1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5
6 #include <linux/bitfield.h>
7 #include <linux/bits.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-buf.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/list.h>
15 #include <linux/math64.h>
16 #include <linux/mm.h>
17 #include <linux/moduleparam.h>
18 #include <linux/scatterlist.h>
19 #include <linux/spinlock.h>
20 #include <linux/srcu.h>
21 #include <linux/types.h>
22 #include <linux/uaccess.h>
23 #include <linux/wait.h>
24 #include <drm/drm_file.h>
25 #include <drm/drm_gem.h>
26 #include <drm/drm_prime.h>
27 #include <drm/drm_print.h>
28 #include <uapi/drm/qaic_accel.h>
29
30 #include "qaic.h"
31
32 #define SEM_VAL_MASK GENMASK_ULL(11, 0)
33 #define SEM_INDEX_MASK GENMASK_ULL(4, 0)
34 #define BULK_XFER BIT(3)
35 #define GEN_COMPLETION BIT(4)
36 #define INBOUND_XFER 1
37 #define OUTBOUND_XFER 2
38 #define REQHP_OFF 0x0 /* we read this */
39 #define REQTP_OFF 0x4 /* we write this */
40 #define RSPHP_OFF 0x8 /* we write this */
41 #define RSPTP_OFF 0xc /* we read this */
42
43 #define ENCODE_SEM(val, index, sync, cmd, flags) \
44 ({ \
45 FIELD_PREP(GENMASK(11, 0), (val)) | \
46 FIELD_PREP(GENMASK(20, 16), (index)) | \
47 FIELD_PREP(BIT(22), (sync)) | \
48 FIELD_PREP(GENMASK(26, 24), (cmd)) | \
49 FIELD_PREP(GENMASK(30, 29), (flags)) | \
50 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \
51 })
52 #define NUM_EVENTS 128
53 #define NUM_DELAYS 10
54
55 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
56 module_param(wait_exec_default_timeout_ms, uint, 0600);
57 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
58
59 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
60 module_param(datapath_poll_interval_us, uint, 0600);
61 MODULE_PARM_DESC(datapath_poll_interval_us,
62 "Amount of time to sleep between activity when datapath polling is enabled");
63
64 struct dbc_req {
65 /*
66 * A request ID is assigned to each memory handle going in DMA queue.
67 * As a single memory handle can enqueue multiple elements in DMA queue
68 * all of them will have the same request ID.
69 */
70 __le16 req_id;
71 /* Future use */
72 __u8 seq_id;
73 /*
74 * Special encoded variable
75 * 7 0 - Do not force to generate MSI after DMA is completed
76 * 1 - Force to generate MSI after DMA is completed
77 * 6:5 Reserved
78 * 4 1 - Generate completion element in the response queue
79 * 0 - No Completion Code
80 * 3 0 - DMA request is a Link list transfer
81 * 1 - DMA request is a Bulk transfer
82 * 2 Reserved
83 * 1:0 00 - No DMA transfer involved
84 * 01 - DMA transfer is part of inbound transfer
85 * 10 - DMA transfer has outbound transfer
86 * 11 - NA
87 */
88 __u8 cmd;
89 __le32 resv;
90 /* Source address for the transfer */
91 __le64 src_addr;
92 /* Destination address for the transfer */
93 __le64 dest_addr;
94 /* Length of transfer request */
95 __le32 len;
96 __le32 resv2;
97 /* Doorbell address */
98 __le64 db_addr;
99 /*
100 * Special encoded variable
101 * 7 1 - Doorbell(db) write
102 * 0 - No doorbell write
103 * 6:2 Reserved
104 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary
105 * 01 - 16 bit access, db address must be aligned to 16bit-boundary
106 * 10 - 8 bit access, db address must be aligned to 8bit-boundary
107 * 11 - Reserved
108 */
109 __u8 db_len;
110 __u8 resv3;
111 __le16 resv4;
112 /* 32 bit data written to doorbell address */
113 __le32 db_data;
114 /*
115 * Special encoded variable
116 * All the fields of sem_cmdX are passed from user and all are ORed
117 * together to form sem_cmd.
118 * 0:11 Semaphore value
119 * 15:12 Reserved
120 * 20:16 Semaphore index
121 * 21 Reserved
122 * 22 Semaphore Sync
123 * 23 Reserved
124 * 26:24 Semaphore command
125 * 28:27 Reserved
126 * 29 Semaphore DMA out bound sync fence
127 * 30 Semaphore DMA in bound sync fence
128 * 31 Enable semaphore command
129 */
130 __le32 sem_cmd0;
131 __le32 sem_cmd1;
132 __le32 sem_cmd2;
133 __le32 sem_cmd3;
134 } __packed;
135
136 struct dbc_rsp {
137 /* Request ID of the memory handle whose DMA transaction is completed */
138 __le16 req_id;
139 /* Status of the DMA transaction. 0 : Success otherwise failure */
140 __le16 status;
141 } __packed;
142
get_dbc_req_elem_size(void)143 inline int get_dbc_req_elem_size(void)
144 {
145 return sizeof(struct dbc_req);
146 }
147
get_dbc_rsp_elem_size(void)148 inline int get_dbc_rsp_elem_size(void)
149 {
150 return sizeof(struct dbc_rsp);
151 }
152
free_slice(struct kref * kref)153 static void free_slice(struct kref *kref)
154 {
155 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
156
157 list_del(&slice->slice);
158 drm_gem_object_put(&slice->bo->base);
159 sg_free_table(slice->sgt);
160 kfree(slice->sgt);
161 kfree(slice->reqs);
162 kfree(slice);
163 }
164
clone_range_of_sgt_for_slice(struct qaic_device * qdev,struct sg_table ** sgt_out,struct sg_table * sgt_in,u64 size,u64 offset)165 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
166 struct sg_table *sgt_in, u64 size, u64 offset)
167 {
168 int total_len, len, nents, offf = 0, offl = 0;
169 struct scatterlist *sg, *sgn, *sgf, *sgl;
170 struct sg_table *sgt;
171 int ret, j;
172
173 /* find out number of relevant nents needed for this mem */
174 total_len = 0;
175 sgf = NULL;
176 sgl = NULL;
177 nents = 0;
178
179 size = size ? size : PAGE_SIZE;
180 for_each_sgtable_dma_sg(sgt_in, sg, j) {
181 len = sg_dma_len(sg);
182
183 if (!len)
184 continue;
185 if (offset >= total_len && offset < total_len + len) {
186 sgf = sg;
187 offf = offset - total_len;
188 }
189 if (sgf)
190 nents++;
191 if (offset + size >= total_len &&
192 offset + size <= total_len + len) {
193 sgl = sg;
194 offl = offset + size - total_len;
195 break;
196 }
197 total_len += len;
198 }
199
200 if (!sgf || !sgl) {
201 ret = -EINVAL;
202 goto out;
203 }
204
205 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
206 if (!sgt) {
207 ret = -ENOMEM;
208 goto out;
209 }
210
211 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
212 if (ret)
213 goto free_sgt;
214
215 /* copy relevant sg node and fix page and length */
216 sgn = sgf;
217 for_each_sgtable_dma_sg(sgt, sg, j) {
218 memcpy(sg, sgn, sizeof(*sg));
219 if (sgn == sgf) {
220 sg_dma_address(sg) += offf;
221 sg_dma_len(sg) -= offf;
222 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
223 } else {
224 offf = 0;
225 }
226 if (sgn == sgl) {
227 sg_dma_len(sg) = offl - offf;
228 sg_set_page(sg, sg_page(sgn), offl - offf, offf);
229 sg_mark_end(sg);
230 break;
231 }
232 sgn = sg_next(sgn);
233 }
234
235 *sgt_out = sgt;
236 return ret;
237
238 free_sgt:
239 kfree(sgt);
240 out:
241 *sgt_out = NULL;
242 return ret;
243 }
244
encode_reqs(struct qaic_device * qdev,struct bo_slice * slice,struct qaic_attach_slice_entry * req)245 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
246 struct qaic_attach_slice_entry *req)
247 {
248 __le64 db_addr = cpu_to_le64(req->db_addr);
249 __le32 db_data = cpu_to_le32(req->db_data);
250 struct scatterlist *sg;
251 __u8 cmd = BULK_XFER;
252 int presync_sem;
253 u64 dev_addr;
254 __u8 db_len;
255 int i;
256
257 if (!slice->no_xfer)
258 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
259
260 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
261 return -EINVAL;
262
263 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
264 if (presync_sem > 1)
265 return -EINVAL;
266
267 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
268 req->sem2.presync << 2 | req->sem3.presync << 3;
269
270 switch (req->db_len) {
271 case 32:
272 db_len = BIT(7);
273 break;
274 case 16:
275 db_len = BIT(7) | 1;
276 break;
277 case 8:
278 db_len = BIT(7) | 2;
279 break;
280 case 0:
281 db_len = 0; /* doorbell is not active for this command */
282 break;
283 default:
284 return -EINVAL; /* should never hit this */
285 }
286
287 /*
288 * When we end up splitting up a single request (ie a buf slice) into
289 * multiple DMA requests, we have to manage the sync data carefully.
