1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2  *
3  * Copyright 2016-2022 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABS_H_
9 #define HABANALABS_H_
10 
11 #include <linux/types.h>
12 #include <linux/ioctl.h>
13 
14 /*
15  * Defines that are asic-specific but constitutes as ABI between kernel driver
16  * and userspace
17  */
18 #define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START		0x8000	/* 32KB */
19 #define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START	0x80	/* 128 bytes */
20 
21 /*
22  * 128 SOBs reserved for collective wait
23  * 16 SOBs reserved for sync stream
24  */
25 #define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT		144
26 
27 /*
28  * 64 monitors reserved for collective wait
29  * 8 monitors reserved for sync stream
30  */
31 #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR		72
32 
33 /* Max number of elements in timestamps registration buffers */
34 #define	TS_MAX_ELEMENTS_NUM				(1 << 20) /* 1MB */
35 
36 /*
37  * Goya queue Numbering
38  *
39  * The external queues (PCI DMA channels) MUST be before the internal queues
40  * and each group (PCI DMA channels and internal) must be contiguous inside
41  * itself but there can be a gap between the two groups (although not
42  * recommended)
43  */
44 
45 enum goya_queue_id {
46 	GOYA_QUEUE_ID_DMA_0 = 0,
47 	GOYA_QUEUE_ID_DMA_1 = 1,
48 	GOYA_QUEUE_ID_DMA_2 = 2,
49 	GOYA_QUEUE_ID_DMA_3 = 3,
50 	GOYA_QUEUE_ID_DMA_4 = 4,
51 	GOYA_QUEUE_ID_CPU_PQ = 5,
52 	GOYA_QUEUE_ID_MME = 6,	/* Internal queues start here */
53 	GOYA_QUEUE_ID_TPC0 = 7,
54 	GOYA_QUEUE_ID_TPC1 = 8,
55 	GOYA_QUEUE_ID_TPC2 = 9,
56 	GOYA_QUEUE_ID_TPC3 = 10,
57 	GOYA_QUEUE_ID_TPC4 = 11,
58 	GOYA_QUEUE_ID_TPC5 = 12,
59 	GOYA_QUEUE_ID_TPC6 = 13,
60 	GOYA_QUEUE_ID_TPC7 = 14,
61 	GOYA_QUEUE_ID_SIZE
62 };
63 
64 /*
65  * Gaudi queue Numbering
66  * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
67  * Except one CPU queue, all the rest are internal queues.
68  */
69 
70 enum gaudi_queue_id {
71 	GAUDI_QUEUE_ID_DMA_0_0 = 0,	/* external */
72 	GAUDI_QUEUE_ID_DMA_0_1 = 1,	/* external */
73 	GAUDI_QUEUE_ID_DMA_0_2 = 2,	/* external */
74 	GAUDI_QUEUE_ID_DMA_0_3 = 3,	/* external */
75 	GAUDI_QUEUE_ID_DMA_1_0 = 4,	/* external */
76 	GAUDI_QUEUE_ID_DMA_1_1 = 5,	/* external */
77 	GAUDI_QUEUE_ID_DMA_1_2 = 6,	/* external */
78 	GAUDI_QUEUE_ID_DMA_1_3 = 7,	/* external */
79 	GAUDI_QUEUE_ID_CPU_PQ = 8,	/* CPU */
80 	GAUDI_QUEUE_ID_DMA_2_0 = 9,	/* internal */
81 	GAUDI_QUEUE_ID_DMA_2_1 = 10,	/* internal */
82 	GAUDI_QUEUE_ID_DMA_2_2 = 11,	/* internal */
83 	GAUDI_QUEUE_ID_DMA_2_3 = 12,	/* internal */
84 	GAUDI_QUEUE_ID_DMA_3_0 = 13,	/* internal */
85 	GAUDI_QUEUE_ID_DMA_3_1 = 14,	/* internal */
86 	GAUDI_QUEUE_ID_DMA_3_2 = 15,	/* internal */
87 	GAUDI_QUEUE_ID_DMA_3_3 = 16,	/* internal */
88 	GAUDI_QUEUE_ID_DMA_4_0 = 17,	/* internal */
89 	GAUDI_QUEUE_ID_DMA_4_1 = 18,	/* internal */
90 	GAUDI_QUEUE_ID_DMA_4_2 = 19,	/* internal */
91 	GAUDI_QUEUE_ID_DMA_4_3 = 20,	/* internal */
92 	GAUDI_QUEUE_ID_DMA_5_0 = 21,	/* internal */
93 	GAUDI_QUEUE_ID_DMA_5_1 = 22,	/* internal */
94 	GAUDI_QUEUE_ID_DMA_5_2 = 23,	/* internal */
95 	GAUDI_QUEUE_ID_DMA_5_3 = 24,	/* internal */
96 	GAUDI_QUEUE_ID_DMA_6_0 = 25,	/* internal */
97 	GAUDI_QUEUE_ID_DMA_6_1 = 26,	/* internal */
98 	GAUDI_QUEUE_ID_DMA_6_2 = 27,	/* internal */
99 	GAUDI_QUEUE_ID_DMA_6_3 = 28,	/* internal */
100 	GAUDI_QUEUE_ID_DMA_7_0 = 29,	/* internal */
101 	GAUDI_QUEUE_ID_DMA_7_1 = 30,	/* internal */
102 	GAUDI_QUEUE_ID_DMA_7_2 = 31,	/* internal */
103 	GAUDI_QUEUE_ID_DMA_7_3 = 32,	/* internal */
104 	GAUDI_QUEUE_ID_MME_0_0 = 33,	/* internal */
105 	GAUDI_QUEUE_ID_MME_0_1 = 34,	/* internal */
106 	GAUDI_QUEUE_ID_MME_0_2 = 35,	/* internal */
107 	GAUDI_QUEUE_ID_MME_0_3 = 36,	/* internal */
108 	GAUDI_QUEUE_ID_MME_1_0 = 37,	/* internal */
109 	GAUDI_QUEUE_ID_MME_1_1 = 38,	/* internal */
110 	GAUDI_QUEUE_ID_MME_1_2 = 39,	/* internal */
111 	GAUDI_QUEUE_ID_MME_1_3 = 40,	/* internal */
112 	GAUDI_QUEUE_ID_TPC_0_0 = 41,	/* internal */
113 	GAUDI_QUEUE_ID_TPC_0_1 = 42,	/* internal */
114 	GAUDI_QUEUE_ID_TPC_0_2 = 43,	/* internal */
115 	GAUDI_QUEUE_ID_TPC_0_3 = 44,	/* internal */
116 	GAUDI_QUEUE_ID_TPC_1_0 = 45,	/* internal */
117 	GAUDI_QUEUE_ID_TPC_1_1 = 46,	/* internal */
118 	GAUDI_QUEUE_ID_TPC_1_2 = 47,	/* internal */
119 	GAUDI_QUEUE_ID_TPC_1_3 = 48,	/* internal */
120 	GAUDI_QUEUE_ID_TPC_2_0 = 49,	/* internal */
121 	GAUDI_QUEUE_ID_TPC_2_1 = 50,	/* internal */
122 	GAUDI_QUEUE_ID_TPC_2_2 = 51,	/* internal */
123 	GAUDI_QUEUE_ID_TPC_2_3 = 52,	/* internal */
124 	GAUDI_QUEUE_ID_TPC_3_0 = 53,	/* internal */
125 	GAUDI_QUEUE_ID_TPC_3_1 = 54,	/* internal */
126 	GAUDI_QUEUE_ID_TPC_3_2 = 55,	/* internal */
127 	GAUDI_QUEUE_ID_TPC_3_3 = 56,	/* internal */
128 	GAUDI_QUEUE_ID_TPC_4_0 = 57,	/* internal */
129 	GAUDI_QUEUE_ID_TPC_4_1 = 58,	/* internal */
130 	GAUDI_QUEUE_ID_TPC_4_2 = 59,	/* internal */
131 	GAUDI_QUEUE_ID_TPC_4_3 = 60,	/* internal */
132 	GAUDI_QUEUE_ID_TPC_5_0 = 61,	/* internal */
133 	GAUDI_QUEUE_ID_TPC_5_1 = 62,	/* internal */
134 	GAUDI_QUEUE_ID_TPC_5_2 = 63,	/* internal */
135 	GAUDI_QUEUE_ID_TPC_5_3 = 64,	/* internal */
136 	GAUDI_QUEUE_ID_TPC_6_0 = 65,	/* internal */
137 	GAUDI_QUEUE_ID_TPC_6_1 = 66,	/* internal */
138 	GAUDI_QUEUE_ID_TPC_6_2 = 67,	/* internal */
139 	GAUDI_QUEUE_ID_TPC_6_3 = 68,	/* internal */
140 	GAUDI_QUEUE_ID_TPC_7_0 = 69,	/* internal */
141 	GAUDI_QUEUE_ID_TPC_7_1 = 70,	/* internal */
142 	GAUDI_QUEUE_ID_TPC_7_2 = 71,	/* internal */
143 	GAUDI_QUEUE_ID_TPC_7_3 = 72,	/* internal */
144 	GAUDI_QUEUE_ID_NIC_0_0 = 73,	/* internal */
145 	GAUDI_QUEUE_ID_NIC_0_1 = 74,	/* internal */
146 	GAUDI_QUEUE_ID_NIC_0_2 = 75,	/* internal */
147 	GAUDI_QUEUE_ID_NIC_0_3 = 76,	/* internal */
148 	GAUDI_QUEUE_ID_NIC_1_0 = 77,	/* internal */
149 	GAUDI_QUEUE_ID_NIC_1_1 = 78,	/* internal */
150 	GAUDI_QUEUE_ID_NIC_1_2 = 79,	/* internal */
151 	GAUDI_QUEUE_ID_NIC_1_3 = 80,	/* internal */
152 	GAUDI_QUEUE_ID_NIC_2_0 = 81,	/* internal */
153 	GAUDI_QUEUE_ID_NIC_2_1 = 82,	/* internal */
154 	GAUDI_QUEUE_ID_NIC_2_2 = 83,	/* internal */
155 	GAUDI_QUEUE_ID_NIC_2_3 = 84,	/* internal */
156 	GAUDI_QUEUE_ID_NIC_3_0 = 85,	/* internal */
157 	GAUDI_QUEUE_ID_NIC_3_1 = 86,	/* internal */
158 	GAUDI_QUEUE_ID_NIC_3_2 = 87,	/* internal */
159 	GAUDI_QUEUE_ID_NIC_3_3 = 88,	/* internal */
160 	GAUDI_QUEUE_ID_NIC_4_0 = 89,	/* internal */
161 	GAUDI_QUEUE_ID_NIC_4_1 = 90,	/* internal */
162 	GAUDI_QUEUE_ID_NIC_4_2 = 91,	/* internal */
163 	GAUDI_QUEUE_ID_NIC_4_3 = 92,	/* internal */
164 	GAUDI_QUEUE_ID_NIC_5_0 = 93,	/* internal */
165 	GAUDI_QUEUE_ID_NIC_5_1 = 94,	/* internal */
166 	GAUDI_QUEUE_ID_NIC_5_2 = 95,	/* internal */
167 	GAUDI_QUEUE_ID_NIC_5_3 = 96,	/* internal */
168 	GAUDI_QUEUE_ID_NIC_6_0 = 97,	/* internal */
169 	GAUDI_QUEUE_ID_NIC_6_1 = 98,	/* internal */
170 	GAUDI_QUEUE_ID_NIC_6_2 = 99,	/* internal */
171 	GAUDI_QUEUE_ID_NIC_6_3 = 100,	/* internal */
172 	GAUDI_QUEUE_ID_NIC_7_0 = 101,	/* internal */
173 	GAUDI_QUEUE_ID_NIC_7_1 = 102,	/* internal */
174 	GAUDI_QUEUE_ID_NIC_7_2 = 103,	/* internal */
175 	GAUDI_QUEUE_ID_NIC_7_3 = 104,	/* internal */
176 	GAUDI_QUEUE_ID_NIC_8_0 = 105,	/* internal */
177 	GAUDI_QUEUE_ID_NIC_8_1 = 106,	/* internal */
178 	GAUDI_QUEUE_ID_NIC_8_2 = 107,	/* internal */
179 	GAUDI_QUEUE_ID_NIC_8_3 = 108,	/* internal */
180 	GAUDI_QUEUE_ID_NIC_9_0 = 109,	/* internal */
181 	GAUDI_QUEUE_ID_NIC_9_1 = 110,	/* internal */
182 	GAUDI_QUEUE_ID_NIC_9_2 = 111,	/* internal */
183 	GAUDI_QUEUE_ID_NIC_9_3 = 112,	/* internal */
184 	GAUDI_QUEUE_ID_SIZE
185 };
186 
187 /*
188  * In GAUDI2 we have two modes of operation in regard to queues:
189  * 1. Legacy mode, where each QMAN exposes 4 streams to the user
190  * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
191  *
192  * When in legacy mode, the user sends the queue id per JOB according to
193  * enum gaudi2_queue_id below.
