1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4
5 #include <linux/mm_types_task.h>
6
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22
23 #include <asm/mmu.h>
24
25 #ifndef AT_VECTOR_SIZE_ARCH
26 #define AT_VECTOR_SIZE_ARCH 0
27 #endif
28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29
30 #define INIT_PASID 0
31
32 struct address_space;
33 struct mem_cgroup;
34
35 /*
36 * Each physical page in the system has a struct page associated with
37 * it to keep track of whatever it is we are using the page for at the
38 * moment. Note that we have no way to track which tasks are using
39 * a page, though if it is a pagecache page, rmap structures can tell us
40 * who is mapping it.
41 *
42 * If you allocate the page using alloc_pages(), you can use some of the
43 * space in struct page for your own purposes. The five words in the main
44 * union are available, except for bit 0 of the first word which must be
45 * kept clear. Many users use this word to store a pointer to an object
46 * which is guaranteed to be aligned. If you use the same storage as
47 * page->mapping, you must restore it to NULL before freeing the page.
48 *
49 * If your page will not be mapped to userspace, you can also use the four
50 * bytes in the mapcount union, but you must call page_mapcount_reset()
51 * before freeing it.
52 *
53 * If you want to use the refcount field, it must be used in such a way
54 * that other CPUs temporarily incrementing and then decrementing the
55 * refcount does not cause problems. On receiving the page from
56 * alloc_pages(), the refcount will be positive.
57 *
58 * If you allocate pages of order > 0, you can use some of the fields
59 * in each subpage, but you may need to restore some of their values
60 * afterwards.
61 *
62 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
63 * That requires that freelist & counters in struct slab be adjacent and
64 * double-word aligned. Because struct slab currently just reinterprets the
65 * bits of struct page, we align all struct pages to double-word boundaries,
66 * and ensure that 'freelist' is aligned within struct slab.
67 */
68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
69 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
70 #else
71 #define _struct_page_alignment __aligned(sizeof(unsigned long))
72 #endif
73
74 struct page {
75 unsigned long flags; /* Atomic flags, some possibly
76 * updated asynchronously */
77 /*
78 * Five words (20/40 bytes) are available in this union.
79 * WARNING: bit 0 of the first word is used for PageTail(). That
80 * means the other users of this union MUST NOT use the bit to
81 * avoid collision and false-positive PageTail().
82 */
83 union {
84 struct { /* Page cache and anonymous pages */
85 /**
86 * @lru: Pageout list, eg. active_list protected by
87 * lruvec->lru_lock. Sometimes used as a generic list
88 * by the page owner.
89 */
90 union {
91 struct list_head lru;
92
93 /* Or, for the Unevictable "LRU list" slot */
94 struct {
95 /* Always even, to negate PageTail */
96 void *__filler;
97 /* Count page's or folio's mlocks */
98 unsigned int mlock_count;
99 };
100
101 /* Or, free page */
102 struct list_head buddy_list;
103 struct list_head pcp_list;
104 };
105 /* See page-flags.h for PAGE_MAPPING_FLAGS */
106 struct address_space *mapping;
107 union {
108 pgoff_t index; /* Our offset within mapping. */
109 unsigned long share; /* share count for fsdax */
110 };
111 /**
112 * @private: Mapping-private opaque data.
113 * Usually used for buffer_heads if PagePrivate.
114 * Used for swp_entry_t if PageSwapCache.
115 * Indicates order in the buddy system if PageBuddy.
116 */
117 unsigned long private;
118 };
119 struct { /* page_pool used by netstack */
120 /**
121 * @pp_magic: magic value to avoid recycling non
122 * page_pool allocated pages.
123 */
124 unsigned long pp_magic;
125 struct page_pool *pp;
126 unsigned long _pp_mapping_pad;
127 unsigned long dma_addr;
128 union {
129 /**
130 * dma_addr_upper: might require a 64-bit
131 * value on 32-bit architectures.
132 */
133 unsigned long dma_addr_upper;
134 /**
135 * For frag page support, not supported in
136 * 32-bit architectures with 64-bit DMA.