290 * There can only be one presync sem. That needs to be on every xfer
291 * so that the DMA engine doesn't transfer data before the receiver is
292 * ready. We only do the doorbell and postsync sems after the xfer.
293 * To guarantee previous xfers for the request are complete, we use a
294 * fence.
295 */
296 dev_addr = req->dev_addr;
297 for_each_sgtable_dma_sg(slice->sgt, sg, i) {
298 slice->reqs[i].cmd = cmd;
299 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
300 sg_dma_address(sg) : dev_addr);
301 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
302 dev_addr : sg_dma_address(sg));
303 /*
304 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA
305 * segment size is set to UINT_MAX by qaic and hence return
306 * values of sg_dma_len(sg) can never exceed u32 range. So,
307 * by down sizing we are not corrupting the value.
308 */
309 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
310 switch (presync_sem) {
311 case BIT(0):
312 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
313 req->sem0.index,
314 req->sem0.presync,
315 req->sem0.cmd,
316 req->sem0.flags));
317 break;
318 case BIT(1):
319 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
320 req->sem1.index,
321 req->sem1.presync,
322 req->sem1.cmd,
323 req->sem1.flags));
324 break;
325 case BIT(2):
326 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
327 req->sem2.index,
328 req->sem2.presync,
329 req->sem2.cmd,
330 req->sem2.flags));
331 break;
332 case BIT(3):
333 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
334 req->sem3.index,
335 req->sem3.presync,
336 req->sem3.cmd,
337 req->sem3.flags));
338 break;
339 }
340 dev_addr += sg_dma_len(sg);
341 }
342 /* add post transfer stuff to last segment */
343 i--;
344 slice->reqs[i].cmd |= GEN_COMPLETION;
345 slice->reqs[i].db_addr = db_addr;
346 slice->reqs[i].db_len = db_len;
347 slice->reqs[i].db_data = db_data;
348 /*
349 * Add a fence if we have more than one request going to the hardware
350 * representing the entirety of the user request, and the user request
351 * has no presync condition.
352 * Fences are expensive, so we try to avoid them. We rely on the
353 * hardware behavior to avoid needing one when there is a presync
354 * condition. When a presync exists, all requests for that same
355 * presync will be queued into a fifo. Thus, since we queue the
356 * post xfer activity only on the last request we queue, the hardware
357 * will ensure that the last queued request is processed last, thus
358 * making sure the post xfer activity happens at the right time without
359 * a fence.
360 */
361 if (i && !presync_sem)
362 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
363 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
364 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
365 req->sem0.presync, req->sem0.cmd,
366 req->sem0.flags));
367 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
368 req->sem1.presync, req->sem1.cmd,
369 req->sem1.flags));
370 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
371 req->sem2.presync, req->sem2.cmd,
372 req->sem2.flags));
373 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
374 req->sem3.presync, req->sem3.cmd,
375 req->sem3.flags));
376
377 return 0;
378 }
379
qaic_map_one_slice(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_entry * slice_ent)380 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
381 struct qaic_attach_slice_entry *slice_ent)
382 {
383 struct sg_table *sgt = NULL;
384 struct bo_slice *slice;
385 int ret;
386
387 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
388 if (ret)
389 goto out;
390
391 slice = kmalloc(sizeof(*slice), GFP_KERNEL);
392 if (!slice) {
393 ret = -ENOMEM;
394 goto free_sgt;
395 }
396
397 slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
398 if (!slice->reqs) {
399 ret = -ENOMEM;
400 goto free_slice;
401 }
402
403 slice->no_xfer = !slice_ent->size;
404 slice->sgt = sgt;
405 slice->nents = sgt->nents;
406 slice->dir = bo->dir;
407 slice->bo = bo;
408 slice->size = slice_ent->size;
409 slice->offset = slice_ent->offset;
410
411 ret = encode_reqs(qdev, slice, slice_ent);
412 if (ret)
413 goto free_req;
414
415 bo->total_slice_nents += sgt->nents;
416 kref_init(&slice->ref_count);
417 drm_gem_object_get(&bo->base);
418 list_add_tail(&slice->slice, &bo->slices);
419
420 return 0;
421
422 free_req:
423 kfree(slice->reqs);
424 free_slice:
425 kfree(slice);
426 free_sgt:
427 sg_free_table(sgt);
428 kfree(sgt);
429 out:
430 return ret;
431 }
432
create_sgt(struct qaic_device * qdev,struct sg_table ** sgt_out,u64 size)433 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
434 {
435 struct scatterlist *sg;
436 struct sg_table *sgt;
437 struct page **pages;
438 int *pages_order;
439 int buf_extra;
440 int max_order;
441 int nr_pages;
442 int ret = 0;
443 int i, j, k;
444 int order;
445
446 if (size) {
447 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
448 /*
449 * calculate how much extra we are going to allocate, to remove
450 * later
451 */
452 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
453 max_order = min(MAX_ORDER - 1, get_order(size));
454 } else {
455 /* allocate a single page for book keeping */
456 nr_pages = 1;
457 buf_extra = 0;
458 max_order = 0;
459 }
460
461 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
462 if (!pages) {
463 ret = -ENOMEM;
464 goto out;
465 }
466 pages_order = (void *)pages + sizeof(*pages) * nr_pages;
467
468 /*
469 * Allocate requested memory using alloc_pages. It is possible to allocate
470 * the requested memory in multiple chunks by calling alloc_pages
471 * multiple times. Use SG table to handle multiple allocated pages.
