages;
724 	unsigned long resv_huge_pages;
725 	unsigned long surplus_huge_pages;
726 	unsigned long nr_overcommit_huge_pages;
727 	struct list_head hugepage_activelist;
728 	struct list_head hugepage_freelists[MAX_NUMNODES];
729 	unsigned int max_huge_pages_node[MAX_NUMNODES];
730 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
731 	unsigned int free_huge_pages_node[MAX_NUMNODES];
732 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
733 #ifdef CONFIG_CGROUP_HUGETLB
734 	/* cgroup control files */
735 	struct cftype cgroup_files_dfl[8];
736 	struct cftype cgroup_files_legacy[10];
737 #endif
738 	char name[HSTATE_NAME_LEN];
739 };
740 
741 struct huge_bootmem_page {
742 	struct list_head list;
743 	struct hstate *hstate;
744 };
745 
746 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
747 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
748 				unsigned long addr, int avoid_reserve);
749 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
750 				nodemask_t *nmask, gfp_t gfp_mask);
751 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
752 				unsigned long address);
753 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
754 			pgoff_t idx);
755 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
756 				unsigned long address, struct folio *folio);
757 
758 /* arch callback */
759 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
760 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
761 bool __init hugetlb_node_alloc_supported(void);
762 
763 void __init hugetlb_add_hstate(unsigned order);
764 bool __init arch_hugetlb_valid_size(unsigned long size);
765 struct hstate *size_to_hstate(unsigned long size);
766 
767 #ifndef HUGE_MAX_HSTATE
768 #define HUGE_MAX_HSTATE 1
769 #endif
770 
771 extern struct hstate hstates[HUGE_MAX_HSTATE];
772 extern unsigned int default_hstate_idx;
773 
774 #define default_hstate (hstates[default_hstate_idx])
775 
hugetlb_folio_subpool(struct folio * folio)776 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
777 {
778 	return folio->_hugetlb_subpool;
779 }
780 
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)781 static inline void hugetlb_set_folio_subpool(struct folio *folio,
782 					struct hugepage_subpool *subpool)
783 {
784 	folio->_hugetlb_subpool = subpool;
785 }
786 
hstate_file(struct file * f)787 static inline struct hstate *hstate_file(struct file *f)
788 {
789 	return hstate_inode(file_inode(f));
790 }
791 
hstate_sizelog(int page_size_log)792 static inline struct hstate *hstate_sizelog(int page_size_log)
793 {
794 	if (!page_size_log)
795 		return &default_hstate;
796 
797 	if (page_size_log < BITS_PER_LONG)
798 		return size_to_hstate(1UL << page_size_log);
799 
800 	return NULL;
801 }
802 
hstate_vma(struct vm_area_struct * vma)803 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
804 {
805 	return hstate_file(vma->vm_file);
806 }
807 
huge_page_size(const struct hstate * h)808 static inline unsigned long huge_page_size(const struct hstate *h)
809 {
810 	return (unsigned long)PAGE_SIZE << h->order;
811 }
812 
813 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
814 
815 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
816 
huge_page_mask(struct hstate * h)817 static inline unsigned long huge_page_mask(struct hstate *h)
818 {
819 	return h->mask;
820 }
821 
huge_page_order(struct hstate * h)822 static inline unsigned int huge_page_order(struct hstate *h)
823 {
824 	return h->order;
825 }
826 
huge_page_shift(struct hstate * h)827 static inline unsigned huge_page_shift(struct hstate *h)
828 {
829 	return h->order + PAGE_SHIFT;
830 }
831 