137 */
138 atomic_long_t pp_frag_count;
139 };
140 };
141 struct { /* Tail pages of compound page */
142 unsigned long compound_head; /* Bit zero is set */
143 };
144 struct { /* ZONE_DEVICE pages */
145 /** @pgmap: Points to the hosting device page map. */
146 struct dev_pagemap *pgmap;
147 void *zone_device_data;
148 /*
149 * ZONE_DEVICE private pages are counted as being
150 * mapped so the next 3 words hold the mapping, index,
151 * and private fields from the source anonymous or
152 * page cache page while the page is migrated to device
153 * private memory.
154 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
155 * use the mapping, index, and private fields when
156 * pmem backed DAX files are mapped.
157 */
158 };
159
160 /** @rcu_head: You can use this to free a page by RCU. */
161 struct rcu_head rcu_head;
162 };
163
164 union { /* This union is 4 bytes in size. */
165 /*
166 * If the page can be mapped to userspace, encodes the number
167 * of times this page is referenced by a page table.
168 */
169 atomic_t _mapcount;
170
171 /*
172 * If the page is neither PageSlab nor mappable to userspace,
173 * the value stored here may help determine what this page
174 * is used for. See page-flags.h for a list of page types
175 * which are currently stored here.
176 */
177 unsigned int page_type;
178 };
179
180 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
181 atomic_t _refcount;
182
183 #ifdef CONFIG_MEMCG
184 unsigned long memcg_data;
185 #endif
186
187 /*
188 * On machines where all RAM is mapped into kernel address space,
189 * we can simply calculate the virtual address. On machines with
190 * highmem some memory is mapped into kernel virtual memory
191 * dynamically, so we need a place to store that address.
192 * Note that this field could be 16 bits on x86 ... ;)
193 *
194 * Architectures with slow multiplication can define
195 * WANT_PAGE_VIRTUAL in asm/page.h
196 */
197 #if defined(WANT_PAGE_VIRTUAL)
198 void *virtual; /* Kernel virtual address (NULL if
199 not kmapped, ie. highmem) */
200 #endif /* WANT_PAGE_VIRTUAL */
201
202 #ifdef CONFIG_KMSAN
203 /*
204 * KMSAN metadata for this page:
205 * - shadow page: every bit indicates whether the corresponding
206 * bit of the original page is initialized (0) or not (1);
207 * - origin page: every 4 bytes contain an id of the stack trace
208 * where the uninitialized value was created.
209 */
210 struct page *kmsan_shadow;
211 struct page *kmsan_origin;
212 #endif
213
214 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
215 int _last_cpupid;
216 #endif
217 } _struct_page_alignment;
218
219 /*
220 * struct encoded_page - a nonexistent type marking this pointer
221 *
222 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
223 * with the low bits of the pointer indicating extra context-dependent
224 * information. Not super-common, but happens in mmu_gather and mlock
225 * handling, and this acts as a type system check on that use.
226 *
227 * We only really have two guaranteed bits in general, although you could
228 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
229 * for more.
230 *
231 * Use the supplied helper functions to endcode/decode the pointer and bits.
232 */
233 struct encoded_page;
234 #define ENCODE_PAGE_BITS 3ul
encode_page(struct page * page,unsigned long flags)235 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
236 {
237 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS);
238 return (struct encoded_page *)(flags | (unsigned long)page);
239 }
240
encoded_page_flags(struct encoded_page * page)241 static inline unsigned long encoded_page_flags(struct encoded_page *page)
242 {
243 return ENCODE_PAGE_BITS & (unsigned long)page;
244 }
245
encoded_page_ptr(struct encoded_page * page)246 static inline struct page *encoded_page_ptr(struct encoded_page *page)
247 {
248 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page);
249 }
250
251 /*
252 * A swap entry has to fit into a "unsigned long", as the entry is hidden
253 * in the "index" field of the swapper address space.