472 */
473 i = 0;
474 while (nr_pages > 0) {
475 order = min(get_order(nr_pages * PAGE_SIZE), max_order);
476 while (1) {
477 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
478 __GFP_NOWARN | __GFP_ZERO |
479 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
480 order);
481 if (pages[i])
482 break;
483 if (!order--) {
484 ret = -ENOMEM;
485 goto free_partial_alloc;
486 }
487 }
488
489 max_order = order;
490 pages_order[i] = order;
491
492 nr_pages -= 1 << order;
493 if (nr_pages <= 0)
494 /* account for over allocation */
495 buf_extra += abs(nr_pages) * PAGE_SIZE;
496 i++;
497 }
498
499 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
500 if (!sgt) {
501 ret = -ENOMEM;
502 goto free_partial_alloc;
503 }
504
505 if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
506 ret = -ENOMEM;
507 goto free_sgt;
508 }
509
510 /* Populate the SG table with the allocated memory pages */
511 sg = sgt->sgl;
512 for (k = 0; k < i; k++, sg = sg_next(sg)) {
513 /* Last entry requires special handling */
514 if (k < i - 1) {
515 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
516 } else {
517 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
518 sg_mark_end(sg);
519 }
520 }
521
522 kvfree(pages);
523 *sgt_out = sgt;
524 return ret;
525
526 free_sgt:
527 kfree(sgt);
528 free_partial_alloc:
529 for (j = 0; j < i; j++)
530 __free_pages(pages[j], pages_order[j]);
531 kvfree(pages);
532 out:
533 *sgt_out = NULL;
534 return ret;
535 }
536
invalid_sem(struct qaic_sem * sem)537 static bool invalid_sem(struct qaic_sem *sem)
538 {
539 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
540 !(sem->presync == 0 || sem->presync == 1) || sem->pad ||
541 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
542 sem->cmd > QAIC_SEM_WAIT_GT_0)
543 return true;
544 return false;
545 }
546
qaic_validate_req(struct qaic_device * qdev,struct qaic_attach_slice_entry * slice_ent,u32 count,u64 total_size)547 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
548 u32 count, u64 total_size)
549 {
550 int i;
551
552 for (i = 0; i < count; i++) {
553 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
554 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
555 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
556 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
557 return -EINVAL;
558
559 if (slice_ent[i].offset + slice_ent[i].size > total_size)
560 return -EINVAL;
561 }
562
563 return 0;
564 }
565
qaic_free_sgt(struct sg_table * sgt)566 static void qaic_free_sgt(struct sg_table *sgt)
567 {
568 struct scatterlist *sg;
569
570 for (sg = sgt->sgl; sg; sg = sg_next(sg))
571 if (sg_page(sg))
572 __free_pages(sg_page(sg), get_order(sg->length));
573 sg_free_table(sgt);
574 kfree(sgt);
575 }
576
qaic_gem_print_info(struct drm_printer * p,unsigned int indent,const struct drm_gem_object * obj)577 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
578 const struct drm_gem_object *obj)
579 {
580 struct qaic_bo *bo = to_qaic_bo(obj);
581
582 drm_printf_indent(p, indent, "user requested size=%llu\n", bo->size);
583 }
584
585 static const struct vm_operations_struct drm_vm_ops = {
586 .open = drm_gem_vm_open,
587 .close = drm_gem_vm_close,
588 };
589
qaic_gem_object_mmap(struct drm_gem_object * obj,struct vm_area_struct * vma)590 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
591 {
592 struct qaic_bo *bo = to_qaic_bo(obj);
593 unsigned long offset = 0;
594 struct scatterlist *sg;
595 int ret = 0;
596
597 if (obj->import_attach)
598 return -EINVAL;
599
600 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
601 if (sg_page(sg)) {
602 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
603 sg->length, vma->vm_page_prot);
604 if (ret)
605 goto out;
606 offset += sg->length;
607 }
608 }
609
610 out:
611 return ret;
612 }
613
qaic_free_object(struct drm_gem_object * obj)614 static void qaic_free_object(struct drm_gem_object *obj)
615 {
616 struct qaic_bo *bo = to_qaic_bo(obj);
617
618 if (obj->import_attach) {
619 /* DMABUF/PRIME Path */
620 drm_prime_gem_destroy(obj, NULL);
621 } else {
622 /* Private buffer allocation path */
623 qaic_free_sgt(bo->sgt);
624 }
625
626 drm_gem_object_release(obj);
627 kfree(bo);
628 }
629
630 static const struct drm_gem_object_funcs qaic_gem_funcs = {
631 .free = qaic_free_object,
632 .print_info = qaic_gem_print_info,
633 .mmap = qaic_gem_object_mmap,
634 .vm_ops = &drm_vm_ops,
635 };
636
qaic_alloc_init_bo(void)637 static struct qaic_bo *qaic_alloc_init_bo(void)
638 {
639 struct qaic_bo *bo;
640
641 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
642 if (!bo)
643 return ERR_PTR(-ENOMEM);
644
645 INIT_LIST_HEAD(&bo->slices);
646 init_completion(&bo->xfer_done);
647 complete_all(&bo->xfer_done);
648
649 return bo;
650 }
651
qaic_create_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)652 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
653 {
654 struct qaic_create_bo *args = data;
655 int usr_rcu_id, qdev_rcu_id;
656 struct drm_gem_object *obj;
657 struct qaic_device *qdev;
658 struct qaic_user *usr;
659 struct qaic_bo *bo;
660 size_t size;
661 int ret;
662
663 if (args->pad)
664 return -EINVAL;
665
666 size = PAGE_ALIGN(args->size);
667 if (size == 0)
668 return -EINVAL;
669
670 usr = file_priv->driver_priv;
671 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
672 if (!usr->qddev) {
673 ret = -ENODEV;
674 goto unlock_usr_srcu;
675 }
676
677 qdev = usr->qddev->qdev;
678 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
679 if (qdev->in_reset) {
680 ret = -ENODEV;
681 goto unlock_dev_srcu;
682 }
683
684 bo = qaic_alloc_init_bo();
685 if (IS_ERR(bo)) {
686 ret = PTR_ERR(bo);
687 goto unlock_dev_srcu;
688 }
689 obj = &bo->base;
690
691 drm_gem_private_object_init(dev, obj, size);
692
693 obj->funcs = &qaic_gem_funcs;
694 ret = create_sgt(qdev, &bo->sgt, size);
695 if (ret)
696 goto free_bo;
697
698 bo->size = args->size;
699
700 ret = drm_gem_handle_create(file_priv, obj, &args->handle);
701 if (ret)
702 goto free_sgt;
703
704 bo->handle = args->handle;
705 drm_gem_object_put(obj);
706 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
707 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
708
709 return 0;
710
711 free_sgt:
712 qaic_free_sgt(bo->sgt);
713 free_bo:
714 kfree(bo);
715 unlock_dev_srcu:
716 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