hstate_is_gigantic(struct hstate * h)832 static inline bool hstate_is_gigantic(struct hstate *h)
833 {
834 	return huge_page_order(h) > MAX_ORDER;
835 }
836 
pages_per_huge_page(const struct hstate * h)837 static inline unsigned int pages_per_huge_page(const struct hstate *h)
838 {
839 	return 1 << h->order;
840 }
841 
blocks_per_huge_page(struct hstate * h)842 static inline unsigned int blocks_per_huge_page(struct hstate *h)
843 {
844 	return huge_page_size(h) / 512;
845 }
846 
847 #include <asm/hugetlb.h>
848 
849 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)850 static inline int is_hugepage_only_range(struct mm_struct *mm,
851 					unsigned long addr, unsigned long len)
852 {
853 	return 0;
854 }
855 #define is_hugepage_only_range is_hugepage_only_range
856 #endif
857 
858 #ifndef arch_clear_hugepage_flags
arch_clear_hugepage_flags(struct page * page)859 static inline void arch_clear_hugepage_flags(struct page *page) { }
860 #define arch_clear_hugepage_flags arch_clear_hugepage_flags
861 #endif
862 
863 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)864 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
865 				       vm_flags_t flags)
866 {
867 	return pte_mkhuge(entry);
868 }
869 #endif
870 
folio_hstate(struct folio * folio)871 static inline struct hstate *folio_hstate(struct folio *folio)
872 {
873 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
874 	return size_to_hstate(folio_size(folio));
875 }
876 
hstate_index_to_shift(unsigned index)877 static inline unsigned hstate_index_to_shift(unsigned index)
878 {
879 	return hstates[index].order + PAGE_SHIFT;
880 }
881 
hstate_index(struct hstate * h)882 static inline int hstate_index(struct hstate *h)
883 {
884 	return h - hstates;
885 }
886 
887 extern int dissolve_free_huge_page(struct page *page);
888 extern int dissolve_free_huge_pages(unsigned long start_pfn,
889 				    unsigned long end_pfn);
890 
891 #ifdef CONFIG_MEMORY_FAILURE
892 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
893 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)894 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
895 {
896 }
897 #endif
898 
899 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
900 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)901 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
902 {
903 	if ((huge_page_shift(h) == PMD_SHIFT) ||
904 		(huge_page_shift(h) == PUD_SHIFT) ||
905 			(huge_page_shift(h) == PGDIR_SHIFT))
906 		return true;
907 	else
908 		return false;
909 }
910 #endif
911 #else
arch_hugetlb_migration_supported(struct hstate * h)912 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
913 {
914 	return false;
915 }
916 #endif
917 
hugepage_migration_supported(struct hstate * h)918 static inline bool hugepage_migration_supported(struct hstate *h)
919 {
920 	return arch_hugetlb_migration_supported(h);
921 }
922 
923 /*
924  * Movability check is different as compared to migration check.
925  * It determines whether or not a huge page should be placed on
926  * movable zone or not. Movability of any huge page should be
927  * required only if huge page size is supported for migration.
928  * There won't be any reason for the huge page to be movable if
929  * it is not migratable to start with. Also the size of the huge
930  * page should be large enough to be placed under a movable zone
931  * and still feasible enough to be migratable. Just the presence
932  * in movable zone does not make the migration feasible.
933  *
934  * So even though large huge page sizes like the gigantic ones
935  * are migratable they should not be movable because its not
936  * feasible to migrate them from movable zone.