254 */
255 typedef struct {
256 unsigned long val;
257 } swp_entry_t;
258
259 /**
260 * struct folio - Represents a contiguous set of bytes.
261 * @flags: Identical to the page flags.
262 * @lru: Least Recently Used list; tracks how recently this folio was used.
263 * @mlock_count: Number of times this folio has been pinned by mlock().
264 * @mapping: The file this page belongs to, or refers to the anon_vma for
265 * anonymous memory.
266 * @index: Offset within the file, in units of pages. For anonymous memory,
267 * this is the index from the beginning of the mmap.
268 * @private: Filesystem per-folio data (see folio_attach_private()).
269 * @swap: Used for swp_entry_t if folio_test_swapcache().
270 * @_mapcount: Do not access this member directly. Use folio_mapcount() to
271 * find out how many times this folio is mapped by userspace.
272 * @_refcount: Do not access this member directly. Use folio_ref_count()
273 * to find how many references there are to this folio.
274 * @memcg_data: Memory Control Group data.
275 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
276 * @_nr_pages_mapped: Do not use directly, call folio_mapcount().
277 * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
278 * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
279 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
280 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
281 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
282 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
283 * @_deferred_list: Folios to be split under memory pressure.
284 *
285 * A folio is a physically, virtually and logically contiguous set
286 * of bytes. It is a power-of-two in size, and it is aligned to that
287 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is
288 * in the page cache, it is at a file offset which is a multiple of that
289 * power-of-two. It may be mapped into userspace at an address which is
290 * at an arbitrary page offset, but its kernel virtual address is aligned
291 * to its size.
292 */
293 struct folio {
294 /* private: don't document the anon union */
295 union {
296 struct {
297 /* public: */
298 unsigned long flags;
299 union {
300 struct list_head lru;
301 /* private: avoid cluttering the output */
302 struct {
303 void *__filler;
304 /* public: */
305 unsigned int mlock_count;
306 /* private: */
307 };
308 /* public: */
309 };
310 struct address_space *mapping;
311 pgoff_t index;
312 union {
313 void *private;
314 swp_entry_t swap;
315 };
316 atomic_t _mapcount;
317 atomic_t _refcount;
318 #ifdef CONFIG_MEMCG
319 unsigned long memcg_data;
320 #endif
321 /* private: the union with struct page is transitional */
322 };
323 struct page page;
324 };
325 union {
326 struct {
327 unsigned long _flags_1;
328 unsigned long _head_1;
329 unsigned long _folio_avail;
330 /* public: */
331 atomic_t _entire_mapcount;
332 atomic_t _nr_pages_mapped;
333 atomic_t _pincount;
334 #ifdef CONFIG_64BIT
335 unsigned int _folio_nr_pages;
336 #endif
337 /* private: the union with struct page is transitional */
338 };
339 struct page __page_1;
340 };
341 union {
342 struct {
343 unsigned long _flags_2;
344 unsigned long _head_2;
345 /* public: */
346 void *_hugetlb_subpool;
347 void *_hugetlb_cgroup;
348 void *_hugetlb_cgroup_rsvd;
349 void *_hugetlb_hwpoison;
350 /* private: the union with struct page is transitional */
351 };
352 struct {
353 unsigned long _flags_2a;
354 unsigned long _head_2a;
355 /* public: */
356 struct list_head _deferred_list;
357 /* private: the union with struct page is transitional */
358 };
359 struct page __page_2;
360 };
361 };
362
363 #define FOLIO_MATCH(pg, fl) \
364 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
365 FOLIO_MATCH(flags, flags);
366 FOLIO_MATCH(lru, lru);
367 FOLIO_MATCH(mapping, mapping);
368 FOLIO_MATCH(compound_head, lru);
369 FOLIO_MATCH(index, index);
370 FOLIO_MATCH(private, private);
371 FOLIO_MATCH(_mapcount, _mapcount);
372 FOLIO_MATCH(_refcount, _refcount);
373 #ifdef CONFIG_MEMCG
374 FOLIO_MATCH(memcg_data, memcg_data);
375 #endif
376 #undef FOLIO_MATCH
377 #define FOLIO_MATCH(pg, fl) \
378 static_assert(offsetof(struct folio, fl) == \
379 offsetof(struct page, pg) + sizeof(struct page))
380 FOLIO_MATCH(flags, _flags_1);
381 FOLIO_MATCH(compound_head, _head_1);
382 #undef FOLIO_MATCH
383 #define FOLIO_MATCH(pg, fl) \
384 static_assert(offsetof(struct folio, fl) == \
385 offsetof(struct page, pg) + 2 * sizeof(struct page))
386 FOLIO_MATCH(flags, _flags_2);
387 FOLIO_MATCH(compound_head, _head_2);
388 FOLIO_MATCH(flags, _flags_2a);
389 FOLIO_MATCH(compound_head, _head_2a);
390 #undef FOLIO_MATCH
391
392 /**
393 * struct ptdesc - Memory descriptor for page tables.