717 unlock_usr_srcu:
718 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
719 return ret;
720 }
721
qaic_mmap_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)722 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
723 {
724 struct qaic_mmap_bo *args = data;
725 int usr_rcu_id, qdev_rcu_id;
726 struct drm_gem_object *obj;
727 struct qaic_device *qdev;
728 struct qaic_user *usr;
729 int ret;
730
731 usr = file_priv->driver_priv;
732 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
733 if (!usr->qddev) {
734 ret = -ENODEV;
735 goto unlock_usr_srcu;
736 }
737
738 qdev = usr->qddev->qdev;
739 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
740 if (qdev->in_reset) {
741 ret = -ENODEV;
742 goto unlock_dev_srcu;
743 }
744
745 obj = drm_gem_object_lookup(file_priv, args->handle);
746 if (!obj) {
747 ret = -ENOENT;
748 goto unlock_dev_srcu;
749 }
750
751 ret = drm_gem_create_mmap_offset(obj);
752 if (ret == 0)
753 args->offset = drm_vma_node_offset_addr(&obj->vma_node);
754
755 drm_gem_object_put(obj);
756
757 unlock_dev_srcu:
758 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
759 unlock_usr_srcu:
760 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
761 return ret;
762 }
763
qaic_gem_prime_import(struct drm_device * dev,struct dma_buf * dma_buf)764 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
765 {
766 struct dma_buf_attachment *attach;
767 struct drm_gem_object *obj;
768 struct qaic_bo *bo;
769 int ret;
770
771 bo = qaic_alloc_init_bo();
772 if (IS_ERR(bo)) {
773 ret = PTR_ERR(bo);
774 goto out;
775 }
776
777 obj = &bo->base;
778 get_dma_buf(dma_buf);
779
780 attach = dma_buf_attach(dma_buf, dev->dev);
781 if (IS_ERR(attach)) {
782 ret = PTR_ERR(attach);
783 goto attach_fail;
784 }
785
786 if (!attach->dmabuf->size) {
787 ret = -EINVAL;
788 goto size_align_fail;
789 }
790
791 drm_gem_private_object_init(dev, obj, attach->dmabuf->size);
792 /*
793 * skipping dma_buf_map_attachment() as we do not know the direction
794 * just yet. Once the direction is known in the subsequent IOCTL to
795 * attach slicing, we can do it then.
796 */
797
798 obj->funcs = &qaic_gem_funcs;
799 obj->import_attach = attach;
800 obj->resv = dma_buf->resv;
801
802 return obj;
803
804 size_align_fail:
805 dma_buf_detach(dma_buf, attach);
806 attach_fail:
807 dma_buf_put(dma_buf);
808 kfree(bo);
809 out:
810 return ERR_PTR(ret);
811 }
812
qaic_prepare_import_bo(struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)813 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
814 {
815 struct drm_gem_object *obj = &bo->base;
816 struct sg_table *sgt;
817 int ret;
818
819 if (obj->import_attach->dmabuf->size < hdr->size)
820 return -EINVAL;
821
822 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
823 if (IS_ERR(sgt)) {
824 ret = PTR_ERR(sgt);
825 return ret;
826 }
827
828 bo->sgt = sgt;
829 bo->size = hdr->size;
830
831 return 0;
832 }
833
qaic_prepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)834 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
835 struct qaic_attach_slice_hdr *hdr)
836 {
837 int ret;
838
839 if (bo->size != hdr->size)
840 return -EINVAL;
841
842 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
843 if (ret)
844 return -EFAULT;
845
846 return 0;
847 }
848
qaic_prepare_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)849 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
850 struct qaic_attach_slice_hdr *hdr)
851 {
852 int ret;
853
854 if (bo->base.import_attach)
855 ret = qaic_prepare_import_bo(bo, hdr);
856 else
857 ret = qaic_prepare_export_bo(qdev, bo, hdr);
858
859 if (ret == 0)
860 bo->dir = hdr->dir;
861
862 return ret;
863 }
864
qaic_unprepare_import_bo(struct qaic_bo * bo)865 static void qaic_unprepare_import_bo(struct qaic_bo *bo)
866 {
867 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
868 bo->sgt = NULL;
869 bo->size = 0;
870 }
871
qaic_unprepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo)872 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
873 {
874 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
875 }
876
qaic_unprepare_bo(struct qaic_device * qdev,struct qaic_bo * bo)877 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
878 {
879 if (bo->base.import_attach)
880 qaic_unprepare_import_bo(bo);
881 else
882 qaic_unprepare_export_bo(qdev, bo);
883
884 bo->dir = 0;
885 }
886
qaic_free_slices_bo(struct qaic_bo * bo)887 static void qaic_free_slices_bo(struct qaic_bo *bo)
888 {
889 struct bo_slice *slice, *temp;
890
891 list_for_each_entry_safe(slice, temp, &bo->slices, slice)
892 kref_put(&slice->ref_count, free_slice);
893 }
894
qaic_attach_slicing_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr,struct qaic_attach_slice_entry * slice_ent)895 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
896 struct qaic_attach_slice_hdr *hdr,
897 struct qaic_attach_slice_entry *slice_ent)
898 {
899 int ret, i;
900
901 for (i = 0; i < hdr->count; i++) {
902 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
903 if (ret) {
904 qaic_free_slices_bo(bo);
905 return ret;
906 }
907 }
908
909 if (bo->total_slice_nents > qdev->dbc[hdr->dbc_id].nelem) {
910 qaic_free_slices_bo(bo);
911 return -ENOSPC;
912 }
913
914 bo->sliced = true;
915 bo->nr_slice = hdr->count;
916 list_add_tail(&bo->bo_list, &qdev->dbc[hdr->dbc_id].bo_lists);
917
918 return 0;
919 }
920
qaic_attach_slice_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)921 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
922 {
923 struct qaic_attach_slice_entry *slice_ent;
924 struct qaic_attach_slice *args = data;
925 int rcu_id, usr_rcu_id, qdev_rcu_id;
926 struct dma_bridge_chan *dbc;
927 struct drm_gem_object *obj;
928 struct qaic_device *qdev;
929 unsigned long arg_size;
930 struct qaic_user *usr;
931 u8 __user *user_data;
932 struct qaic_bo *bo;
933 int ret;
934
935 if (args->hdr.count == 0)
936 return -EINVAL;
937
938 arg_size = args->hdr.count * sizeof(*slice_ent);
939 if (arg_size / args->hdr.count != sizeof(*slice_ent))
940 return -EINVAL;
941
942 if (args->hdr.size == 0)
943 return -EINVAL;
944
945 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
946 return -EINVAL;
947
948 if (args->data == 0)
949 return -EINVAL;
950
951 usr = file_priv->driver_priv;
952 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
953 if (!usr->qddev) {
954 ret = -ENODEV;