937  */
hugepage_movable_supported(struct hstate * h)938 static inline bool hugepage_movable_supported(struct hstate *h)
939 {
940 	if (!hugepage_migration_supported(h))
941 		return false;
942 
943 	if (hstate_is_gigantic(h))
944 		return false;
945 	return true;
946 }
947 
948 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)949 static inline gfp_t htlb_alloc_mask(struct hstate *h)
950 {
951 	if (hugepage_movable_supported(h))
952 		return GFP_HIGHUSER_MOVABLE;
953 	else
954 		return GFP_HIGHUSER;
955 }
956 
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)957 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
958 {
959 	gfp_t modified_mask = htlb_alloc_mask(h);
960 
961 	/* Some callers might want to enforce node */
962 	modified_mask |= (gfp_mask & __GFP_THISNODE);
963 
964 	modified_mask |= (gfp_mask & __GFP_NOWARN);
965 
966 	return modified_mask;
967 }
968 
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)969 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
970 					   struct mm_struct *mm, pte_t *pte)
971 {
972 	if (huge_page_size(h) == PMD_SIZE)
973 		return pmd_lockptr(mm, (pmd_t *) pte);
974 	VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
975 	return &mm->page_table_lock;
976 }
977 
978 #ifndef hugepages_supported
979 /*
980  * Some platform decide whether they support huge pages at boot
981  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
982  * when there is no such support
983  */
984 #define hugepages_supported() (HPAGE_SHIFT != 0)
985 #endif
986 
987 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
988 
hugetlb_count_init(struct mm_struct * mm)989 static inline void hugetlb_count_init(struct mm_struct *mm)
990 {
991 	atomic_long_set(&mm->hugetlb_usage, 0);
992 }
993 
hugetlb_count_add(long l,struct mm_struct * mm)994 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
995 {
996 	atomic_long_add(l, &mm->hugetlb_usage);
997 }
998 
hugetlb_count_sub(long l,struct mm_struct * mm)999 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1000 {
1001 	atomic_long_sub(l, &mm->hugetlb_usage);
1002 }
1003 
1004 #ifndef huge_ptep_modify_prot_start
1005 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1006 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1007 						unsigned long addr, pte_t *ptep)
1008 {
1009 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1010 }
1011 #endif
1012 
1013 #ifndef huge_ptep_modify_prot_commit
1014 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1015 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1016 						unsigned long addr, pte_t *ptep,
1017 						pte_t old_pte, pte_t pte)
1018 {
1019 	unsigned long psize = huge_page_size(hstate_vma(vma));
1020 
1021 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1022 }
1023 #endif
1024 
1025 #ifdef CONFIG_NUMA
1026 void hugetlb_register_node(struct node *node);
1027 void hugetlb_unregister_node(struct node *node);
1028 #endif
1029 
1030 /*
1031  * Check if a given raw @page in a hugepage is HWPOISON.
1032  */
1033 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1034 
1035 #else	/* CONFIG_HUGETLB_PAGE */
1036 struct hstate {};
1037 
1038 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1039 {
1040 	return NULL;
1041 }
1042 
1043 static inline int isolate_or_dissolve_huge_page(struct page *page,
1044 						struct list_head *list)
1045 {
1046 	return -ENOMEM;
1047 }
1048 
1049 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1050 					   unsigned long addr,
1051 					   int avoid_reserve)
1052 {
1053 	return NULL;
1054 }
1055 
1056 static inline struct folio *
1057 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1058 			nodemask_t *nmask, gfp_t gfp_mask)
1059 {
1060 	return NULL;
1061 }
1062 
1063 static inline struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
1064 					       struct vm_area_struct *vma,
1065 					       unsigned long address)
1066 {
1067 	return NULL;
1068 }
1069 
1070 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1071 {
1072 	return 0;
1073 }
1074 
1075 static inline struct hstate *hstate_file(struct file *f)
1076 {
1077 	return NULL;
1078 }
1079 
1080 static inline struct hstate *hstate_sizelog(int page_size_log)
1081 {
1082 	return NULL;
1083 }
1084 
1085 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1086 {
1087 	return NULL;
1088 }
1089 
1090 static inline struct hstate *folio_hstate(struct folio *folio)
1091 {
1092 	return NULL;
1093 }
1094 
1095 static inline struct hstate *size_to_hstate(unsigned long size)
1096 {
1097 	return NULL;
1098 }
1099 
1100 static inline unsigned long huge_page_size(struct hstate *h)
1101 {
1102 	return PAGE_SIZE;
1103 }
1104 
1105 static inline unsigned long huge_page_mask(struct hstate *h)
1106 {
1107 	return PAGE_MASK;
1108 }
1109 
1110 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1111 {