394 * @__page_flags: Same as page flags. Unused for page tables.
395 * @pt_rcu_head: For freeing page table pages.
396 * @pt_list: List of used page tables. Used for s390 and x86.
397 * @_pt_pad_1: Padding that aliases with page's compound head.
398 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs.
399 * @__page_mapping: Aliases with page->mapping. Unused for page tables.
400 * @pt_mm: Used for x86 pgds.
401 * @pt_frag_refcount: For fragmented page table tracking. Powerpc and s390 only.
402 * @_pt_pad_2: Padding to ensure proper alignment.
403 * @ptl: Lock for the page table.
404 * @__page_type: Same as page->page_type. Unused for page tables.
405 * @_refcount: Same as page refcount. Used for s390 page tables.
406 * @pt_memcg_data: Memcg data. Tracked for page tables here.
407 *
408 * This struct overlays struct page for now. Do not modify without a good
409 * understanding of the issues.
410 */
411 struct ptdesc {
412 unsigned long __page_flags;
413
414 union {
415 struct rcu_head pt_rcu_head;
416 struct list_head pt_list;
417 struct {
418 unsigned long _pt_pad_1;
419 pgtable_t pmd_huge_pte;
420 };
421 };
422 unsigned long __page_mapping;
423
424 union {
425 struct mm_struct *pt_mm;
426 atomic_t pt_frag_refcount;
427 };
428
429 union {
430 unsigned long _pt_pad_2;
431 #if ALLOC_SPLIT_PTLOCKS
432 spinlock_t *ptl;
433 #else
434 spinlock_t ptl;
435 #endif
436 };
437 unsigned int __page_type;
438 atomic_t _refcount;
439 #ifdef CONFIG_MEMCG
440 unsigned long pt_memcg_data;
441 #endif
442 };
443
444 #define TABLE_MATCH(pg, pt) \
445 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
446 TABLE_MATCH(flags, __page_flags);
447 TABLE_MATCH(compound_head, pt_list);
448 TABLE_MATCH(compound_head, _pt_pad_1);
449 TABLE_MATCH(mapping, __page_mapping);
450 TABLE_MATCH(rcu_head, pt_rcu_head);
451 TABLE_MATCH(page_type, __page_type);
452 TABLE_MATCH(_refcount, _refcount);
453 #ifdef CONFIG_MEMCG
454 TABLE_MATCH(memcg_data, pt_memcg_data);
455 #endif
456 #undef TABLE_MATCH
457 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
458
459 #define ptdesc_page(pt) (_Generic((pt), \
460 const struct ptdesc *: (const struct page *)(pt), \
461 struct ptdesc *: (struct page *)(pt)))
462
463 #define ptdesc_folio(pt) (_Generic((pt), \
464 const struct ptdesc *: (const struct folio *)(pt), \
465 struct ptdesc *: (struct folio *)(pt)))
466
467 #define page_ptdesc(p) (_Generic((p), \
468 const struct page *: (const struct ptdesc *)(p), \
469 struct page *: (struct ptdesc *)(p)))
470
471 /*
472 * Used for sizing the vmemmap region on some architectures
473 */
474 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
475
476 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
477 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
478
479 /*
480 * page_private can be used on tail pages. However, PagePrivate is only
481 * checked by the VM on the head page. So page_private on the tail pages
482 * should be used for data that's ancillary to the head page (eg attaching
483 * buffer heads to tail pages after attaching buffer heads to the head page)
484 */
485 #define page_private(page) ((page)->private)
486
set_page_private(struct page * page,unsigned long private)487 static inline void set_page_private(struct page *page, unsigned long private)
488 {
489 page->private = private;
490 }
491
folio_get_private(struct folio * folio)492 static inline void *folio_get_private(struct folio *folio)
493 {
494 return folio->private;
495 }
496
497 struct page_frag_cache {
498 void * va;
499 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
500 __u16 offset;
501 __u16 size;
502 #else
503 __u32 offset;
504 #endif
505 /* we maintain a pagecount bias, so that we dont dirty cache line
506 * containing page->_refcount every time we allocate a fragment.