194  *
195  * When in F/W mode, the user sends a stream id per Command Submission. The
196  * stream id is a running number from 0 up to (N-1), where N is the number
197  * of streams the F/W exposes and is passed to the user in
198  * struct hl_info_hw_ip_info
199  */
200 
201 enum gaudi2_queue_id {
202 	GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
203 	GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
204 	GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
205 	GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
206 	GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
207 	GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
208 	GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
209 	GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
210 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
211 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
212 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
213 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
214 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
215 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
216 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
217 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
218 	GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
219 	GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
220 	GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
221 	GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
222 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
223 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
224 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
225 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
226 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
227 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
228 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
229 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
230 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
231 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
232 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
233 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
234 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
235 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
236 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
237 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
238 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
239 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
240 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
241 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
242 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
243 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
244 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
245 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
246 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
247 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
248 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
249 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
250 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
251 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
252 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
253 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
254 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
255 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
256 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
257 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
258 	GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
259 	GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
260 	GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
261 	GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
262 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
263 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
264 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
265 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
266 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
267 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
268 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
269 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
270 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
271 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
272 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
273 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
274 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
275 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
276 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
277 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
278 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
279 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
280 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
281 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
282 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
283 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
284 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
285 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
286 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
287 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
288 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
289 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
290 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
291 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
292 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
293 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
294 	GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
295 	GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
296 	GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
297 	GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
298 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
299 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
300 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
301 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
302 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
303 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
304 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
305 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
306 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
307 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
308 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
309 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
310 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
311 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
312 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
313 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
314 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
315 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
316 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
317 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
318 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
319 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
320 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
321 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
322 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
323 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
324 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
325 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
326 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
327 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
328 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
329 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
330 	GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
331 	GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
332 	GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
333 	GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
334 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
335 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
336 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
337 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
338 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
339 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
340 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
341 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
342 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
343 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
344 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
345 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
346 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
347 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
348 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
349 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
350 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
351 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
352 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
353 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
354 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
355 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
356 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
357 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
358 	GAUDI2_QUEUE_ID_NIC_0_0 = 156,
359 	GAUDI2_QUEUE_ID_NIC_0_1 = 157,
360 	GAUDI2_QUEUE_ID_NIC_0_2 = 158,
361 	GAUDI2_QUEUE_ID_NIC_0_3 = 159,
362 	GAUDI2_QUEUE_ID_NIC_1_0 = 160,
363 	GAUDI2_QUEUE_ID_NIC_1_1 = 161,
364 	GAUDI2_QUEUE_ID_NIC_1_2 = 162,
365 	GAUDI2_QUEUE_ID_NIC_1_3 = 163,
366 	GAUDI2_QUEUE_ID_NIC_2_0 = 164,
367 	GAUDI2_QUEUE_ID_NIC_2_1 = 165,
368 	GAUDI2_QUEUE_ID_NIC_2_2 = 166,
369 	GAUDI2_QUEUE_ID_NIC_2_3 = 167,
370 	GAUDI2_QUEUE_ID_NIC_3_0 = 168,
371 	GAUDI2_QUEUE_ID_NIC_3_1 = 169,
372 	GAUDI2_QUEUE_ID_NIC_3_2 = 170,
373 	GAUDI2_QUEUE_ID_NIC_3_3 = 171,
374 	GAUDI2_QUEUE_ID_NIC_4_0 = 172,
375 	GAUDI2_QUEUE_ID_NIC_4_1 = 173,
376 	GAUDI2_QUEUE_ID_NIC_4_2 = 174,
377 	GAUDI2_QUEUE_ID_NIC_4_3 = 175,
378 	GAUDI2_QUEUE_ID_NIC_5_0 = 176,
379 	GAUDI2_QUEUE_ID_NIC_5_1 = 177,
380 	GAUDI2_QUEUE_ID_NIC_5_2 = 178,
381 	GAUDI2_QUEUE_ID_NIC_5_3 = 179,