955 goto unlock_usr_srcu;
956 }
957
958 qdev = usr->qddev->qdev;
959 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
960 if (qdev->in_reset) {
961 ret = -ENODEV;
962 goto unlock_dev_srcu;
963 }
964
965 if (args->hdr.dbc_id >= qdev->num_dbc) {
966 ret = -EINVAL;
967 goto unlock_dev_srcu;
968 }
969
970 user_data = u64_to_user_ptr(args->data);
971
972 slice_ent = kzalloc(arg_size, GFP_KERNEL);
973 if (!slice_ent) {
974 ret = -EINVAL;
975 goto unlock_dev_srcu;
976 }
977
978 ret = copy_from_user(slice_ent, user_data, arg_size);
979 if (ret) {
980 ret = -EFAULT;
981 goto free_slice_ent;
982 }
983
984 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size);
985 if (ret)
986 goto free_slice_ent;
987
988 obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
989 if (!obj) {
990 ret = -ENOENT;
991 goto free_slice_ent;
992 }
993
994 bo = to_qaic_bo(obj);
995
996 if (bo->sliced) {
997 ret = -EINVAL;
998 goto put_bo;
999 }
1000
1001 dbc = &qdev->dbc[args->hdr.dbc_id];
1002 rcu_id = srcu_read_lock(&dbc->ch_lock);
1003 if (dbc->usr != usr) {
1004 ret = -EINVAL;
1005 goto unlock_ch_srcu;
1006 }
1007
1008 ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1009 if (ret)
1010 goto unlock_ch_srcu;
1011
1012 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1013 if (ret)
1014 goto unprepare_bo;
1015
1016 if (args->hdr.dir == DMA_TO_DEVICE)
1017 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1018
1019 bo->dbc = dbc;
1020 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1021 drm_gem_object_put(obj);
1022 kfree(slice_ent);
1023 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1024 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1025
1026 return 0;
1027
1028 unprepare_bo:
1029 qaic_unprepare_bo(qdev, bo);
1030 unlock_ch_srcu:
1031 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1032 put_bo:
1033 drm_gem_object_put(obj);
1034 free_slice_ent:
1035 kfree(slice_ent);
1036 unlock_dev_srcu:
1037 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1038 unlock_usr_srcu:
1039 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1040 return ret;
1041 }
1042
copy_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u32 dbc_id,u32 head,u32 * ptail)1043 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1044 u32 head, u32 *ptail)
1045 {
1046 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1047 struct dbc_req *reqs = slice->reqs;
1048 u32 tail = *ptail;
1049 u32 avail;
1050
1051 avail = head - tail;
1052 if (head <= tail)
1053 avail += dbc->nelem;
1054
1055 --avail;
1056
1057 if (avail < slice->nents)
1058 return -EAGAIN;
1059
1060 if (tail + slice->nents > dbc->nelem) {
1061 avail = dbc->nelem - tail;
1062 avail = min_t(u32, avail, slice->nents);
1063 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1064 sizeof(*reqs) * avail);
1065 reqs += avail;
1066 avail = slice->nents - avail;
1067 if (avail)
1068 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1069 } else {
1070 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1071 sizeof(*reqs) * slice->nents);
1072 }
1073
1074 *ptail = (tail + slice->nents) % dbc->nelem;
1075
1076 return 0;
1077 }
1078
1079 /*
1080 * Based on the value of resize we may only need to transmit first_n
1081 * entries and the last entry, with last_bytes to send from the last entry.
1082 * Note that first_n could be 0.
1083 */
copy_partial_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u64 resize,u32 dbc_id,u32 head,u32 * ptail)1084 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1085 u64 resize, u32 dbc_id, u32 head, u32 *ptail)
1086 {
1087 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1088 struct dbc_req *reqs = slice->reqs;
1089 struct dbc_req *last_req;
1090 u32 tail = *ptail;
1091 u64 total_bytes;
1092 u64 last_bytes;
1093 u32 first_n;
1094 u32 avail;
1095 int ret;
1096 int i;
1097
1098 avail = head - tail;
1099 if (head <= tail)
1100 avail += dbc->nelem;
1101
1102 --avail;
1103
1104 total_bytes = 0;
1105 for (i = 0; i < slice->nents; i++) {
1106 total_bytes += le32_to_cpu(reqs[i].len);
1107 if (total_bytes >= resize)
1108 break;
1109 }
1110
1111 if (total_bytes < resize) {
1112 /* User space should have used the full buffer path. */
1113 ret = -EINVAL;
1114 return ret;
1115 }
1116
1117 first_n = i;
1118 last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize;
1119
1120 if (avail < (first_n + 1))
1121 return -EAGAIN;
1122
1123 if (first_n) {
1124 if (tail + first_n > dbc->nelem) {
1125 avail = dbc->nelem - tail;
1126 avail = min_t(u32, avail, first_n);
1127 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1128 sizeof(*reqs) * avail);
1129 last_req = reqs + avail;
1130 avail = first_n - avail;
1131 if (avail)
1132 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1133 } else {
1134 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1135 sizeof(*reqs) * first_n);
1136 }
1137 }
1138
1139 /* Copy over the last entry. Here we need to adjust len to the left over
1140 * size, and set src and dst to the entry it is copied to.
1141 */
1142 last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size();
1143 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1144
1145 /*
1146 * last_bytes holds size of a DMA segment, maximum DMA segment size is
1147 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1148 * range. So, by down sizing we are not corrupting the value.
1149 */
1150 last_req->len = cpu_to_le32((u32)last_bytes);
1151 last_req->src_addr = reqs[first_n].src_addr;
1152 last_req->dest_addr = reqs[first_n].dest_addr;
1153
1154 *ptail = (tail + first_n + 1) % dbc->nelem;
1155
1156 return 0;
1157 }
1158
send_bo_list_to_device(struct qaic_device * qdev,struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,struct dma_bridge_chan * dbc,u32 head,u32 * tail)1159 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1160 struct qaic_execute_entry *exec, unsigned int count,
1161 bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1162 u32 *tail)
1163 {
1164 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1165 struct drm_gem_object *obj;
1166 struct bo_slice *slice;
1167 unsigned long flags;
1168 struct qaic_bo *bo;
1169 bool queued;
1170 int i, j;
1171 int ret;
1172
1173 for (i = 0; i < count; i++) {
1174 /*
1175 * ref count will be decremented when the transfer of this
1176 * buffer is complete. It is inside dbc_irq_threaded_fn().