507 */
508 unsigned int pagecnt_bias;
509 bool pfmemalloc;
510 };
511
512 typedef unsigned long vm_flags_t;
513
514 /*
515 * A region containing a mapping of a non-memory backed file under NOMMU
516 * conditions. These are held in a global tree and are pinned by the VMAs that
517 * map parts of them.
518 */
519 struct vm_region {
520 struct rb_node vm_rb; /* link in global region tree */
521 vm_flags_t vm_flags; /* VMA vm_flags */
522 unsigned long vm_start; /* start address of region */
523 unsigned long vm_end; /* region initialised to here */
524 unsigned long vm_top; /* region allocated to here */
525 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
526 struct file *vm_file; /* the backing file or NULL */
527
528 int vm_usage; /* region usage count (access under nommu_region_sem) */
529 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
530 * this region */
531 };
532
533 #ifdef CONFIG_USERFAULTFD
534 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
535 struct vm_userfaultfd_ctx {
536 struct userfaultfd_ctx *ctx;
537 };
538 #else /* CONFIG_USERFAULTFD */
539 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
540 struct vm_userfaultfd_ctx {};
541 #endif /* CONFIG_USERFAULTFD */
542
543 struct anon_vma_name {
544 struct kref kref;
545 /* The name needs to be at the end because it is dynamically sized. */
546 char name[];
547 };
548
549 struct vma_lock {
550 struct rw_semaphore lock;
551 };
552
553 struct vma_numab_state {
554 /*
555 * Initialised as time in 'jiffies' after which VMA
556 * should be scanned. Delays first scan of new VMA by at
557 * least sysctl_numa_balancing_scan_delay:
558 */
559 unsigned long next_scan;
560
561 /*
562 * Time in jiffies when pids_active[] is reset to
563 * detect phase change behaviour:
564 */
565 unsigned long pids_active_reset;
566
567 /*
568 * Approximate tracking of PIDs that trapped a NUMA hinting
569 * fault. May produce false positives due to hash collisions.
570 *
571 * [0] Previous PID tracking
572 * [1] Current PID tracking
573 *
574 * Window moves after next_pid_reset has expired approximately
575 * every VMA_PID_RESET_PERIOD jiffies:
576 */
577 unsigned long pids_active[2];
578
579 /* MM scan sequence ID when scan first started after VMA creation */
580 int start_scan_seq;
581
582 /*
583 * MM scan sequence ID when the VMA was last completely scanned.
584 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
585 */
586 int prev_scan_seq;
587 };
588
589 /*
590 * This struct describes a virtual memory area. There is one of these
591 * per VM-area/task. A VM area is any part of the process virtual memory
592 * space that has a special rule for the page-fault handlers (ie a shared
593 * library, the executable area etc).