382 	GAUDI2_QUEUE_ID_NIC_6_0 = 180,
383 	GAUDI2_QUEUE_ID_NIC_6_1 = 181,
384 	GAUDI2_QUEUE_ID_NIC_6_2 = 182,
385 	GAUDI2_QUEUE_ID_NIC_6_3 = 183,
386 	GAUDI2_QUEUE_ID_NIC_7_0 = 184,
387 	GAUDI2_QUEUE_ID_NIC_7_1 = 185,
388 	GAUDI2_QUEUE_ID_NIC_7_2 = 186,
389 	GAUDI2_QUEUE_ID_NIC_7_3 = 187,
390 	GAUDI2_QUEUE_ID_NIC_8_0 = 188,
391 	GAUDI2_QUEUE_ID_NIC_8_1 = 189,
392 	GAUDI2_QUEUE_ID_NIC_8_2 = 190,
393 	GAUDI2_QUEUE_ID_NIC_8_3 = 191,
394 	GAUDI2_QUEUE_ID_NIC_9_0 = 192,
395 	GAUDI2_QUEUE_ID_NIC_9_1 = 193,
396 	GAUDI2_QUEUE_ID_NIC_9_2 = 194,
397 	GAUDI2_QUEUE_ID_NIC_9_3 = 195,
398 	GAUDI2_QUEUE_ID_NIC_10_0 = 196,
399 	GAUDI2_QUEUE_ID_NIC_10_1 = 197,
400 	GAUDI2_QUEUE_ID_NIC_10_2 = 198,
401 	GAUDI2_QUEUE_ID_NIC_10_3 = 199,
402 	GAUDI2_QUEUE_ID_NIC_11_0 = 200,
403 	GAUDI2_QUEUE_ID_NIC_11_1 = 201,
404 	GAUDI2_QUEUE_ID_NIC_11_2 = 202,
405 	GAUDI2_QUEUE_ID_NIC_11_3 = 203,
406 	GAUDI2_QUEUE_ID_NIC_12_0 = 204,
407 	GAUDI2_QUEUE_ID_NIC_12_1 = 205,
408 	GAUDI2_QUEUE_ID_NIC_12_2 = 206,
409 	GAUDI2_QUEUE_ID_NIC_12_3 = 207,
410 	GAUDI2_QUEUE_ID_NIC_13_0 = 208,
411 	GAUDI2_QUEUE_ID_NIC_13_1 = 209,
412 	GAUDI2_QUEUE_ID_NIC_13_2 = 210,
413 	GAUDI2_QUEUE_ID_NIC_13_3 = 211,
414 	GAUDI2_QUEUE_ID_NIC_14_0 = 212,
415 	GAUDI2_QUEUE_ID_NIC_14_1 = 213,
416 	GAUDI2_QUEUE_ID_NIC_14_2 = 214,
417 	GAUDI2_QUEUE_ID_NIC_14_3 = 215,
418 	GAUDI2_QUEUE_ID_NIC_15_0 = 216,
419 	GAUDI2_QUEUE_ID_NIC_15_1 = 217,
420 	GAUDI2_QUEUE_ID_NIC_15_2 = 218,
421 	GAUDI2_QUEUE_ID_NIC_15_3 = 219,
422 	GAUDI2_QUEUE_ID_NIC_16_0 = 220,
423 	GAUDI2_QUEUE_ID_NIC_16_1 = 221,
424 	GAUDI2_QUEUE_ID_NIC_16_2 = 222,
425 	GAUDI2_QUEUE_ID_NIC_16_3 = 223,
426 	GAUDI2_QUEUE_ID_NIC_17_0 = 224,
427 	GAUDI2_QUEUE_ID_NIC_17_1 = 225,
428 	GAUDI2_QUEUE_ID_NIC_17_2 = 226,
429 	GAUDI2_QUEUE_ID_NIC_17_3 = 227,
430 	GAUDI2_QUEUE_ID_NIC_18_0 = 228,
431 	GAUDI2_QUEUE_ID_NIC_18_1 = 229,
432 	GAUDI2_QUEUE_ID_NIC_18_2 = 230,
433 	GAUDI2_QUEUE_ID_NIC_18_3 = 231,
434 	GAUDI2_QUEUE_ID_NIC_19_0 = 232,
435 	GAUDI2_QUEUE_ID_NIC_19_1 = 233,
436 	GAUDI2_QUEUE_ID_NIC_19_2 = 234,
437 	GAUDI2_QUEUE_ID_NIC_19_3 = 235,
438 	GAUDI2_QUEUE_ID_NIC_20_0 = 236,
439 	GAUDI2_QUEUE_ID_NIC_20_1 = 237,
440 	GAUDI2_QUEUE_ID_NIC_20_2 = 238,
441 	GAUDI2_QUEUE_ID_NIC_20_3 = 239,
442 	GAUDI2_QUEUE_ID_NIC_21_0 = 240,
443 	GAUDI2_QUEUE_ID_NIC_21_1 = 241,
444 	GAUDI2_QUEUE_ID_NIC_21_2 = 242,
445 	GAUDI2_QUEUE_ID_NIC_21_3 = 243,
446 	GAUDI2_QUEUE_ID_NIC_22_0 = 244,
447 	GAUDI2_QUEUE_ID_NIC_22_1 = 245,
448 	GAUDI2_QUEUE_ID_NIC_22_2 = 246,
449 	GAUDI2_QUEUE_ID_NIC_22_3 = 247,
450 	GAUDI2_QUEUE_ID_NIC_23_0 = 248,
451 	GAUDI2_QUEUE_ID_NIC_23_1 = 249,
452 	GAUDI2_QUEUE_ID_NIC_23_2 = 250,
453 	GAUDI2_QUEUE_ID_NIC_23_3 = 251,
454 	GAUDI2_QUEUE_ID_ROT_0_0 = 252,
455 	GAUDI2_QUEUE_ID_ROT_0_1 = 253,
456 	GAUDI2_QUEUE_ID_ROT_0_2 = 254,
457 	GAUDI2_QUEUE_ID_ROT_0_3 = 255,
458 	GAUDI2_QUEUE_ID_ROT_1_0 = 256,
459 	GAUDI2_QUEUE_ID_ROT_1_1 = 257,
460 	GAUDI2_QUEUE_ID_ROT_1_2 = 258,
461 	GAUDI2_QUEUE_ID_ROT_1_3 = 259,
462 	GAUDI2_QUEUE_ID_CPU_PQ = 260,
463 	GAUDI2_QUEUE_ID_SIZE
464 };
465 
466 /*
467  * Engine Numbering
468  *
469  * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
470  */
471 
472 enum goya_engine_id {
473 	GOYA_ENGINE_ID_DMA_0 = 0,
474 	GOYA_ENGINE_ID_DMA_1,
475 	GOYA_ENGINE_ID_DMA_2,
476 	GOYA_ENGINE_ID_DMA_3,
477 	GOYA_ENGINE_ID_DMA_4,
478 	GOYA_ENGINE_ID_MME_0,
479 	GOYA_ENGINE_ID_TPC_0,
480 	GOYA_ENGINE_ID_TPC_1,
481 	GOYA_ENGINE_ID_TPC_2,
482 	GOYA_ENGINE_ID_TPC_3,
483 	GOYA_ENGINE_ID_TPC_4,
484 	GOYA_ENGINE_ID_TPC_5,
485 	GOYA_ENGINE_ID_TPC_6,
486 	GOYA_ENGINE_ID_TPC_7,
487 	GOYA_ENGINE_ID_SIZE
488 };
489 
490 enum gaudi_engine_id {
491 	GAUDI_ENGINE_ID_DMA_0 = 0,
492 	GAUDI_ENGINE_ID_DMA_1,
493 	GAUDI_ENGINE_ID_DMA_2,
494 	GAUDI_ENGINE_ID_DMA_3,
495 	GAUDI_ENGINE_ID_DMA_4,
496 	GAUDI_ENGINE_ID_DMA_5,
497 	GAUDI_ENGINE_ID_DMA_6,
498 	GAUDI_ENGINE_ID_DMA_7,
499 	GAUDI_ENGINE_ID_MME_0,
500 	GAUDI_ENGINE_ID_MME_1,
501 	GAUDI_ENGINE_ID_MME_2,
502 	GAUDI_ENGINE_ID_MME_3,
503 	GAUDI_ENGINE_ID_TPC_0,
504 	GAUDI_ENGINE_ID_TPC_1,
505 	GAUDI_ENGINE_ID_TPC_2,
506 	GAUDI_ENGINE_ID_TPC_3,
507 	GAUDI_ENGINE_ID_TPC_4,
508 	GAUDI_ENGINE_ID_TPC_5,
509 	GAUDI_ENGINE_ID_TPC_6,
510 	GAUDI_ENGINE_ID_TPC_7,
511 	GAUDI_ENGINE_ID_NIC_0,
512 	GAUDI_ENGINE_ID_NIC_1,
513 	GAUDI_ENGINE_ID_NIC_2,
514 	GAUDI_ENGINE_ID_NIC_3,
515 	GAUDI_ENGINE_ID_NIC_4,
516 	GAUDI_ENGINE_ID_NIC_5,
517 	GAUDI_ENGINE_ID_NIC_6,
518 	GAUDI_ENGINE_ID_NIC_7,
519 	GAUDI_ENGINE_ID_NIC_8,
520 	GAUDI_ENGINE_ID_NIC_9,
521 	GAUDI_ENGINE_ID_SIZE
522 };
523 
524 enum gaudi2_engine_id {
525 	GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
526 	GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
527 	GAUDI2_DCORE0_ENGINE_ID_MME,
528 	GAUDI2_DCORE0_ENGINE_ID_TPC_0,
529 	GAUDI2_DCORE0_ENGINE_ID_TPC_1,
530 	GAUDI2_DCORE0_ENGINE_ID_TPC_2,
531 	GAUDI2_DCORE0_ENGINE_ID_TPC_3,
532 	GAUDI2_DCORE0_ENGINE_ID_TPC_4,
533 	GAUDI2_DCORE0_ENGINE_ID_TPC_5,
534 	GAUDI2_DCORE0_ENGINE_ID_DEC_0,
535 	GAUDI2_DCORE0_ENGINE_ID_DEC_1,
536 	GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
537 	GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
538 	GAUDI2_DCORE1_ENGINE_ID_MME,
539 	GAUDI2_DCORE1_ENGINE_ID_TPC_0,
540 	GAUDI2_DCORE1_ENGINE_ID_TPC_1,
541 	GAUDI2_DCORE1_ENGINE_ID_TPC_2,
542 	GAUDI2_DCORE1_ENGINE_ID_TPC_3,
543 	GAUDI2_DCORE1_ENGINE_ID_TPC_4,
544 	GAUDI2_DCORE1_ENGINE_ID_TPC_5,
545 	GAUDI2_DCORE1_ENGINE_ID_DEC_0,
546 	GAUDI2_DCORE1_ENGINE_ID_DEC_1,
547 	GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
548 	GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
549 	GAUDI2_DCORE2_ENGINE_ID_MME,
550 	GAUDI2_DCORE2_ENGINE_ID_TPC_0,
551 	GAUDI2_DCORE2_ENGINE_ID_TPC_1,
552 	GAUDI2_DCORE2_ENGINE_ID_TPC_2,
553 	GAUDI2_DCORE2_ENGINE_ID_TPC_3,
554 	GAUDI2_DCORE2_ENGINE_ID_TPC_4,
555 	GAUDI2_DCORE2_ENGINE_ID_TPC_5,
556 	GAUDI2_DCORE2_ENGINE_ID_DEC_0,
557 	GAUDI2_DCORE2_ENGINE_ID_DEC_1,
558 	GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
559 	GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
560 	GAUDI2_DCORE3_ENGINE_ID_MME,
561 	GAUDI2_DCORE3_ENGINE_ID_TPC_0,
562 	GAUDI2_DCORE3_ENGINE_ID_TPC_1,
563 	GAUDI2_DCORE3_ENGINE_ID_TPC_2,
564 	GAUDI2_DCORE3_ENGINE_ID_TPC_3,
565 	GAUDI2_DCORE3_ENGINE_ID_TPC_4,
566 	GAUDI2_DCORE3_ENGINE_ID_TPC_5,
567 	GAUDI2_DCORE3_ENGINE_ID_DEC_0,
568 	GAUDI2_DCORE3_ENGINE_ID_DEC_1,
569 	GAUDI2_DCORE0_ENGINE_ID_TPC_6,
570 	GAUDI2_ENGINE_ID_PDMA_0,
571 	GAUDI2_ENGINE_ID_PDMA_1,
572 	GAUDI2_ENGINE_ID_ROT_0,
573 	GAUDI2_ENGINE_ID_ROT_1,
574 	GAUDI2_PCIE_ENGINE_ID_DEC_0,
575 	GAUDI2_PCIE_ENGINE_ID_DEC_1,
576 	GAUDI2_ENGINE_ID_NIC0_0,
577 	GAUDI2_ENGINE_ID_NIC0_1,
578 	GAUDI2_ENGINE_ID_NIC1_0,
579 	GAUDI2_ENGINE_ID_NIC1_1,
580 	GAUDI2_ENGINE_ID_NIC2_0,
581 	GAUDI2_ENGINE_ID_NIC2_1,
582 	GAUDI2_ENGINE_ID_NIC3_0,
583 	GAUDI2_ENGINE_ID_NIC3_1,
584 	GAUDI2_ENGINE_ID_NIC4_0,
585 	GAUDI2_ENGINE_ID_NIC4_1,
586 	GAUDI2_ENGINE_ID_NIC5_0,
587 	GAUDI2_ENGINE_ID_NIC5_1,
588 	GAUDI2_ENGINE_ID_NIC6_0,
589 	GAUDI2_ENGINE_ID_NIC6_1,
590 	GAUDI2_ENGINE_ID_NIC7_0,
591 	GAUDI2_ENGINE_ID_NIC7_1,
592 	GAUDI2_ENGINE_ID_NIC8_0,
593 	GAUDI2_ENGINE_ID_NIC8_1,
594 	GAUDI2_ENGINE_ID_NIC9_0,
595 	GAUDI2_ENGINE_ID_NIC9_1,
596 	GAUDI2_ENGINE_ID_NIC10_0,
597 	GAUDI2_ENGINE_ID_NIC10_1,
598 	GAUDI2_ENGINE_ID_NIC11_0,
599 	GAUDI2_ENGINE_ID_NIC11_1,
600 	GAUDI2_ENGINE_ID_PCIE,
601 	GAUDI2_ENGINE_ID_PSOC,
602 	GAUDI2_ENGINE_ID_ARC_FARM,
603 	GAUDI2_ENGINE_ID_KDMA,
604 	GAUDI2_ENGINE_ID_SIZE
605 };
606 
607 /*
608  * ASIC specific PLL index
609  *
610  * Used to retrieve in frequency info of different IPs via
611  * HL_INFO_PLL_FREQUENCY under HL_IOCTL_INFO IOCTL. The enums need to be
612  * used as an index in struct hl_pll_frequency_info
613  */
614 
615 enum hl_goya_pll_index {
616 	HL_GOYA_CPU_PLL = 0,
617 	HL_GOYA_IC_PLL,
618 	HL_GOYA_MC_PLL,
619 	HL_GOYA_MME_PLL,
620 	HL_GOYA_PCI_PLL,
621 	HL_GOYA_EMMC_PLL,
622 	HL_GOYA_TPC_PLL,
623 	HL_GOYA_PLL_MAX
624 };
625 
626 enum hl_gaudi_pll_index {
627 	HL_GAUDI_CPU_PLL = 0,
628 	HL_GAUDI_PCI_PLL,
629 	HL_GAUDI_SRAM_PLL,
630 	HL_GAUDI_HBM_PLL,
631 	HL_GAUDI_NIC_PLL,
632 	HL_GAUDI_DMA_PLL,
633 	HL_GAUDI_MESH_PLL,
634 	HL_GAUDI_MME_PLL,
635 	HL_GAUDI_TPC_PLL,
636 	HL_GAUDI_IF_PLL,
637 	HL_GAUDI_PLL_MAX
638 };
639 
640 enum hl_gaudi2_pll_index {
641 	HL_GAUDI2_CPU_PLL = 0,
642 	HL_GAUDI2_PCI_PLL,
643 	HL_GAUDI2_SRAM_PLL,
644 	HL_GAUDI2_HBM_PLL,
645 	HL_GAUDI2_NIC_PLL,
646 	HL_GAUDI2_DMA_PLL,
647 	HL_GAUDI2_MESH_PLL,
648 	HL_GAUDI2_MME_PLL,
649 	HL_GAUDI2_TPC_PLL,
650 	HL_GAUDI2_IF_PLL,
651 	HL_GAUDI2_VID_PLL,
652 	HL_GAUDI2_MSS_PLL,
653 	HL_GAUDI2_PLL_MAX
654 };
655 
656 /**
657  * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
658  *                              submitted to the GOYA's DMA QMAN. This attribute is not relevant
659  *                              to the H/W but the kernel driver use it to parse the packet's
660  *                              addresses and patch/validate them.
661  * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
662  * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
663  * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
664  * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
665  * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
666  * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
667  * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
668  * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
669  * @HL_DMA_ENUM_MAX: number of values in enum
670  */
671 enum hl_goya_dma_direction {
672 	HL_DMA_HOST_TO_DRAM,
673 	HL_DMA_HOST_TO_SRAM,
674 	HL_DMA_DRAM_TO_SRAM,
675 	HL_DMA_SRAM_TO_DRAM,
676 	HL_DMA_SRAM_TO_HOST,
677 	HL_DMA_DRAM_TO_HOST,
678 	HL_DMA_DRAM_TO_DRAM,
679 	HL_DMA_SRAM_TO_SRAM,
680 	HL_DMA_ENUM_MAX
681 };
682 
683 /**
684  * enum hl_device_status - Device status information.
685  * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
686  * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
687  * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
688  * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
689  * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
690  *                                       progress.
691  * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
692  *                                                  triggered because the user released the device
693  * @HL_DEVICE_STATUS_LAST: Last status.