1112 	return PAGE_SIZE;
1113 }
1114 
1115 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1116 {
1117 	return PAGE_SIZE;
1118 }
1119 
1120 static inline unsigned int huge_page_order(struct hstate *h)
1121 {
1122 	return 0;
1123 }
1124 
1125 static inline unsigned int huge_page_shift(struct hstate *h)
1126 {
1127 	return PAGE_SHIFT;
1128 }
1129 
1130 static inline bool hstate_is_gigantic(struct hstate *h)
1131 {
1132 	return false;
1133 }
1134 
1135 static inline unsigned int pages_per_huge_page(struct hstate *h)
1136 {
1137 	return 1;
1138 }
1139 
1140 static inline unsigned hstate_index_to_shift(unsigned index)
1141 {
1142 	return 0;
1143 }
1144 
1145 static inline int hstate_index(struct hstate *h)
1146 {
1147 	return 0;
1148 }
1149 
1150 static inline int dissolve_free_huge_page(struct page *page)
1151 {
1152 	return 0;
1153 }
1154 
1155 static inline int dissolve_free_huge_pages(unsigned long start_pfn,
1156 					   unsigned long end_pfn)
1157 {
1158 	return 0;
1159 }
1160 
1161 static inline bool hugepage_migration_supported(struct hstate *h)
1162 {
1163 	return false;
1164 }
1165 
1166 static inline bool hugepage_movable_supported(struct hstate *h)
1167 {
1168 	return false;
1169 }
1170 
1171 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1172 {
1173 	return 0;
1174 }
1175 
1176 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1177 {
1178 	return 0;
1179 }
1180 
1181 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1182 					   struct mm_struct *mm, pte_t *pte)
1183 {
1184 	return &mm->page_table_lock;
1185 }
1186 
1187 static inline void hugetlb_count_init(struct mm_struct *mm)
1188 {
1189 }
1190 
1191 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1192 {
1193 }
1194 
1195 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1196 {
1197 }
1198 
1199 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1200 					  unsigned long addr, pte_t *ptep)
1201 {
1202 #ifdef CONFIG_MMU
1203 	return ptep_get(ptep);
1204 #else
1205 	return *ptep;
1206 #endif
1207 }
1208 
1209 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1210 				   pte_t *ptep, pte_t pte, unsigned long sz)
1211 {
1212 }
1213 
1214 static inline void hugetlb_register_node(struct node *node)
1215 {
1216 }
1217 
1218 static inline void hugetlb_unregister_node(struct node *node)
1219 {
1220 }
1221 #endif	/* CONFIG_HUGETLB_PAGE */
1222 
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1223 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1224 					struct mm_struct *mm, pte_t *pte)
1225 {
1226 	spinlock_t *ptl;
1227 
1228 	ptl = huge_pte_lockptr(h, mm, pte);
1229 	spin_lock(ptl);
1230 	return ptl;
1231 }
1232 
1233 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1234 extern void __init hugetlb_cma_reserve(int order);
1235 #else
hugetlb_cma_reserve(int order)1236 static inline __init void hugetlb_cma_reserve(int order)
1237 {
1238 }
1239 #endif
1240 
1241 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
hugetlb_pmd_shared(pte_t * pte)1242 static inline bool hugetlb_pmd_shared(pte_t *pte)
1243 {
1244 	return page_count(virt_to_page(pte)) > 1;
1245 }
1246 #else
hugetlb_pmd_shared(pte_t * pte)1247 static inline bool hugetlb_pmd_shared(pte_t *pte)
1248 {
1249 	return false;
1250 }
1251 #endif
1252 
1253 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1254 
1255 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1256 /*
1257  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1258  * implement this.
1259  */
1260 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1261 #endif
1262 
__vma_shareable_lock(struct vm_area_struct * vma)1263 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1264 {
1265 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1266 }
1267 
1268 bool __vma_private_lock(struct vm_area_struct *vma);
1269 
1270 /*
1271  * Safe version of huge_pte_offset() to check the locks.  See comments
1272  * above huge_pte_offset().
1273  */
1274 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1275 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1276 {
1277 #if defined(CONFIG_HUGETLB_PAGE) && \
1278 	defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP)
1279 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1280 
1281 	/*
1282 	 * If pmd sharing possible, locking needed to safely walk the
1283 	 * hugetlb pgtables.  More information can be found at the comment
1284 	 * above huge_pte_offset() in the same file.
1285 	 *
1286 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1287 	 */
1288 	if (__vma_shareable_lock(vma))
1289 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1290 			     !lockdep_is_held(
1291 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1292 #endif
1293 	return huge_pte_offset(vma->vm_mm, addr, sz);
1294 }
1295 
1296 #endif /* _LINUX_HUGETLB_H */
1297