594 */
595 struct vm_area_struct {
596 /* The first cache line has the info for VMA tree walking. */
597
598 union {
599 struct {
600 /* VMA covers [vm_start; vm_end) addresses within mm */
601 unsigned long vm_start;
602 unsigned long vm_end;
603 };
604 #ifdef CONFIG_PER_VMA_LOCK
605 struct rcu_head vm_rcu; /* Used for deferred freeing. */
606 #endif
607 };
608
609 struct mm_struct *vm_mm; /* The address space we belong to. */
610 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
611
612 /*
613 * Flags, see mm.h.
614 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
615 */
616 union {
617 const vm_flags_t vm_flags;
618 vm_flags_t __private __vm_flags;
619 };
620
621 #ifdef CONFIG_PER_VMA_LOCK
622 /*
623 * Can only be written (using WRITE_ONCE()) while holding both:
624 * - mmap_lock (in write mode)
625 * - vm_lock->lock (in write mode)
626 * Can be read reliably while holding one of:
627 * - mmap_lock (in read or write mode)
628 * - vm_lock->lock (in read or write mode)
629 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
630 * while holding nothing (except RCU to keep the VMA struct allocated).
631 *
632 * This sequence counter is explicitly allowed to overflow; sequence
633 * counter reuse can only lead to occasional unnecessary use of the
634 * slowpath.
635 */
636 int vm_lock_seq;
637 struct vma_lock *vm_lock;
638
639 /* Flag to indicate areas detached from the mm->mm_mt tree */
640 bool detached;
641 #endif
642
643 /*
644 * For areas with an address space and backing store,
645 * linkage into the address_space->i_mmap interval tree.
646 *
647 */
648 struct {
649 struct rb_node rb;
650 unsigned long rb_subtree_last;
651 } shared;
652
653 /*
654 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
655 * list, after a COW of one of the file pages. A MAP_SHARED vma
656 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
657 * or brk vma (with NULL file) can only be in an anon_vma list.
658 */
659 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
660 * page_table_lock */
661 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
662
663 /* Function pointers to deal with this struct. */
664 const struct vm_operations_struct *vm_ops;
665
666 /* Information about our backing store: */
667 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
668 units */
669 struct file * vm_file; /* File we map to (can be NULL). */
670 void * vm_private_data; /* was vm_pte (shared mem) */
671
672 #ifdef CONFIG_ANON_VMA_NAME
673 /*
674 * For private and shared anonymous mappings, a pointer to a null
675 * terminated string containing the name given to the vma, or NULL if
676 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
677 */
678 struct anon_vma_name *anon_name;
679 #endif
680 #ifdef CONFIG_SWAP
681 atomic_long_t swap_readahead_info;
682 #endif
683 #ifndef CONFIG_MMU
684 struct vm_region *vm_region; /* NOMMU mapping region */
685 #endif
686 #ifdef CONFIG_NUMA
687 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
688 #endif
689 #ifdef CONFIG_NUMA_BALANCING
690 struct vma_numab_state *numab_state; /* NUMA Balancing state */
691 #endif
692 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
693 } __randomize_layout;
694
695 #ifdef CONFIG_SCHED_MM_CID
696 struct mm_cid {
697 u64 time;
698 int cid;
699 };
700 #endif
701
702 struct kioctx_table;
703 struct mm_struct {
704 struct {
705 /*
706 * Fields which are often written to are placed in a separate
707 * cache line.
708 */
709 struct {
710 /**
711 * @mm_count: The number of references to &struct
712 * mm_struct (@mm_users count as 1).
713 *
714 * Use mmgrab()/mmdrop() to modify. When this drops to
715 * 0, the &struct mm_struct is freed.
716 */
717 atomic_t mm_count;
718 } ____cacheline_aligned_in_smp;
719
720 struct maple_tree mm_mt;
721 #ifdef CONFIG_MMU
722 unsigned long (*get_unmapped_area) (struct file *filp,
723 unsigned long addr, unsigned long len,
724 unsigned long pgoff, unsigned long flags);
725 #endif
726 unsigned long mmap_base; /* base of mmap area */
727 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
728 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
729 /* Base addresses for compatible mmap() */
730 unsigned long mmap_compat_base;
731 unsigned long mmap_compat_legacy_base;
732 #endif
733 unsigned long task_size; /* size of task vm space */
734 pgd_t * pgd;
735
736 #ifdef CONFIG_MEMBARRIER
737 /**
738 * @membarrier_state: Flags controlling membarrier behavior.