694  */
695 enum hl_device_status {
696 	HL_DEVICE_STATUS_OPERATIONAL,
697 	HL_DEVICE_STATUS_IN_RESET,
698 	HL_DEVICE_STATUS_MALFUNCTION,
699 	HL_DEVICE_STATUS_NEEDS_RESET,
700 	HL_DEVICE_STATUS_IN_DEVICE_CREATION,
701 	HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
702 	HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
703 };
704 
705 enum hl_server_type {
706 	HL_SERVER_TYPE_UNKNOWN = 0,
707 	HL_SERVER_GAUDI_HLS1 = 1,
708 	HL_SERVER_GAUDI_HLS1H = 2,
709 	HL_SERVER_GAUDI_TYPE1 = 3,
710 	HL_SERVER_GAUDI_TYPE2 = 4,
711 	HL_SERVER_GAUDI2_HLS2 = 5,
712 	HL_SERVER_GAUDI2_TYPE1 = 7
713 };
714 
715 /*
716  * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
717  *
718  * HL_NOTIFIER_EVENT_TPC_ASSERT		- Indicates TPC assert event
719  * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	- Indicates undefined operation code
720  * HL_NOTIFIER_EVENT_DEVICE_RESET	- Indicates device requires a reset
721  * HL_NOTIFIER_EVENT_CS_TIMEOUT		- Indicates CS timeout error
722  * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	- Indicates device is unavailable
723  * HL_NOTIFIER_EVENT_USER_ENGINE_ERR	- Indicates device engine in error state
724  * HL_NOTIFIER_EVENT_GENERAL_HW_ERR     - Indicates device HW error
725  * HL_NOTIFIER_EVENT_RAZWI              - Indicates razwi happened
726  * HL_NOTIFIER_EVENT_PAGE_FAULT         - Indicates page fault happened
727  * HL_NOTIFIER_EVENT_CRITICAL_HW_ERR    - Indicates a HW error that requires SW abort and
728  *                                        HW reset
729  * HL_NOTIFIER_EVENT_CRITICAL_FW_ERR    - Indicates a FW error that requires SW abort and
730  *                                        HW reset
731  */
732 #define HL_NOTIFIER_EVENT_TPC_ASSERT		(1ULL << 0)
733 #define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	(1ULL << 1)
734 #define HL_NOTIFIER_EVENT_DEVICE_RESET		(1ULL << 2)
735 #define HL_NOTIFIER_EVENT_CS_TIMEOUT		(1ULL << 3)
736 #define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	(1ULL << 4)
737 #define HL_NOTIFIER_EVENT_USER_ENGINE_ERR	(1ULL << 5)
738 #define HL_NOTIFIER_EVENT_GENERAL_HW_ERR	(1ULL << 6)
739 #define HL_NOTIFIER_EVENT_RAZWI			(1ULL << 7)
740 #define HL_NOTIFIER_EVENT_PAGE_FAULT		(1ULL << 8)
741 #define HL_NOTIFIER_EVENT_CRITICL_HW_ERR	(1ULL << 9)
742 #define HL_NOTIFIER_EVENT_CRITICL_FW_ERR	(1ULL << 10)
743 
744 /* Opcode for management ioctl
745  *
746  * HW_IP_INFO            - Receive information about different IP blocks in the
747  *                         device.
748  * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
749  *                         occurred since the last hard reset.
750  * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
751  *                         specific context. This is relevant only for devices
752  *                         where the dram is managed by the kernel driver
753  * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
754  *                         internal engine.
755  * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
756  *                         require an open context.
757  * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
758  *                               over the last period specified by the user.
759  *                               The period can be between 100ms to 1s, in
760  *                               resolution of 100ms. The return value is a
761  *                               percentage of the utilization rate.
762  * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
763  *                               event occurred since the driver was loaded.
764  * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
765  *                               of the device in MHz. The maximum clock rate is
766  *                               configurable via sysfs parameter
767  * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
768  *                         operations performed on the device since the last
769  *                         time the driver was loaded.
770  * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
771  *                         for synchronization.
772  * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
773  * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
774  * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
775  * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
776  * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
777  * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
778  * HL_INFO_POWER         - Retrieve power information
779  * HL_INFO_OPEN_STATS    - Retrieve info regarding recent device open calls
780  * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
781  * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
782  * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
783  *                                  and CS timeout or razwi error occurred.
784  * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
785  * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
786  *                            Timestamp of razwi.
787  *                            The address which accessing it caused the razwi.
788  *                            Razwi initiator.
789  *                            Razwi cause, was it a page fault or MMU access error.
790  *                            May return 0 even though no new data is available, in that case
791  *                            timestamp will be 0.
792  * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
793  * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
794  * HL_INFO_REGISTER_EVENTFD   - Register eventfd for event notifications.
795  * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
796  * HL_INFO_GET_EVENTS         - Retrieve the last occurred events
797  * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
798  *                                  May return 0 even though no new data is available, in that case
799  *                                  timestamp will be 0.
800  * HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic.
801  * HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault.
802  *                            May return 0 even though no new data is available, in that case
803  *                            timestamp will be 0.
804  * HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event.
805  * HL_INFO_FW_GENERIC_REQ - Send generic request to FW.
806  * HL_INFO_HW_ERR_EVENT   - Retrieve information on the reported HW error.
807  *                          May return 0 even though no new data is available, in that case
808  *                          timestamp will be 0.
809  * HL_INFO_FW_ERR_EVENT   - Retrieve information on the reported FW error.
810  *                          May return 0 even though no new data is available, in that case
811  *                          timestamp will be 0.
812  */
813 #define HL_INFO_HW_IP_INFO			0
814 #define HL_INFO_HW_EVENTS			1
815 #define HL_INFO_DRAM_USAGE			2
816 #define HL_INFO_HW_IDLE				3
817 #define HL_INFO_DEVICE_STATUS			4
818 #define HL_INFO_DEVICE_UTILIZATION		6
819 #define HL_INFO_HW_EVENTS_AGGREGATE		7
820 #define HL_INFO_CLK_RATE			8
821 #define HL_INFO_RESET_COUNT			9
822 #define HL_INFO_TIME_SYNC			10
823 #define HL_INFO_CS_COUNTERS			11
824 #define HL_INFO_PCI_COUNTERS			12
825 #define HL_INFO_CLK_THROTTLE_REASON		13
826 #define HL_INFO_SYNC_MANAGER			14
827 #define HL_INFO_TOTAL_ENERGY			15
828 #define HL_INFO_PLL_FREQUENCY			16
829 #define HL_INFO_POWER				17
830 #define HL_INFO_OPEN_STATS			18
831 #define HL_INFO_DRAM_REPLACED_ROWS		21
832 #define HL_INFO_DRAM_PENDING_ROWS		22
833 #define HL_INFO_LAST_ERR_OPEN_DEV_TIME		23
834 #define HL_INFO_CS_TIMEOUT_EVENT		24
835 #define HL_INFO_RAZWI_EVENT			25
836 #define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES	26
837 #define HL_INFO_SECURED_ATTESTATION		27
838 #define HL_INFO_REGISTER_EVENTFD		28
839 #define HL_INFO_UNREGISTER_EVENTFD		29
840 #define HL_INFO_GET_EVENTS			30
841 #define HL_INFO_UNDEFINED_OPCODE_EVENT		31
842 #define HL_INFO_ENGINE_STATUS			32
843 #define HL_INFO_PAGE_FAULT_EVENT		33
844 #define HL_INFO_USER_MAPPINGS			34
845 #define HL_INFO_FW_GENERIC_REQ			35
846 #define HL_INFO_HW_ERR_EVENT			36
847 #define HL_INFO_FW_ERR_EVENT			37
848 
849 #define HL_INFO_VERSION_MAX_LEN			128
850 #define HL_INFO_CARD_NAME_MAX_LEN		16
851 
852 /* Maximum buffer size for retrieving engines status */
853 #define HL_ENGINES_DATA_MAX_SIZE	SZ_1M
854 
855 /**
856  * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
857  * @sram_base_address: The first SRAM physical base address that is free to be
858  *                     used by the user.
859  * @dram_base_address: The first DRAM virtual or physical base address that is
860  *                     free to be used by the user.
861  * @dram_size: The DRAM size that is available to the user.
862  * @sram_size: The SRAM size that is available to the user.
863  * @num_of_events: The number of events that can be received from the f/w. This
864  *                 is needed so the user can what is the size of the h/w events
865  *                 array he needs to pass to the kernel when he wants to fetch
866  *                 the event counters.
867  * @device_id: PCI device ID of the ASIC.
868  * @module_id: Module ID of the ASIC for mezzanine cards in servers
869  *             (From OCP spec).
870  * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
871  * @first_available_interrupt_id: The first available interrupt ID for the user
872  *                                to be used when it works with user interrupts.
873  *                                Relevant for Gaudi2 and later.
874  * @server_type: Server type that the Gaudi ASIC is currently installed in.
875  *               The value is according to enum hl_server_type
876  * @cpld_version: CPLD version on the board.
877  * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
878  * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
879  * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
880  * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
881  *                           in some ASICs.
882  * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
883  *                    for Goya/Gaudi only.
884  * @dram_enabled: Whether the DRAM is enabled.
885  * @security_enabled: Whether security is enabled on device.
886  * @mme_master_slave_mode: Indicate whether the MME is working in master/slave
887  *                         configuration. Relevant for Greco and later.
888  * @cpucp_version: The CPUCP f/w version.
889  * @card_name: The card name as passed by the f/w.
890  * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
891  *                        Relevant for Greco and later.
892  * @dram_page_size: The DRAM physical page size.
893  * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
894  *                     Relevant for Gaudi2 and later.
895  * @number_of_user_interrupts: The number of interrupts that are available to the userspace
896  *                             application to use. Relevant for Gaudi2 and later.
897  * @device_mem_alloc_default_page_size: default page size used in device memory allocation.
898  * @revision_id: PCI revision ID of the ASIC.
899  * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
900  * @rotator_enabled_mask: Bit-mask that represents which rotators are enabled.
901  *                        Relevant for Gaudi3 and later.
902  * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
903  *                                  in order to raise events toward FW.
904  * @reserved_dram_size: DRAM size reserved for driver and firmware.
905  */
906 struct hl_info_hw_ip_info {
907 	__u64 sram_base_address;
908 	__u64 dram_base_address;
909 	__u64 dram_size;
910 	__u32 sram_size;
911 	__u32 num_of_events;
912 	__u32 device_id;
913 	__u32 module_id;
914 	__u32 decoder_enabled_mask;
915 	__u16 first_available_interrupt_id;
916 	__u16 server_type;
917 	__u32 cpld_version;
918 	__u32 psoc_pci_pll_nr;
919 	__u32 psoc_pci_pll_nf;
920 	__u32 psoc_pci_pll_od;
921 	__u32 psoc_pci_pll_div_factor;
922 	__u8 tpc_enabled_mask;
923 	__u8 dram_enabled;
924 	__u8 security_enabled;
925 	__u8 mme_master_slave_mode;
926 	__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
927 	__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
928 	__u64 tpc_enabled_mask_ext;
929 	__u64 dram_page_size;
930 	__u32 edma_enabled_mask;
931 	__u16 number_of_user_interrupts;
932 	__u8 reserved1;
933 	__u8 reserved2;
934 	__u64 reserved3;
935 	__u64 device_mem_alloc_default_page_size;
936 	__u64 reserved4;
937 	__u64 reserved5;
938 	__u32 reserved6;
939 	__u8 reserved7;
940 	__u8 revision_id;
941 	__u16 tpc_interrupt_id;
942 	__u32 rotator_enabled_mask;
943 	__u32 reserved9;
944 	__u64 engine_core_interrupt_reg_addr;
945 	__u64 reserved_dram_size;
946 };
947 
948 struct hl_info_dram_usage {
949 	__u64 dram_free_mem;
950 	__u64 ctx_dram_mem;
951 };
952 
953 #define HL_BUSY_ENGINES_MASK_EXT_SIZE	4
954 
955 struct hl_info_hw_idle {
956 	__u32 is_idle;
957 	/*
958 	 * Bitmask of busy engines.
959 	 * Bits definition is according to `enum <chip>_engine_id'.
960 	 */
961 	__u32 busy_engines_mask;
962 
963 	/*
964 	 * Extended Bitmask of busy engines.
965 	 * Bits definition is according to `enum <chip>_engine_id'.