1177 */
1178 obj = drm_gem_object_lookup(file_priv,
1179 is_partial ? pexec[i].handle : exec[i].handle);
1180 if (!obj) {
1181 ret = -ENOENT;
1182 goto failed_to_send_bo;
1183 }
1184
1185 bo = to_qaic_bo(obj);
1186
1187 if (!bo->sliced) {
1188 ret = -EINVAL;
1189 goto failed_to_send_bo;
1190 }
1191
1192 if (is_partial && pexec[i].resize > bo->size) {
1193 ret = -EINVAL;
1194 goto failed_to_send_bo;
1195 }
1196
1197 spin_lock_irqsave(&dbc->xfer_lock, flags);
1198 queued = bo->queued;
1199 bo->queued = true;
1200 if (queued) {
1201 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1202 ret = -EINVAL;
1203 goto failed_to_send_bo;
1204 }
1205
1206 bo->req_id = dbc->next_req_id++;
1207
1208 list_for_each_entry(slice, &bo->slices, slice) {
1209 /*
1210 * If this slice does not fall under the given
1211 * resize then skip this slice and continue the loop
1212 */
1213 if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset)
1214 continue;
1215
1216 for (j = 0; j < slice->nents; j++)
1217 slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1218
1219 /*
1220 * If it is a partial execute ioctl call then check if
1221 * resize has cut this slice short then do a partial copy
1222 * else do complete copy
1223 */
1224 if (is_partial && pexec[i].resize &&
1225 pexec[i].resize < slice->offset + slice->size)
1226 ret = copy_partial_exec_reqs(qdev, slice,
1227 pexec[i].resize - slice->offset,
1228 dbc->id, head, tail);
1229 else
1230 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1231 if (ret) {
1232 bo->queued = false;
1233 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1234 goto failed_to_send_bo;
1235 }
1236 }
1237 reinit_completion(&bo->xfer_done);
1238 list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1239 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1240 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1241 }
1242
1243 return 0;
1244
1245 failed_to_send_bo:
1246 if (likely(obj))
1247 drm_gem_object_put(obj);
1248 for (j = 0; j < i; j++) {
1249 spin_lock_irqsave(&dbc->xfer_lock, flags);
1250 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1251 obj = &bo->base;
1252 bo->queued = false;
1253 list_del(&bo->xfer_list);
1254 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1255 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1256 drm_gem_object_put(obj);
1257 }
1258 return ret;
1259 }
1260
update_profiling_data(struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,u64 received_ts,u64 submit_ts,u32 queue_level)1261 static void update_profiling_data(struct drm_file *file_priv,
1262 struct qaic_execute_entry *exec, unsigned int count,
1263 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1264 {
1265 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1266 struct drm_gem_object *obj;
1267 struct qaic_bo *bo;
1268 int i;
1269
1270 for (i = 0; i < count; i++) {
1271 /*
1272 * Since we already committed the BO to hardware, the only way
1273 * this should fail is a pending signal. We can't cancel the
1274 * submit to hardware, so we have to just skip the profiling
1275 * data. In case the signal is not fatal to the process, we
1276 * return success so that the user doesn't try to resubmit.
1277 */
1278 obj = drm_gem_object_lookup(file_priv,
1279 is_partial ? pexec[i].handle : exec[i].handle);
1280 if (!obj)
1281 break;
1282 bo = to_qaic_bo(obj);
1283 bo->perf_stats.req_received_ts = received_ts;
1284 bo->perf_stats.req_submit_ts = submit_ts;
1285 bo->perf_stats.queue_level_before = queue_level;
1286 queue_level += bo->total_slice_nents;
1287 drm_gem_object_put(obj);
1288 }
1289 }
1290
__qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv,bool is_partial)1291 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1292 bool is_partial)
1293 {
1294 struct qaic_execute *args = data;
1295 struct qaic_execute_entry *exec;
1296 struct dma_bridge_chan *dbc;
1297 int usr_rcu_id, qdev_rcu_id;
1298 struct qaic_device *qdev;
1299 struct qaic_user *usr;
1300 u8 __user *user_data;
1301 unsigned long n;
1302 u64 received_ts;
1303 u32 queue_level;
1304 u64 submit_ts;
1305 int rcu_id;
1306 u32 head;
1307 u32 tail;
1308 u64 size;
1309 int ret;
1310
1311 received_ts = ktime_get_ns();
1312
1313 size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1314 n = (unsigned long)size * args->hdr.count;
1315 if (args->hdr.count == 0 || n / args->hdr.count != size)
1316 return -EINVAL;
1317
1318 user_data = u64_to_user_ptr(args->data);
1319
1320 exec = kcalloc(args->hdr.count, size, GFP_KERNEL);
1321 if (!exec)
1322 return -ENOMEM;
1323
1324 if (copy_from_user(exec, user_data, n)) {
1325 ret = -EFAULT;
1326 goto free_exec;
1327 }
1328
1329 usr = file_priv->driver_priv;
1330 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1331 if (!usr->qddev) {
1332 ret = -ENODEV;
1333 goto unlock_usr_srcu;
1334 }
1335
1336 qdev = usr->qddev->qdev;
1337 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1338 if (qdev->in_reset) {
1339 ret = -ENODEV;
1340 goto unlock_dev_srcu;
1341 }
1342
1343 if (args->hdr.dbc_id >= qdev->num_dbc) {
1344 ret = -EINVAL;
1345 goto unlock_dev_srcu;
1346 }
1347
1348 dbc = &qdev->dbc[args->hdr.dbc_id];
1349
1350 rcu_id = srcu_read_lock(&dbc->ch_lock);
1351 if (!dbc->usr || dbc->usr->handle != usr->handle) {
1352 ret = -EPERM;
1353 goto release_ch_rcu;
1354 }
1355
1356 head = readl(dbc->dbc_base + REQHP_OFF);
1357 tail = readl(dbc->dbc_base + REQTP_OFF);
1358
1359 if (head == U32_MAX || tail == U32_MAX) {
1360 /* PCI link error */
1361 ret = -ENODEV;
1362 goto release_ch_rcu;
1363 }
1364
1365 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1366
1367 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1368 head, &tail);
1369 if (ret)
1370 goto release_ch_rcu;
1371
1372 /* Finalize commit to hardware */
1373 submit_ts = ktime_get_ns();
1374 writel(tail, dbc->dbc_base + REQTP_OFF);
1375
1376 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1377 submit_ts, queue_level);
1378
1379 if (datapath_polling)
1380 schedule_work(&dbc->poll_work);
1381
1382 release_ch_rcu:
1383 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1384 unlock_dev_srcu:
1385 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1386 unlock_usr_srcu:
1387 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1388 free_exec:
1389 kfree(exec);
1390 return ret;
1391 }
1392
qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1393 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1394 {
1395 return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1396 }
1397
qaic_partial_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1398 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1399 {
1400 return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1401 }
1402
1403 /*
1404 * Our interrupt handling is a bit more complicated than a simple ideal, but
1405 * sadly necessary.
1406 *
1407 * Each dbc has a completion queue. Entries in the queue correspond to DMA
1408 * requests which the device has processed. The hardware already has a built
1409 * in irq mitigation. When the device puts an entry into the queue, it will
1410 * only trigger an interrupt if the queue was empty. Therefore, when adding
1411 * the Nth event to a non-empty queue, the hardware doesn't trigger an
1412 * interrupt. This means the host doesn't get additional interrupts signaling
1413 * the same thing - the queue has something to process.
1414 * This behavior can be overridden in the DMA request.
1415 * This means that when the host receives an interrupt, it is required to
1416 * drain the queue.
1417 *
1418 * This behavior is what NAPI attempts to accomplish, although we can't use
1419 * NAPI as we don't have a netdev. We use threaded irqs instead.
1420 *
1421 * However, there is a situation where the host drains the queue fast enough
1422 * that every event causes an interrupt. Typically this is not a problem as
1423 * the rate of events would be low. However, that is not the case with
1424 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1425 * lprnet, the host receives roughly 80k interrupts per second from the device
1426 * (per /proc/interrupts). While NAPI documentation indicates the host should
1427 * just chug along, sadly that behavior causes instability in some hosts.
1428 *
1429 * Therefore, we implement an interrupt disable scheme similar to NAPI. The
1430 * key difference is that we will delay after draining the queue for a small
1431 * time to allow additional events to come in via polling. Using the above
1432 * lprnet workload, this reduces the number of interrupts processed from
1433 * ~80k/sec to about 64 in 5 minutes and appears to solve the system
1434 * instability.