739 *
740 * This field is close to @pgd to hopefully fit in the same
741 * cache-line, which needs to be touched by switch_mm().
742 */
743 atomic_t membarrier_state;
744 #endif
745
746 /**
747 * @mm_users: The number of users including userspace.
748 *
749 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
750 * drops to 0 (i.e. when the task exits and there are no other
751 * temporary reference holders), we also release a reference on
752 * @mm_count (which may then free the &struct mm_struct if
753 * @mm_count also drops to 0).
754 */
755 atomic_t mm_users;
756
757 #ifdef CONFIG_SCHED_MM_CID
758 /**
759 * @pcpu_cid: Per-cpu current cid.
760 *
761 * Keep track of the currently allocated mm_cid for each cpu.
762 * The per-cpu mm_cid values are serialized by their respective
763 * runqueue locks.
764 */
765 struct mm_cid __percpu *pcpu_cid;
766 /*
767 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
768 *
769 * When the next mm_cid scan is due (in jiffies).
770 */
771 unsigned long mm_cid_next_scan;
772 #endif
773 #ifdef CONFIG_MMU
774 atomic_long_t pgtables_bytes; /* size of all page tables */
775 #endif
776 int map_count; /* number of VMAs */
777
778 spinlock_t page_table_lock; /* Protects page tables and some
779 * counters
780 */
781 /*
782 * With some kernel config, the current mmap_lock's offset
783 * inside 'mm_struct' is at 0x120, which is very optimal, as
784 * its two hot fields 'count' and 'owner' sit in 2 different
785 * cachelines, and when mmap_lock is highly contended, both
786 * of the 2 fields will be accessed frequently, current layout
787 * will help to reduce cache bouncing.
788 *
789 * So please be careful with adding new fields before
790 * mmap_lock, which can easily push the 2 fields into one
791 * cacheline.
792 */
793 struct rw_semaphore mmap_lock;
794
795 struct list_head mmlist; /* List of maybe swapped mm's. These
796 * are globally strung together off
797 * init_mm.mmlist, and are protected
798 * by mmlist_lock
799 */
800 #ifdef CONFIG_PER_VMA_LOCK
801 /*
802 * This field has lock-like semantics, meaning it is sometimes
803 * accessed with ACQUIRE/RELEASE semantics.
804 * Roughly speaking, incrementing the sequence number is
805 * equivalent to releasing locks on VMAs; reading the sequence
806 * number can be part of taking a read lock on a VMA.
807 *
808 * Can be modified under write mmap_lock using RELEASE
809 * semantics.
810 * Can be read with no other protection when holding write
811 * mmap_lock.
812 * Can be read with ACQUIRE semantics if not holding write
813 * mmap_lock.
814 */
815 int mm_lock_seq;
816 #endif
817
818
819 unsigned long hiwater_rss; /* High-watermark of RSS usage */
820 unsigned long hiwater_vm; /* High-water virtual memory usage */
821
822 unsigned long total_vm; /* Total pages mapped */
823 unsigned long locked_vm; /* Pages that have PG_mlocked set */
824 atomic64_t pinned_vm; /* Refcount permanently increased */
825 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
826 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
827 unsigned long stack_vm; /* VM_STACK */
828 unsigned long def_flags;
829
830 /**
831 * @write_protect_seq: Locked when any thread is write
832 * protecting pages mapped by this mm to enforce a later COW,
833 * for instance during page table copying for fork().