966 	 */
967 	__u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
968 };
969 
970 struct hl_info_device_status {
971 	__u32 status;
972 	__u32 pad;
973 };
974 
975 struct hl_info_device_utilization {
976 	__u32 utilization;
977 	__u32 pad;
978 };
979 
980 struct hl_info_clk_rate {
981 	__u32 cur_clk_rate_mhz;
982 	__u32 max_clk_rate_mhz;
983 };
984 
985 struct hl_info_reset_count {
986 	__u32 hard_reset_cnt;
987 	__u32 soft_reset_cnt;
988 };
989 
990 struct hl_info_time_sync {
991 	__u64 device_time;
992 	__u64 host_time;
993 };
994 
995 /**
996  * struct hl_info_pci_counters - pci counters
997  * @rx_throughput: PCI rx throughput KBps
998  * @tx_throughput: PCI tx throughput KBps
999  * @replay_cnt: PCI replay counter
1000  */
1001 struct hl_info_pci_counters {
1002 	__u64 rx_throughput;
1003 	__u64 tx_throughput;
1004 	__u64 replay_cnt;
1005 };
1006 
1007 enum hl_clk_throttling_type {
1008 	HL_CLK_THROTTLE_TYPE_POWER,
1009 	HL_CLK_THROTTLE_TYPE_THERMAL,
1010 	HL_CLK_THROTTLE_TYPE_MAX
1011 };
1012 
1013 /* clk_throttling_reason masks */
1014 #define HL_CLK_THROTTLE_POWER		(1 << HL_CLK_THROTTLE_TYPE_POWER)
1015 #define HL_CLK_THROTTLE_THERMAL		(1 << HL_CLK_THROTTLE_TYPE_THERMAL)
1016 
1017 /**
1018  * struct hl_info_clk_throttle - clock throttling reason
1019  * @clk_throttling_reason: each bit represents a clk throttling reason
1020  * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
1021  * @clk_throttling_duration_ns: the clock throttle time in nanosec
1022  */
1023 struct hl_info_clk_throttle {
1024 	__u32 clk_throttling_reason;
1025 	__u32 pad;
1026 	__u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
1027 	__u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
1028 };
1029 
1030 /**
1031  * struct hl_info_energy - device energy information
1032  * @total_energy_consumption: total device energy consumption
1033  */
1034 struct hl_info_energy {
1035 	__u64 total_energy_consumption;
1036 };
1037 
1038 #define HL_PLL_NUM_OUTPUTS 4
1039 
1040 struct hl_pll_frequency_info {
1041 	__u16 output[HL_PLL_NUM_OUTPUTS];
1042 };
1043 
1044 /**
1045  * struct hl_open_stats_info - device open statistics information
1046  * @open_counter: ever growing counter, increased on each successful dev open
1047  * @last_open_period_ms: duration (ms) device was open last time
1048  * @is_compute_ctx_active: Whether there is an active compute context executing
1049  * @compute_ctx_in_release: true if the current compute context is being released
1050  */
1051 struct hl_open_stats_info {
1052 	__u64 open_counter;
1053 	__u64 last_open_period_ms;
1054 	__u8 is_compute_ctx_active;
1055 	__u8 compute_ctx_in_release;
1056 	__u8 pad[6];
1057 };
1058 
1059 /**
1060  * struct hl_power_info - power information
1061  * @power: power consumption
1062  */
1063 struct hl_power_info {
1064 	__u64 power;
1065 };
1066 
1067 /**
1068  * struct hl_info_sync_manager - sync manager information
1069  * @first_available_sync_object: first available sob
1070  * @first_available_monitor: first available monitor
1071  * @first_available_cq: first available cq
1072  */
1073 struct hl_info_sync_manager {
1074 	__u32 first_available_sync_object;
1075 	__u32 first_available_monitor;
1076 	__u32 first_available_cq;
1077 	__u32 reserved;
1078 };
1079 
1080 /**
1081  * struct hl_info_cs_counters - command submission counters
1082  * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1083  * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1084  * @total_parsing_drop_cnt: total dropped due to error in packet parsing
1085  * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1086  * @total_queue_full_drop_cnt: total dropped due to queue full
1087  * @ctx_queue_full_drop_cnt: context dropped due to queue full
1088  * @total_device_in_reset_drop_cnt: total dropped due to device in reset
1089  * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1090  * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1091  * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1092  * @total_validation_drop_cnt: total dropped due to validation error
1093  * @ctx_validation_drop_cnt: context dropped due to validation error
1094  */
1095 struct hl_info_cs_counters {
1096 	__u64 total_out_of_mem_drop_cnt;
1097 	__u64 ctx_out_of_mem_drop_cnt;
1098 	__u64 total_parsing_drop_cnt;
1099 	__u64 ctx_parsing_drop_cnt;
1100 	__u64 total_queue_full_drop_cnt;
1101 	__u64 ctx_queue_full_drop_cnt;
1102 	__u64 total_device_in_reset_drop_cnt;
1103 	__u64 ctx_device_in_reset_drop_cnt;
1104 	__u64 total_max_cs_in_flight_drop_cnt;
1105 	__u64 ctx_max_cs_in_flight_drop_cnt;
1106 	__u64 total_validation_drop_cnt;
1107 	__u64 ctx_validation_drop_cnt;
1108 };
1109 
1110 /**
1111  * struct hl_info_last_err_open_dev_time - last error boot information.
1112  * @timestamp: timestamp of last time the device was opened and error occurred.
1113  */
1114 struct hl_info_last_err_open_dev_time {
1115 	__s64 timestamp;
1116 };
1117 
1118 /**
1119  * struct hl_info_cs_timeout_event - last CS timeout information.
1120  * @timestamp: timestamp when last CS timeout event occurred.
1121  * @seq: sequence number of last CS timeout event.
1122  */
1123 struct hl_info_cs_timeout_event {
1124 	__s64 timestamp;
1125 	__u64 seq;
1126 };
1127 
1128 #define HL_RAZWI_NA_ENG_ID U16_MAX
1129 #define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128
1130 #define HL_RAZWI_READ		BIT(0)
1131 #define HL_RAZWI_WRITE		BIT(1)
1132 #define HL_RAZWI_LBW		BIT(2)
1133 #define HL_RAZWI_HBW		BIT(3)
1134 #define HL_RAZWI_RR		BIT(4)
1135 #define HL_RAZWI_ADDR_DEC	BIT(5)
1136 
1137 /**
1138  * struct hl_info_razwi_event - razwi information.
1139  * @timestamp: timestamp of razwi.
1140  * @addr: address which accessing it caused razwi.
1141  * @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not
1142  *             have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible
1143  *             engines which caused the razwi, it will hold all of them.
1144  * @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication
1145  *                           might be common for several engines and there is no way to get the
1146  *                           exact engine. In this way, engine_id array will be filled with all
1147  *                           possible engines caused this razwi. Also, there might be possibility
1148  *                           in gaudi, where we don't indication on specific engine, in that case
1149  *                           the value of this parameter will be zero.
1150  * @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation
1151  *                                      HL_RAZWI_WRITE - razwi caused by write operation
1152  *                                      HL_RAZWI_LBW - razwi caused by lbw fabric transaction
1153  *                                      HL_RAZWI_HBW - razwi caused by hbw fabric transaction
1154  *                                      HL_RAZWI_RR - razwi caused by range register
1155  *                                      HL_RAZWI_ADDR_DEC - razwi caused by address decode error
1156  *         Note: this data is not supported by all asics, in that case the relevant bits will not
1157  *               be set.
1158  */
1159 struct hl_info_razwi_event {
1160 	__s64 timestamp;
1161 	__u64 addr;
1162 	__u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR];
1163 	__u16 num_of_possible_engines;
1164 	__u8 flags;
1165 	__u8 pad[5];
1166 };
1167 
1168 #define MAX_QMAN_STREAMS_INFO		4
1169 #define OPCODE_INFO_MAX_ADDR_SIZE	8
1170 /**
1171  * struct hl_info_undefined_opcode_event - info about last undefined opcode error
1172  * @timestamp: timestamp of the undefined opcode error
1173  * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1174  *                   entries. In case all streams array entries are
1175  *                   filled with values, it means the execution was in Lower-CP.
1176  * @cq_addr: the address of the current handled command buffer
1177  * @cq_size: the size of the current handled command buffer
1178  * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1179  *                       should be equal to 1 in case of undefined opcode
1180  *                       in Upper-CP (specific stream) and equal to 4 incase
1181  *                       of undefined opcode in Lower-CP.
1182  * @engine_id: engine-id that the error occurred on
1183  * @stream_id: the stream id the error occurred on. In case the stream equals to
1184  *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1185  */
1186 struct hl_info_undefined_opcode_event {
1187 	__s64 timestamp;
1188 	__u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1189 	__u64 cq_addr;
1190 	__u32 cq_size;
1191 	__u32 cb_addr_streams_len;
1192 	__u32 engine_id;
1193 	__u32 stream_id;
1194 };
1195 
1196 /**
1197  * struct hl_info_hw_err_event - info about HW error
1198  * @timestamp: timestamp of error occurrence
1199  * @event_id: The async event ID (specific to each device type).
1200  * @pad: size padding for u64 granularity.
1201  */
1202 struct hl_info_hw_err_event {
1203 	__s64 timestamp;
1204 	__u16 event_id;
1205 	__u16 pad[3];
1206 };
1207 
1208 /* FW error definition for event_type in struct hl_info_fw_err_event */
1209 enum hl_info_fw_err_type {
1210 	HL_INFO_FW_HEARTBEAT_ERR,
1211 	HL_INFO_FW_REPORTED_ERR,
1212 };
1213 
1214 /**
1215  * struct hl_info_fw_err_event - info about FW error
1216  * @timestamp: time-stamp of error occurrence
1217  * @err_type: The type of event as defined in hl_info_fw_err_type.
1218  * @event_id: The async event ID (specific to each device type, applicable only when event type is
1219  *             HL_INFO_FW_REPORTED_ERR).
1220  * @pad: size padding for u64 granularity.
1221  */
1222 struct hl_info_fw_err_event {
1223 	__s64 timestamp;
1224 	__u16 err_type;
1225 	__u16 event_id;
1226 	__u32 pad;
1227 };
1228 
1229 /**
1230  * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1231  * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1232  *                      (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1233  */
1234 struct hl_info_dev_memalloc_page_sizes {
1235 	__u64 page_order_bitmask;
1236 };
1237 
1238 #define SEC_PCR_DATA_BUF_SZ	256
1239 #define SEC_PCR_QUOTE_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1240 #define SEC_SIGNATURE_BUF_SZ	255	/* (256 - 1) 1 byte used for size */
1241 #define SEC_PUB_DATA_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1242 #define SEC_CERTIFICATE_BUF_SZ	2046	/* (2048 - 2) 2 bytes used for size */
1243 
1244 /*
1245  * struct hl_info_sec_attest - attestation report of the boot
1246  * @nonce: number only used once. random number provided by host. this also passed to the quote
1247  *         command as a qualifying data.
1248  * @pcr_quote_len: length of the attestation quote data (bytes)
1249  * @pub_data_len: length of the public data (bytes)
1250  * @certificate_len: length of the certificate (bytes)
1251  * @pcr_num_reg: number of PCR registers in the pcr_data array
1252  * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1253  * @quote_sig_len: length of the attestation report signature (bytes)
1254  * @pcr_data: raw values of the PCR registers
1255  * @pcr_quote: attestation report data structure
1256  * @quote_sig: signature structure of the attestation report
1257  * @public_data: public key for the signed attestation
1258  *		 (outPublic + name + qualifiedName)
1259  * @certificate: certificate for the attestation signing key
1260  */
1261 struct hl_info_sec_attest {
1262 	__u32 nonce;
1263 	__u16 pcr_quote_len;
1264 	__u16 pub_data_len;
1265 	__u16 certificate_len;
1266 	__u8 pcr_num_reg;
1267 	__u8 pcr_reg_len;
1268 	__u8 quote_sig_len;
1269 	__u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1270 	__u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1271 	__u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1272 	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1273 	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1274 	__u8 pad0[2];
1275 };
1276 
1277 /**
1278  * struct hl_page_fault_info - page fault information.
1279  * @timestamp: timestamp of page fault.
1280  * @addr: address which accessing it caused page fault.
1281  * @engine_id: engine id which caused the page fault, supported only in gaudi3.
1282  */
1283 struct hl_page_fault_info {
1284 	__s64 timestamp;
1285 	__u64 addr;
1286 	__u16 engine_id;
1287 	__u8 pad[6];
1288 };
1289 
1290 /**
1291  * struct hl_user_mapping - user mapping information.
1292  * @dev_va: device virtual address.
1293  * @size: virtual address mapping size.
1294  */
1295 struct hl_user_mapping {
1296 	__u64 dev_va;
1297 	__u64 size;
1298 };
1299 
1300 enum gaudi_dcores {
1301 	HL_GAUDI_WS_DCORE,
1302 	HL_GAUDI_WN_DCORE,
1303 	HL_GAUDI_EN_DCORE,
1304 	HL_GAUDI_ES_DCORE
1305 };
1306 
1307 /**
1308  * struct hl_info_args - Main structure to retrieve device related information.