1435 */
dbc_irq_handler(int irq,void * data)1436 irqreturn_t dbc_irq_handler(int irq, void *data)
1437 {
1438 struct dma_bridge_chan *dbc = data;
1439 int rcu_id;
1440 u32 head;
1441 u32 tail;
1442
1443 rcu_id = srcu_read_lock(&dbc->ch_lock);
1444
1445 if (!dbc->usr) {
1446 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1447 return IRQ_HANDLED;
1448 }
1449
1450 head = readl(dbc->dbc_base + RSPHP_OFF);
1451 if (head == U32_MAX) { /* PCI link error */
1452 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1453 return IRQ_NONE;
1454 }
1455
1456 tail = readl(dbc->dbc_base + RSPTP_OFF);
1457 if (tail == U32_MAX) { /* PCI link error */
1458 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1459 return IRQ_NONE;
1460 }
1461
1462 if (head == tail) { /* queue empty */
1463 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1464 return IRQ_NONE;
1465 }
1466
1467 disable_irq_nosync(irq);
1468 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1469 return IRQ_WAKE_THREAD;
1470 }
1471
irq_polling_work(struct work_struct * work)1472 void irq_polling_work(struct work_struct *work)
1473 {
1474 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work);
1475 unsigned long flags;
1476 int rcu_id;
1477 u32 head;
1478 u32 tail;
1479
1480 rcu_id = srcu_read_lock(&dbc->ch_lock);
1481
1482 while (1) {
1483 if (dbc->qdev->in_reset) {
1484 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1485 return;
1486 }
1487 if (!dbc->usr) {
1488 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1489 return;
1490 }
1491 spin_lock_irqsave(&dbc->xfer_lock, flags);
1492 if (list_empty(&dbc->xfer_list)) {
1493 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1494 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1495 return;
1496 }
1497 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1498
1499 head = readl(dbc->dbc_base + RSPHP_OFF);
1500 if (head == U32_MAX) { /* PCI link error */
1501 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1502 return;
1503 }
1504
1505 tail = readl(dbc->dbc_base + RSPTP_OFF);
1506 if (tail == U32_MAX) { /* PCI link error */
1507 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1508 return;
1509 }
1510
1511 if (head != tail) {
1512 irq_wake_thread(dbc->irq, dbc);
1513 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1514 return;
1515 }
1516
1517 cond_resched();
1518 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1519 }
1520 }
1521
dbc_irq_threaded_fn(int irq,void * data)1522 irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1523 {
1524 struct dma_bridge_chan *dbc = data;
1525 int event_count = NUM_EVENTS;
1526 int delay_count = NUM_DELAYS;
1527 struct qaic_device *qdev;
1528 struct qaic_bo *bo, *i;
1529 struct dbc_rsp *rsp;
1530 unsigned long flags;
1531 int rcu_id;
1532 u16 status;
1533 u16 req_id;
1534 u32 head;
1535 u32 tail;
1536
1537 rcu_id = srcu_read_lock(&dbc->ch_lock);
1538
1539 head = readl(dbc->dbc_base + RSPHP_OFF);
1540 if (head == U32_MAX) /* PCI link error */
1541 goto error_out;
1542
1543 qdev = dbc->qdev;
1544 read_fifo:
1545
1546 if (!event_count) {
1547 event_count = NUM_EVENTS;
1548 cond_resched();
1549 }
1550
1551 /*
1552 * if this channel isn't assigned or gets unassigned during processing
1553 * we have nothing further to do
1554 */
1555 if (!dbc->usr)
1556 goto error_out;
1557
1558 tail = readl(dbc->dbc_base + RSPTP_OFF);
1559 if (tail == U32_MAX) /* PCI link error */
1560 goto error_out;
1561
1562 if (head == tail) { /* queue empty */
1563 if (delay_count) {
1564 --delay_count;
1565 usleep_range(100, 200);
1566 goto read_fifo; /* check for a new event */
1567 }
1568 goto normal_out;
1569 }
1570
1571 delay_count = NUM_DELAYS;
1572 while (head != tail) {
1573 if (!event_count)
1574 break;
1575 --event_count;
1576 rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1577 req_id = le16_to_cpu(rsp->req_id);
1578 status = le16_to_cpu(rsp->status);
1579 if (status)
1580 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1581 spin_lock_irqsave(&dbc->xfer_lock, flags);
1582 /*
1583 * A BO can receive multiple interrupts, since a BO can be
1584 * divided into multiple slices and a buffer receives as many
1585 * interrupts as slices. So until it receives interrupts for
1586 * all the slices we cannot mark that buffer complete.
1587 */
1588 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1589 if (bo->req_id == req_id)
1590 bo->nr_slice_xfer_done++;
1591 else
1592 continue;
1593
1594 if (bo->nr_slice_xfer_done < bo->nr_slice)
1595 break;
1596
1597 /*
1598 * At this point we have received all the interrupts for
1599 * BO, which means BO execution is complete.
1600 */
1601 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1602 bo->nr_slice_xfer_done = 0;
1603 bo->queued = false;
1604 list_del(&bo->xfer_list);
1605 bo->perf_stats.req_processed_ts = ktime_get_ns();
1606 complete_all(&bo->xfer_done);
1607 drm_gem_object_put(&bo->base);
1608 break;
1609 }
1610 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1611 head = (head + 1) % dbc->nelem;
1612 }
1613
1614 /*
1615 * Update the head pointer of response queue and let the device know
1616 * that we have consumed elements from the queue.