1309  * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1310  *                  mentioned in @op.
1311  * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1312  *               limits how many bytes the kernel can write. For hw_events array, the size should be
1313  *               hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1314  * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1315  * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1316  * @ctx_id: Context ID of the user. Currently not in use.
1317  * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1318  *             resolution. Currently not in use.
1319  * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1320  * @eventfd: event file descriptor for event notifications.
1321  * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1322  *                           driver. It is possible for the user to allocate buffer larger than
1323  *                           needed, hence updating this variable so user will know the exact amount
1324  *                           of bytes copied by the kernel to the buffer.
1325  * @sec_attest_nonce: Nonce number used for attestation report.
1326  * @array_size: Number of array members copied to user buffer.
1327  *              Relevant for HL_INFO_USER_MAPPINGS info ioctl.
1328  * @fw_sub_opcode: generic requests sub opcodes.
1329  * @pad: Padding to 64 bit.
1330  */
1331 struct hl_info_args {
1332 	__u64 return_pointer;
1333 	__u32 return_size;
1334 	__u32 op;
1335 
1336 	union {
1337 		__u32 dcore_id;
1338 		__u32 ctx_id;
1339 		__u32 period_ms;
1340 		__u32 pll_index;
1341 		__u32 eventfd;
1342 		__u32 user_buffer_actual_size;
1343 		__u32 sec_attest_nonce;
1344 		__u32 array_size;
1345 		__u32 fw_sub_opcode;
1346 	};
1347 
1348 	__u32 pad;
1349 };
1350 
1351 /* Opcode to create a new command buffer */
1352 #define HL_CB_OP_CREATE		0
1353 /* Opcode to destroy previously created command buffer */
1354 #define HL_CB_OP_DESTROY	1
1355 /* Opcode to retrieve information about a command buffer */
1356 #define HL_CB_OP_INFO		2
1357 
1358 /* 2MB minus 32 bytes for 2xMSG_PROT */
1359 #define HL_MAX_CB_SIZE		(0x200000 - 32)
1360 
1361 /* Indicates whether the command buffer should be mapped to the device's MMU */
1362 #define HL_CB_FLAGS_MAP			0x1
1363 
1364 /* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1365 #define HL_CB_FLAGS_GET_DEVICE_VA	0x2
1366 
1367 struct hl_cb_in {
1368 	/* Handle of CB or 0 if we want to create one */
1369 	__u64 cb_handle;
1370 	/* HL_CB_OP_* */
1371 	__u32 op;
1372 
1373 	/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1374 	 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
1375 	 */
1376 	__u32 cb_size;
1377 
1378 	/* Context ID - Currently not in use */
1379 	__u32 ctx_id;
1380 	/* HL_CB_FLAGS_* */
1381 	__u32 flags;
1382 };
1383 
1384 struct hl_cb_out {
1385 	union {
1386 		/* Handle of CB */
1387 		__u64 cb_handle;
1388 
1389 		union {
1390 			/* Information about CB */
1391 			struct {
1392 				/* Usage count of CB */
1393 				__u32 usage_cnt;
1394 				__u32 pad;
1395 			};
1396 
1397 			/* CB mapped address to device MMU */
1398 			__u64 device_va;
1399 		};
1400 	};
1401 };
1402 
1403 union hl_cb_args {
1404 	struct hl_cb_in in;
1405 	struct hl_cb_out out;
1406 };
1407 
1408 /* HL_CS_CHUNK_FLAGS_ values
1409  *
1410  * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1411  *      Indicates if the CB was allocated and mapped by userspace
1412  *      (relevant to greco and above). User allocated CB is a command buffer,
1413  *      allocated by the user, via malloc (or similar). After allocating the
1414  *      CB, the user invokes - “memory ioctl” to map the user memory into a
1415  *      device virtual address. The user provides this address via the
1416  *      cb_handle field. The interface provides the ability to create a
1417  *      large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1418  *      increases the PCI-DMA queues throughput. This CB allocation method
1419  *      also reduces the use of Linux DMA-able memory pool. Which are limited
1420  *      and used by other Linux sub-systems.
1421  */
1422 #define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1423 
1424 /*
1425  * This structure size must always be fixed to 64-bytes for backward
1426  * compatibility
1427  */
1428 struct hl_cs_chunk {
1429 	union {
1430 		/* Goya/Gaudi:
1431 		 * For external queue, this represents a Handle of CB on the
1432 		 * Host.
1433 		 * For internal queue in Goya, this represents an SRAM or
1434 		 * a DRAM address of the internal CB. In Gaudi, this might also
1435 		 * represent a mapped host address of the CB.
1436 		 *
1437 		 * Greco onwards:
1438 		 * For H/W queue, this represents either a Handle of CB on the
1439 		 * Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1440 		 *
1441 		 * A mapped host address is in the device address space, after
1442 		 * a host address was mapped by the device MMU.
1443 		 */
1444 		__u64 cb_handle;
1445 
1446 		/* Relevant only when HL_CS_FLAGS_WAIT or
1447 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1448 		 * This holds address of array of u64 values that contain
1449 		 * signal CS sequence numbers. The wait described by
1450 		 * this job will listen on all those signals
1451 		 * (wait event per signal)
1452 		 */
1453 		__u64 signal_seq_arr;
1454 
1455 		/*
1456 		 * Relevant only when HL_CS_FLAGS_WAIT or
1457 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1458 		 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
1459 		 * This is the CS sequence which has the encapsulated signals.
1460 		 */
1461 		__u64 encaps_signal_seq;
1462 	};
1463 
1464 	/* Index of queue to put the CB on */
1465 	__u32 queue_index;
1466 
1467 	union {
1468 		/*
1469 		 * Size of command buffer with valid packets
1470 		 * Can be smaller then actual CB size
1471 		 */
1472 		__u32 cb_size;
1473 
1474 		/* Relevant only when HL_CS_FLAGS_WAIT or
1475 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1476 		 * Number of entries in signal_seq_arr
1477 		 */
1478 		__u32 num_signal_seq_arr;
1479 
1480 		/* Relevant only when HL_CS_FLAGS_WAIT or
1481 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1482 		 * with HL_CS_FLAGS_ENCAP_SIGNALS
1483 		 * This set the signals range that the user want to wait for
1484 		 * out of the whole reserved signals range.
1485 		 * e.g if the signals range is 20, and user don't want
1486 		 * to wait for signal 8, so he set this offset to 7, then
1487 		 * he call the API again with 9 and so on till 20.
1488 		 */
1489 		__u32 encaps_signal_offset;
1490 	};
1491 
1492 	/* HL_CS_CHUNK_FLAGS_* */
1493 	__u32 cs_chunk_flags;
1494 
1495 	/* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1496 	 * This holds the collective engine ID. The wait described by this job
1497 	 * will sync with this engine and with all NICs before completion.
1498 	 */
1499 	__u32 collective_engine_id;
1500 
1501 	/* Align structure to 64 bytes */
1502 	__u32 pad[10];
1503 };
1504 
1505 /* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1506 #define HL_CS_FLAGS_FORCE_RESTORE		0x1
1507 #define HL_CS_FLAGS_SIGNAL			0x2
1508 #define HL_CS_FLAGS_WAIT			0x4
1509 #define HL_CS_FLAGS_COLLECTIVE_WAIT		0x8
1510 
1511 #define HL_CS_FLAGS_TIMESTAMP			0x20
1512 #define HL_CS_FLAGS_STAGED_SUBMISSION		0x40
1513 #define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST	0x80
1514 #define HL_CS_FLAGS_STAGED_SUBMISSION_LAST	0x100
1515 #define HL_CS_FLAGS_CUSTOM_TIMEOUT		0x200
1516 #define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT	0x400
1517 
1518 /*
1519  * The encapsulated signals CS is merged into the existing CS ioctls.
1520  * In order to use this feature need to follow the below procedure:
1521  * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1522  *    the output of this API will be the SOB offset from CFG_BASE.
1523  *    this address will be used to patch CB cmds to do the signaling for this
1524  *    SOB by incrementing it's value.
1525  *    for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1526  *    CS type, note that this might fail if out-of-sync happened to the SOB
1527  *    value, in case other signaling request to the same SOB occurred between
1528  *    reserve-unreserve calls.
1529  * 2. Use the staged CS to do the encapsulated signaling jobs.
1530  *    use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1531  *    along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1532  *    field. This offset allows app to wait on part of the reserved signals.
1533  * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1534  *    to wait for the encapsulated signals.
1535  */
1536 #define HL_CS_FLAGS_ENCAP_SIGNALS		0x800
1537 #define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY	0x1000
1538 #define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY	0x2000
1539 
1540 /*
1541  * The engine cores CS is merged into the existing CS ioctls.
1542  * Use it to control the engine cores mode.
1543  */
1544 #define HL_CS_FLAGS_ENGINE_CORE_COMMAND		0x4000
1545 
1546 /*
1547  * The flush HBW PCI writes is merged into the existing CS ioctls.
1548  * Used to flush all HBW PCI writes.
1549  * This is a blocking operation and for this reason the user shall not use
1550  * the return sequence number (which will be invalid anyway)
1551  */
1552 #define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES	0x8000
1553 
1554 /*
1555  * The engines CS is merged into the existing CS ioctls.
1556  * Use it to control engines modes.
1557  */
1558 #define HL_CS_FLAGS_ENGINES_COMMAND		0x10000
1559 
1560 #define HL_CS_STATUS_SUCCESS		0
1561 
1562 #define HL_MAX_JOBS_PER_CS		512
1563 
1564 /*
1565  * enum hl_engine_command - engine command
1566  *
1567  * @HL_ENGINE_CORE_HALT: engine core halt
1568  * @HL_ENGINE_CORE_RUN: engine core run
1569  * @HL_ENGINE_STALL: user engine/s stall
1570  * @HL_ENGINE_RESUME: user engine/s resume
1571  */
1572 enum hl_engine_command {
1573 	HL_ENGINE_CORE_HALT = 1,
1574 	HL_ENGINE_CORE_RUN = 2,
1575 	HL_ENGINE_STALL = 3,
1576 	HL_ENGINE_RESUME = 4,
1577 	HL_ENGINE_COMMAND_MAX
1578 };
1579 
1580 struct hl_cs_in {
1581 
1582 	union {
1583 		struct {
1584 			/* this holds address of array of hl_cs_chunk for restore phase */
1585 			__u64 chunks_restore;
1586 
1587 			/* holds address of array of hl_cs_chunk for execution phase */
1588 			__u64 chunks_execute;
1589 		};
1590 
1591 		/* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1592 		struct {
1593 			/* this holds address of array of uint32 for engine_cores */
1594 			__u64 engine_cores;
1595 
1596 			/* number of engine cores in engine_cores array */
1597 			__u32 num_engine_cores;
1598 
1599 			/* the core command to be sent towards engine cores */
1600 			__u32 core_command;
1601 		};
1602 
1603 		/* Valid only when HL_CS_FLAGS_ENGINES_COMMAND is set */
1604 		struct {
1605 			/* this holds address of array of uint32 for engines */
1606 			__u64 engines;
1607 
1608 			/* number of engines in engines array */
1609 			__u32 num_engines;
1610 
1611 			/* the engine command to be sent towards engines */
1612 			__u32 engine_command;
1613 		};
1614 	};
1615 
1616 	union {
1617 		/*
1618 		 * Sequence number of a staged submission CS
1619 		 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1620 		 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1621 		 */
1622 		__u64 seq;
1623 
1624 		/*
1625 		 * Encapsulated signals handle id
1626 		 * Valid for two flows:
1627 		 * 1. CS with encapsulated signals:
1628 		 *    when HL_CS_FLAGS_STAGED_SUBMISSION and
1629 		 *    HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1630 		 *    and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1631 		 * 2. unreserve signals:
1632 		 *    valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1633 		 */
1634 		__u32 encaps_sig_handle_id;
1635 
1636 		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1637 		struct {
1638 			/* Encapsulated signals number */
1639 			__u32 encaps_signals_count;
1640 
1641 			/* Encapsulated signals queue index (stream) */
1642 			__u32 encaps_signals_q_idx;
1643 		};
1644 	};
1645 
1646 	/* Number of chunks in restore phase array. Maximum number is
1647 	 * HL_MAX_JOBS_PER_CS
1648 	 */
1649 	__u32 num_chunks_restore;
1650 
1651 	/* Number of chunks in execution array. Maximum number is
1652 	 * HL_MAX_JOBS_PER_CS
1653 	 */
1654 	__u32 num_chunks_execute;
1655 
1656 	/* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1657 	 * is set
1658 	 */
1659 	__u32 timeout;
1660 
1661 	/* HL_CS_FLAGS_* */
1662 	__u32 cs_flags;
1663 
1664 	/* Context ID - Currently not in use */
1665 	__u32 ctx_id;
1666 	__u8 pad[4];
1667 };
1668 
1669 struct hl_cs_out {
1670 	union {
1671 		/*
1672 		 * seq holds the sequence number of the CS to pass to wait
1673 		 * ioctl. All values are valid except for 0 and ULLONG_MAX
1674 		 */
1675 		__u64 seq;
1676 
1677 		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1678 		struct {
1679 			/* This is the reserved signal handle id */
1680 			__u32 handle_id;
1681 
1682 			/* This is the signals count */
1683 			__u32 count;
1684 		};
1685 	};
1686 
1687 	/* HL_CS_STATUS */
1688 	__u32 status;
1689 
1690 	/*
1691 	 * SOB base address offset
1692 	 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1693 	 */
1694 	__u32 sob_base_addr_offset;
1695 
1696 	/*
1697 	 * Count of completed signals in SOB before current signal submission.
1698 	 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1699 	 * or HL_CS_FLAGS_SIGNAL is set
1700 	 */
1701 	__u16 sob_count_before_submission;
1702 	__u16 pad[3];
1703 };
1704 
1705 union hl_cs_args {
1706 	struct hl_cs_in in;
1707 	struct hl_cs_out out;
1708 };
1709 
1710 #define HL_WAIT_CS_FLAGS_INTERRUPT		0x2
1711 #define HL_WAIT_CS_FLAGS_INTERRUPT_MASK		0xFFF00000
1712 #define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT	0xFFF00000
1713 #define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT	0xFFE00000
1714 #define HL_WAIT_CS_FLAGS_MULTI_CS		0x4
1715 #define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ	0x10
1716 #define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT	0x20
1717 
1718 #define HL_WAIT_MULTI_CS_LIST_MAX_LEN	32
1719 
1720 struct hl_wait_cs_in {
1721 	union {
1722 		struct {
1723 			/*
1724 			 * In case of wait_cs holds the CS sequence number.
1725 			 * In case of wait for multi CS hold a user pointer to
1726 			 * an array of CS sequence numbers
1727 			 */
1728 			__u64 seq;
1729 			/* Absolute timeout to wait for command submission
1730 			 * in microseconds
1731 			 */
1732 			__u64 timeout_us;
1733 		};
1734 
1735 		struct {
1736 			union {
1737 				/* User address for completion comparison.
1738 				 * upon interrupt, driver will compare the value pointed
1739 				 * by this address with the supplied target value.
1740 				 * in order not to perform any comparison, set address
1741 				 * to all 1s.
1742 				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1743 				 */
1744 				__u64 addr;
1745 
1746 				/* cq_counters_handle to a kernel mapped cb which contains
1747 				 * cq counters.
1748 				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1749 				 */
1750 				__u64 cq_counters_handle;
1751 			};
1752 
1753 			/* Target value for completion comparison */
1754 			__u64 target;
1755 		};
1756 	};
1757 
1758 	/* Context ID - Currently not in use */
1759 	__u32 ctx_id;
1760 
1761 	/* HL_WAIT_CS_FLAGS_*
1762 	 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1763 	 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1764 	 *
1765 	 * in order to wait for any CQ interrupt, set interrupt value to
1766 	 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1767 	 *
1768 	 * in order to wait for any decoder interrupt, set interrupt value to
1769 	 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1770 	 */
1771 	__u32 flags;
1772 
1773 	union {
1774 		struct {
1775 			/* Multi CS API info- valid entries in multi-CS array */
1776 			__u8 seq_arr_len;
1777 			__u8 pad[7];
1778 		};
1779 
1780 		/* Absolute timeout to wait for an interrupt in microseconds.
1781 		 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1782 		 */
1783 		__u64 interrupt_timeout_us;
1784 	};
1785 
1786 	/*
1787 	 * cq counter offset inside the counters cb pointed by cq_counters_handle above.
1788 	 * upon interrupt, driver will compare the value pointed
1789 	 * by this address (cq_counters_handle + cq_counters_offset)
1790 	 * with the supplied target value.
1791 	 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1792 	 */
1793 	__u64 cq_counters_offset;
1794 
1795 	/*
1796 	 * Timestamp_handle timestamps buffer handle.
1797 	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1798 	 */
1799 	__u64 timestamp_handle;
1800 
1801 	/*
1802 	 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1803 	 * upon interrupt, if the cq reached the target value then driver will write
1804 	 * timestamp to this offset.
1805 	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1806 	 */
1807 	__u64 timestamp_offset;
1808 };
1809 
1810 #define HL_WAIT_CS_STATUS_COMPLETED	0
1811 #define HL_WAIT_CS_STATUS_BUSY		1
1812 #define HL_WAIT_CS_STATUS_TIMEDOUT	2
1813 #define HL_WAIT_CS_STATUS_ABORTED	3
1814 
1815 #define HL_WAIT_CS_STATUS_FLAG_GONE		0x1
1816 #define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD	0x2
1817 
1818 struct hl_wait_cs_out {
1819 	/* HL_WAIT_CS_STATUS_* */
1820 	__u32 status;
1821 	/* HL_WAIT_CS_STATUS_FLAG* */
1822 	__u32 flags;
1823 	/*
1824 	 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1825 	 * for wait_cs: timestamp of CS completion
1826 	 * for wait_multi_cs: timestamp of FIRST CS completion
1827 	 */
1828 	__s64 timestamp_nsec;
1829 	/* multi CS completion bitmap */
1830 	__u32 cs_completion_map;
1831 	__u32 pad;
1832 };
1833 
1834 union hl_wait_cs_args {
1835 	struct hl_wait_cs_in in;
1836 	struct hl_wait_cs_out out;
1837 };
1838 
1839 /* Opcode to allocate device memory */
1840 #define HL_MEM_OP_ALLOC			0
1841 
1842 /* Opcode to free previously allocated device memory */
1843 #define HL_MEM_OP_FREE			1
1844 
1845 /* Opcode to map host and device memory */
1846 #define HL_MEM_OP_MAP			2
1847 
1848 /* Opcode to unmap previously mapped host and device memory */
1849 #define HL_MEM_OP_UNMAP			3
1850 
1851 /* Opcode to map a hw block */
1852 #define HL_MEM_OP_MAP_BLOCK		4
1853 
1854 /* Opcode to create DMA-BUF object for an existing device memory allocation
1855  * and to export an FD of that DMA-BUF back to the caller
1856  */
1857 #define HL_MEM_OP_EXPORT_DMABUF_FD	5
1858 
1859 /* Opcode to create timestamps pool for user interrupts registration support
1860  * The memory will be allocated by the kernel driver, A timestamp buffer which the user
1861  * will get handle to it for mmap, and another internal buffer used by the
1862  * driver for registration management
1863  * The memory will be freed when the user closes the file descriptor(ctx close)
1864  */
1865 #define HL_MEM_OP_TS_ALLOC		6
1866 
1867 /* Memory flags */
1868 #define HL_MEM_CONTIGUOUS	0x1
1869 #define HL_MEM_SHARED		0x2
1870 #define HL_MEM_USERPTR		0x4
1871 #define HL_MEM_FORCE_HINT	0x8
1872 #define HL_MEM_PREFETCH		0x40
1873 
1874 /**
1875  * structure hl_mem_in - structure that handle input args for memory IOCTL
1876  * @union arg: union of structures to be used based on the input operation
1877  * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1878  * @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1879  *         For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1880  * @ctx_id: context ID - currently not in use.
1881  * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1882  */
1883 struct hl_mem_in {
1884 	union {
1885 		/**
1886 		 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1887 		 * @mem_size: memory size to allocate
1888 		 * @page_size: page size to use on allocation. when the value is 0 the default page
1889 		 *             size will be taken.
1890 		 */
1891 		struct {
1892 			__u64 mem_size;
1893 			__u64 page_size;
1894 		} alloc;
1895 
1896 		/**
1897 		 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1898 		 * @handle: handle returned from HL_MEM_OP_ALLOC
1899 		 */
1900 		struct {
1901 			__u64 handle;
1902 		} free;
1903 
1904 		/**
1905 		 * structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1906 		 * @hint_addr: requested virtual address of mapped memory.
1907 		 *             the driver will try to map the requested region to this hint
1908 		 *             address, as long as the address is valid and not already mapped.
1909 		 *             the user should check the returned address of the IOCTL to make
1910 		 *             sure he got the hint address.
1911 		 *             passing 0 here means that the driver will choose the address itself.
1912 		 * @handle: handle returned from HL_MEM_OP_ALLOC.
1913 		 */
1914 		struct {
1915 			__u64 hint_addr;
1916 			__u64 handle;
1917 		} map_device;
1918 
1919 		/**
1920 		 * structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1921 		 * @host_virt_addr: address of allocated host memory.
1922 		 * @hint_addr: requested virtual address of mapped memory.
1923 		 *             the driver will try to map the requested region to this hint
1924 		 *             address, as long as the address is valid and not already mapped.
1925 		 *             the user should check the returned address of the IOCTL to make
1926 		 *             sure he got the hint address.
1927 		 *             passing 0 here means that the driver will choose the address itself.
1928 		 * @size: size of allocated host memory.
1929 		 */
1930 		struct {
1931 			__u64 host_virt_addr;
1932 			__u64 hint_addr;
1933 			__u64 mem_size;
1934 		} map_host;
1935 
1936 		/**
1937 		 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1938 		 * @block_addr:HW block address to map, a handle and size will be returned
1939 		 *             to the user and will be used to mmap the relevant block.
1940 		 *             only addresses from configuration space are allowed.
1941 		 */
1942 		struct {
1943 			__u64 block_addr;
1944 		} map_block;
1945 
1946 		/**
1947 		 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1948 		 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1949 		 */
1950 		struct {
1951 			__u64 device_virt_addr;
1952 		} unmap;
1953 
1954 		/**
1955 		 * structure for exporting DMABUF object (used with
1956 		 * the HL_MEM_OP_EXPORT_DMABUF_FD op)
1957 		 * @addr: for Gaudi1, the driver expects a physical address
1958 		 *        inside the device's DRAM. this is because in Gaudi1
1959 		 *        we don't have MMU that covers the device's DRAM.
1960 		 *        for all other ASICs, the driver expects a device
1961 		 *        virtual address that represents the start address of
1962 		 *        a mapped DRAM memory area inside the device.
1963 		 *        the address must be the same as was received from the
1964 		 *        driver during a previous HL_MEM_OP_MAP operation.
1965 		 * @mem_size: size of memory to export.
1966 		 * @offset: for Gaudi1, this value must be 0. For all other ASICs,
1967 		 *          the driver expects an offset inside of the memory area
1968 		 *          describe by addr. the offset represents the start
1969 		 *          address of that the exported dma-buf object describes.
1970 		 */
1971 		struct {
1972 			__u64 addr;
1973 			__u64 mem_size;
1974 			__u64 offset;
1975 		} export_dmabuf_fd;
1976 	};
1977 
1978 	__u32 op;
1979 	__u32 flags;
1980 	__u32 ctx_id;
1981 	__u32 num_of_elements;
1982 };
1983 
1984 struct hl_mem_out {
1985 	union {
1986 		/*
1987 		 * Used for HL_MEM_OP_MAP as the virtual address that was
1988 		 * assigned in the device VA space.
1989 		 * A value of 0 means the requested operation failed.
1990 		 */
1991 		__u64 device_virt_addr;
1992 
1993 		/*
1994 		 * Used in HL_MEM_OP_ALLOC
1995 		 * This is the assigned handle for the allocated memory
1996 		 */
1997 		__u64 handle;
1998 
1999 		struct {
2000 			/*
2001 			 * Used in HL_MEM_OP_MAP_BLOCK.