1617 */
1618 writel(head, dbc->dbc_base + RSPHP_OFF);
1619
1620 /* elements might have been put in the queue while we were processing */
1621 goto read_fifo;
1622
1623 normal_out:
1624 if (likely(!datapath_polling))
1625 enable_irq(irq);
1626 else
1627 schedule_work(&dbc->poll_work);
1628 /* checking the fifo and enabling irqs is a race, missed event check */
1629 tail = readl(dbc->dbc_base + RSPTP_OFF);
1630 if (tail != U32_MAX && head != tail) {
1631 if (likely(!datapath_polling))
1632 disable_irq_nosync(irq);
1633 goto read_fifo;
1634 }
1635 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1636 return IRQ_HANDLED;
1637
1638 error_out:
1639 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1640 if (likely(!datapath_polling))
1641 enable_irq(irq);
1642 else
1643 schedule_work(&dbc->poll_work);
1644
1645 return IRQ_HANDLED;
1646 }
1647
qaic_wait_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1648 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1649 {
1650 struct qaic_wait *args = data;
1651 int usr_rcu_id, qdev_rcu_id;
1652 struct dma_bridge_chan *dbc;
1653 struct drm_gem_object *obj;
1654 struct qaic_device *qdev;
1655 unsigned long timeout;
1656 struct qaic_user *usr;
1657 struct qaic_bo *bo;
1658 int rcu_id;
1659 int ret;
1660
1661 if (args->pad != 0)
1662 return -EINVAL;
1663
1664 usr = file_priv->driver_priv;
1665 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1666 if (!usr->qddev) {
1667 ret = -ENODEV;
1668 goto unlock_usr_srcu;
1669 }
1670
1671 qdev = usr->qddev->qdev;
1672 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1673 if (qdev->in_reset) {
1674 ret = -ENODEV;
1675 goto unlock_dev_srcu;
1676 }
1677
1678 if (args->dbc_id >= qdev->num_dbc) {
1679 ret = -EINVAL;
1680 goto unlock_dev_srcu;
1681 }
1682
1683 dbc = &qdev->dbc[args->dbc_id];
1684
1685 rcu_id = srcu_read_lock(&dbc->ch_lock);
1686 if (dbc->usr != usr) {
1687 ret = -EPERM;
1688 goto unlock_ch_srcu;
1689 }
1690
1691 obj = drm_gem_object_lookup(file_priv, args->handle);
1692 if (!obj) {
1693 ret = -ENOENT;
1694 goto unlock_ch_srcu;
1695 }
1696
1697 bo = to_qaic_bo(obj);
1698 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1699 timeout = msecs_to_jiffies(timeout);
1700 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1701 if (!ret) {
1702 ret = -ETIMEDOUT;
1703 goto put_obj;
1704 }
1705 if (ret > 0)
1706 ret = 0;
1707
1708 if (!dbc->usr)
1709 ret = -EPERM;
1710
1711 put_obj:
1712 drm_gem_object_put(obj);
1713 unlock_ch_srcu:
1714 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1715 unlock_dev_srcu:
1716 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1717 unlock_usr_srcu:
1718 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1719 return ret;
1720 }
1721
qaic_perf_stats_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1722 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1723 {
1724 struct qaic_perf_stats_entry *ent = NULL;
1725 struct qaic_perf_stats *args = data;
1726 int usr_rcu_id, qdev_rcu_id;
1727 struct drm_gem_object *obj;
1728 struct qaic_device *qdev;
1729 struct qaic_user *usr;
1730 struct qaic_bo *bo;
1731 int ret, i;
1732
1733 usr = file_priv->driver_priv;
1734 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1735 if (!usr->qddev) {
1736 ret = -ENODEV;
1737 goto unlock_usr_srcu;
1738 }
1739
1740 qdev = usr->qddev->qdev;
1741 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1742 if (qdev->in_reset) {
1743 ret = -ENODEV;
1744 goto unlock_dev_srcu;
1745 }
1746
1747 if (args->hdr.dbc_id >= qdev->num_dbc) {
1748 ret = -EINVAL;
1749 goto unlock_dev_srcu;
1750 }
1751
1752 ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL);
1753 if (!ent) {
1754 ret = -EINVAL;
1755 goto unlock_dev_srcu;
1756 }
1757
1758 ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent));
1759 if (ret) {
1760 ret = -EFAULT;
1761 goto free_ent;
1762 }
1763
1764 for (i = 0; i < args->hdr.count; i++) {
1765 obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1766 if (!obj) {
1767 ret = -ENOENT;
1768 goto free_ent;
1769 }
1770 bo = to_qaic_bo(obj);
1771 /*
1772 * perf stats ioctl is called before wait ioctl is complete then
1773 * the latency information is invalid.
1774 */
1775 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1776 ent[i].device_latency_us = 0;
1777 } else {
1778 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1779 bo->perf_stats.req_submit_ts), 1000);
1780 }
1781 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1782 bo->perf_stats.req_received_ts), 1000);
1783 ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1784 ent[i].num_queue_element = bo->total_slice_nents;
1785 drm_gem_object_put(obj);
1786 }
1787
1788 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1789 ret = -EFAULT;
1790
1791 free_ent:
1792 kfree(ent);
1793 unlock_dev_srcu:
1794 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1795 unlock_usr_srcu:
1796 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1797 return ret;
1798 }
1799
empty_xfer_list(struct qaic_device * qdev,struct dma_bridge_chan * dbc)1800 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1801 {
1802 unsigned long flags;
1803 struct qaic_bo *bo;
1804
1805 spin_lock_irqsave(&dbc->xfer_lock, flags);
1806 while (!list_empty(&dbc->xfer_list)) {
1807 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1808 bo->queued = false;
1809 list_del(&bo->xfer_list);
1810 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1811 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1812 complete_all(&bo->xfer_done);
1813 drm_gem_object_put(&bo->base);
1814 spin_lock_irqsave(&dbc->xfer_lock, flags);
1815 }
1816 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1817 }
1818
disable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1819 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1820 {
1821 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1822 return -EPERM;
1823
1824 qdev->dbc[dbc_id].usr = NULL;
1825 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1826 return 0;
1827 }
1828
1829 /**
1830 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1831 * user. Add user context back to DBC to enable it. This function trusts the
1832 * DBC ID passed and expects the DBC to be disabled.
1833 * @qdev: Qranium device handle
1834 * @dbc_id: ID of the DBC
1835 * @usr: User context
1836 */
enable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1837 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1838 {
1839 qdev->dbc[dbc_id].usr = usr;
1840 }
1841
wakeup_dbc(struct qaic_device * qdev,u32 dbc_id)1842 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
1843 {
1844 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1845
1846 dbc->usr = NULL;
1847 empty_xfer_list(qdev, dbc);
1848 synchronize_srcu(&dbc->ch_lock);
1849 /*
1850 * Threads holding channel lock, may add more elements in the xfer_list.
1851 * Flush out these elements from xfer_list.
1852 */
1853 empty_xfer_list(qdev, dbc);
1854 }
1855
release_dbc(struct qaic_device * qdev,u32 dbc_id)1856 void release_dbc(struct qaic_device *qdev, u32 dbc_id)
1857 {
1858 struct bo_slice *slice, *slice_temp;
1859 struct qaic_bo *bo, *bo_temp;
1860 struct dma_bridge_chan *dbc;
1861
1862 dbc = &qdev->dbc[dbc_id];
1863 if (!dbc->in_use)
1864 return;
1865
1866 wakeup_dbc(qdev, dbc_id);
1867
1868 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
1869 dbc->total_size = 0;
1870 dbc->req_q_base = NULL;
1871 dbc->dma_addr = 0;
1872 dbc->nelem = 0;
1873 dbc->usr = NULL;
1874
1875 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
1876 list_for_each_entry_safe(slice, slice_temp, &bo->slices, slice)
1877 kref_put(&slice->ref_count, free_slice);
1878 bo->sliced = false;
1879 INIT_LIST_HEAD(&bo->slices);
1880 bo->total_slice_nents = 0;
1881 bo->dir = 0;
1882 bo->dbc = NULL;
1883 bo->nr_slice = 0;
1884 bo->nr_slice_xfer_done = 0;
1885 bo->queued = false;
1886 bo->req_id = 0;
1887 init_completion(&bo->xfer_done);
1888 complete_all(&bo->xfer_done);
1889 list_del(&bo->bo_list);
1890 bo->perf_stats.req_received_ts = 0;
1891 bo->perf_stats.req_submit_ts = 0;
1892 bo->perf_stats.req_processed_ts = 0;
1893 bo->perf_stats.queue_level_before = 0;
1894 }
1895
1896 dbc->in_use = false;
1897 wake_up(&dbc->dbc_release);
1898 }
1899