2002 			 * This is the assigned handle for the mapped block
2003 			 */
2004 			__u64 block_handle;
2005 
2006 			/*
2007 			 * Used in HL_MEM_OP_MAP_BLOCK
2008 			 * This is the size of the mapped block
2009 			 */
2010 			__u32 block_size;
2011 
2012 			__u32 pad;
2013 		};
2014 
2015 		/* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
2016 		 * DMA-BUF object that was created to describe a memory
2017 		 * allocation on the device's memory space. The FD should be
2018 		 * passed to the importer driver
2019 		 */
2020 		__s32 fd;
2021 	};
2022 };
2023 
2024 union hl_mem_args {
2025 	struct hl_mem_in in;
2026 	struct hl_mem_out out;
2027 };
2028 
2029 #define HL_DEBUG_MAX_AUX_VALUES		10
2030 
2031 struct hl_debug_params_etr {
2032 	/* Address in memory to allocate buffer */
2033 	__u64 buffer_address;
2034 
2035 	/* Size of buffer to allocate */
2036 	__u64 buffer_size;
2037 
2038 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2039 	__u32 sink_mode;
2040 	__u32 pad;
2041 };
2042 
2043 struct hl_debug_params_etf {
2044 	/* Address in memory to allocate buffer */
2045 	__u64 buffer_address;
2046 
2047 	/* Size of buffer to allocate */
2048 	__u64 buffer_size;
2049 
2050 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2051 	__u32 sink_mode;
2052 	__u32 pad;
2053 };
2054 
2055 struct hl_debug_params_stm {
2056 	/* Two bit masks for HW event and Stimulus Port */
2057 	__u64 he_mask;
2058 	__u64 sp_mask;
2059 
2060 	/* Trace source ID */
2061 	__u32 id;
2062 
2063 	/* Frequency for the timestamp register */
2064 	__u32 frequency;
2065 };
2066 
2067 struct hl_debug_params_bmon {
2068 	/* Two address ranges that the user can request to filter */
2069 	__u64 start_addr0;
2070 	__u64 addr_mask0;
2071 
2072 	__u64 start_addr1;
2073 	__u64 addr_mask1;
2074 
2075 	/* Capture window configuration */
2076 	__u32 bw_win;
2077 	__u32 win_capture;
2078 
2079 	/* Trace source ID */
2080 	__u32 id;
2081 
2082 	/* Control register */
2083 	__u32 control;
2084 
2085 	/* Two more address ranges that the user can request to filter */
2086 	__u64 start_addr2;
2087 	__u64 end_addr2;
2088 
2089 	__u64 start_addr3;
2090 	__u64 end_addr3;
2091 };
2092 
2093 struct hl_debug_params_spmu {
2094 	/* Event types selection */
2095 	__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
2096 
2097 	/* Number of event types selection */
2098 	__u32 event_types_num;
2099 
2100 	/* TRC configuration register values */
2101 	__u32 pmtrc_val;
2102 	__u32 trc_ctrl_host_val;
2103 	__u32 trc_en_host_val;
2104 };
2105 
2106 /* Opcode for ETR component */
2107 #define HL_DEBUG_OP_ETR		0
2108 /* Opcode for ETF component */
2109 #define HL_DEBUG_OP_ETF		1
2110 /* Opcode for STM component */
2111 #define HL_DEBUG_OP_STM		2
2112 /* Opcode for FUNNEL component */
2113 #define HL_DEBUG_OP_FUNNEL	3
2114 /* Opcode for BMON component */
2115 #define HL_DEBUG_OP_BMON	4
2116 /* Opcode for SPMU component */
2117 #define HL_DEBUG_OP_SPMU	5
2118 /* Opcode for timestamp (deprecated) */
2119 #define HL_DEBUG_OP_TIMESTAMP	6
2120 /* Opcode for setting the device into or out of debug mode. The enable
2121  * variable should be 1 for enabling debug mode and 0 for disabling it
2122  */
2123 #define HL_DEBUG_OP_SET_MODE	7
2124 
2125 struct hl_debug_args {
2126 	/*
2127 	 * Pointer to user input structure.
2128 	 * This field is relevant to specific opcodes.
2129 	 */
2130 	__u64 input_ptr;
2131 	/* Pointer to user output structure */
2132 	__u64 output_ptr;
2133 	/* Size of user input structure */
2134 	__u32 input_size;
2135 	/* Size of user output structure */
2136 	__u32 output_size;
2137 	/* HL_DEBUG_OP_* */
2138 	__u32 op;
2139 	/*
2140 	 * Register index in the component, taken from the debug_regs_index enum
2141 	 * in the various ASIC header files
2142 	 */
2143 	__u32 reg_idx;
2144 	/* Enable/disable */
2145 	__u32 enable;
2146 	/* Context ID - Currently not in use */
2147 	__u32 ctx_id;
2148 };
2149 
2150 /*
2151  * Various information operations such as:
2152  * - H/W IP information
2153  * - Current dram usage
2154  *
2155  * The user calls this IOCTL with an opcode that describes the required
2156  * information. The user should supply a pointer to a user-allocated memory
2157  * chunk, which will be filled by the driver with the requested information.
2158  *
2159  * The user supplies the maximum amount of size to copy into the user's memory,
2160  * in order to prevent data corruption in case of differences between the
2161  * definitions of structures in kernel and userspace, e.g. in case of old
2162  * userspace and new kernel driver
2163  */
2164 #define HL_IOCTL_INFO	\
2165 		_IOWR('H', 0x01, struct hl_info_args)
2166 
2167 /*
2168  * Command Buffer
2169  * - Request a Command Buffer
2170  * - Destroy a Command Buffer
2171  *
2172  * The command buffers are memory blocks that reside in DMA-able address
2173  * space and are physically contiguous so they can be accessed by the device
2174  * directly. They are allocated using the coherent DMA API.
2175  *
2176  * When creating a new CB, the IOCTL returns a handle of it, and the user-space
2177  * process needs to use that handle to mmap the buffer so it can access them.
2178  *
2179  * In some instances, the device must access the command buffer through the
2180  * device's MMU, and thus its memory should be mapped. In these cases, user can
2181  * indicate the driver that such a mapping is required.
2182  * The resulting device virtual address will be used internally by the driver,
2183  * and won't be returned to user.
2184  *
2185  */
2186 #define HL_IOCTL_CB		\
2187 		_IOWR('H', 0x02, union hl_cb_args)
2188 
2189 /*
2190  * Command Submission
2191  *
2192  * To submit work to the device, the user need to call this IOCTL with a set
2193  * of JOBS. That set of JOBS constitutes a CS object.
2194  * Each JOB will be enqueued on a specific queue, according to the user's input.
2195  * There can be more then one JOB per queue.
2196  *
2197  * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2198  * and a second set is for "execution" phase.
2199  * The JOBS on the "restore" phase are enqueued only after context-switch
2200  * (or if its the first CS for this context). The user can also order the
2201  * driver to run the "restore" phase explicitly
2202  *
2203  * Goya/Gaudi:
2204  * There are two types of queues - external and internal. External queues
2205  * are DMA queues which transfer data from/to the Host. All other queues are
2206  * internal. The driver will get completion notifications from the device only
2207  * on JOBS which are enqueued in the external queues.
2208  *
2209  * Greco onwards:
2210  * There is a single type of queue for all types of engines, either DMA engines
2211  * for transfers from/to the host or inside the device, or compute engines.
2212  * The driver will get completion notifications from the device for all queues.
2213  *
2214  * For jobs on external queues, the user needs to create command buffers
2215  * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2216  * internal queues, the user needs to prepare a "command buffer" with packets
2217  * on either the device SRAM/DRAM or the host, and give the device address of
2218  * that buffer to the CS ioctl.
2219  * For jobs on H/W queues both options of command buffers are valid.
2220  *
2221  * This IOCTL is asynchronous in regard to the actual execution of the CS. This
2222  * means it returns immediately after ALL the JOBS were enqueued on their
2223  * relevant queues. Therefore, the user mustn't assume the CS has been completed
2224  * or has even started to execute.
2225  *
2226  * Upon successful enqueue, the IOCTL returns a sequence number which the user
2227  * can use with the "Wait for CS" IOCTL to check whether the handle's CS
2228  * non-internal JOBS have been completed. Note that if the CS has internal JOBS
2229  * which can execute AFTER the external JOBS have finished, the driver might
2230  * report that the CS has finished executing BEFORE the internal JOBS have
2231  * actually finished executing.
2232  *
2233  * Even though the sequence number increments per CS, the user can NOT
2234  * automatically assume that if CS with sequence number N finished, then CS
2235  * with sequence number N-1 also finished. The user can make this assumption if
2236  * and only if CS N and CS N-1 are exactly the same (same CBs for the same
2237  * queues).
2238  */
2239 #define HL_IOCTL_CS			\
2240 		_IOWR('H', 0x03, union hl_cs_args)
2241 
2242 /*
2243  * Wait for Command Submission
2244  *
2245  * The user can call this IOCTL with a handle it received from the CS IOCTL
2246  * to wait until the handle's CS has finished executing. The user will wait
2247  * inside the kernel until the CS has finished or until the user-requested
2248  * timeout has expired.
2249  *
2250  * If the timeout value is 0, the driver won't sleep at all. It will check
2251  * the status of the CS and return immediately
2252  *
2253  * The return value of the IOCTL is a standard Linux error code. The possible
2254  * values are:
2255  *
2256  * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
2257  *             that the user process received
2258  * ETIMEDOUT - The CS has caused a timeout on the device
2259  * EIO       - The CS was aborted (usually because the device was reset)
2260  * ENODEV    - The device wants to do hard-reset (so user need to close FD)
2261  *
2262  * The driver also returns a custom define in case the IOCTL call returned 0.
2263  * The define can be one of the following:
2264  *
2265  * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
2266  * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
2267  * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
2268  *                                 (ETIMEDOUT)
2269  * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
2270  *                                 device was reset (EIO)
2271  */
2272 
2273 #define HL_IOCTL_WAIT_CS			\
2274 		_IOWR('H', 0x04, union hl_wait_cs_args)
2275 
2276 /*
2277  * Memory
2278  * - Map host memory to device MMU
2279  * - Unmap host memory from device MMU
2280  *
2281  * This IOCTL allows the user to map host memory to the device MMU
2282  *
2283  * For host memory, the IOCTL doesn't allocate memory. The user is supposed
2284  * to allocate the memory in user-space (malloc/new). The driver pins the
2285  * physical pages (up to the allowed limit by the OS), assigns a virtual
2286  * address in the device VA space and initializes the device MMU.
2287  *
2288  * There is an option for the user to specify the requested virtual address.
2289  *
2290  */
2291 #define HL_IOCTL_MEMORY		\
2292 		_IOWR('H', 0x05, union hl_mem_args)
2293 
2294 /*
2295  * Debug
2296  * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2297  *
2298  * This IOCTL allows the user to get debug traces from the chip.
2299  *
2300  * Before the user can send configuration requests of the various
2301  * debug/profile engines, it needs to set the device into debug mode.
2302  * This is because the debug/profile infrastructure is shared component in the
2303  * device and we can't allow multiple users to access it at the same time.
2304  *
2305  * Once a user set the device into debug mode, the driver won't allow other
2306  * users to "work" with the device, i.e. open a FD. If there are multiple users
2307  * opened on the device, the driver won't allow any user to debug the device.
2308  *
2309  * For each configuration request, the user needs to provide the register index
2310  * and essential data such as buffer address and size.
2311  *
2312  * Once the user has finished using the debug/profile engines, he should
2313  * set the device into non-debug mode, i.e. disable debug mode.
2314  *
2315  * The driver can decide to "kick out" the user if he abuses this interface.
2316  *
2317  */
2318 #define HL_IOCTL_DEBUG		\
2319 		_IOWR('H', 0x06, struct hl_debug_args)
2320 
2321 #define HL_COMMAND_START	0x01
2322 #define HL_COMMAND_END		0x07
2323 
2324 #endif /* HABANALABS_H_ */
2325