834 */
835 seqcount_t write_protect_seq;
836
837 spinlock_t arg_lock; /* protect the below fields */
838
839 unsigned long start_code, end_code, start_data, end_data;
840 unsigned long start_brk, brk, start_stack;
841 unsigned long arg_start, arg_end, env_start, env_end;
842
843 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
844
845 struct percpu_counter rss_stat[NR_MM_COUNTERS];
846
847 struct linux_binfmt *binfmt;
848
849 /* Architecture-specific MM context */
850 mm_context_t context;
851
852 unsigned long flags; /* Must use atomic bitops to access */
853
854 #ifdef CONFIG_AIO
855 spinlock_t ioctx_lock;
856 struct kioctx_table __rcu *ioctx_table;
857 #endif
858 #ifdef CONFIG_MEMCG
859 /*
860 * "owner" points to a task that is regarded as the canonical
861 * user/owner of this mm. All of the following must be true in
862 * order for it to be changed:
863 *
864 * current == mm->owner
865 * current->mm != mm
866 * new_owner->mm == mm
867 * new_owner->alloc_lock is held
868 */
869 struct task_struct __rcu *owner;
870 #endif
871 struct user_namespace *user_ns;
872
873 /* store ref to file /proc/<pid>/exe symlink points to */
874 struct file __rcu *exe_file;
875 #ifdef CONFIG_MMU_NOTIFIER
876 struct mmu_notifier_subscriptions *notifier_subscriptions;
877 #endif
878 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
879 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
880 #endif
881 #ifdef CONFIG_NUMA_BALANCING
882 /*
883 * numa_next_scan is the next time that PTEs will be remapped
884 * PROT_NONE to trigger NUMA hinting faults; such faults gather
885 * statistics and migrate pages to new nodes if necessary.
886 */
887 unsigned long numa_next_scan;
888
889 /* Restart point for scanning and remapping PTEs. */
890 unsigned long numa_scan_offset;
891
892 /* numa_scan_seq prevents two threads remapping PTEs. */
893 int numa_scan_seq;
894 #endif
895 /*
896 * An operation with batched TLB flushing is going on. Anything
897 * that can move process memory needs to flush the TLB when
898 * moving a PROT_NONE mapped page.
899 */
900 atomic_t tlb_flush_pending;
901 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
902 /* See flush_tlb_batched_pending() */
903 atomic_t tlb_flush_batched;
904 #endif
905 struct uprobes_state uprobes_state;
906 #ifdef CONFIG_PREEMPT_RT
907 struct rcu_head delayed_drop;
908 #endif
909 #ifdef CONFIG_HUGETLB_PAGE
910 atomic_long_t hugetlb_usage;
911 #endif
912 struct work_struct async_put_work;
913
914 #ifdef CONFIG_IOMMU_SVA
915 u32 pasid;
916 #endif
917 #ifdef CONFIG_KSM
918 /*
919 * Represent how many pages of this process are involved in KSM
920 * merging (not including ksm_zero_pages).
921 */
922 unsigned long ksm_merging_pages;
923 /*
924 * Represent how many pages are checked for ksm merging
925 * including merged and not merged.
926 */
927 unsigned long ksm_rmap_items;
928 /*
929 * Represent how many empty pages are merged with kernel zero
930 * pages when enabling KSM use_zero_pages.
931 */
932 atomic_long_t ksm_zero_pages;
933 #endif /* CONFIG_KSM */
934 #ifdef CONFIG_LRU_GEN
935 struct {
936 /* this mm_struct is on lru_gen_mm_list */
937 struct list_head list;
938 /*
939 * Set when switching to this mm_struct, as a hint of
940 * whether it has been used since the last time per-node
941 * page table walkers cleared the corresponding bits.
942 */
943 unsigned long bitmap;
944 #ifdef CONFIG_MEMCG
945 /* points to the memcg of "owner" above */
946 struct mem_cgroup *memcg;
947 #endif
948 } lru_gen;
949 #endif /* CONFIG_LRU_GEN */
950 } __randomize_layout;
951
952 /*
953 * The mm_cpumask needs to be at the end of mm_struct, because it
954 * is dynamically sized based on nr_cpu_ids.
955 */
956 unsigned long cpu_bitmap[];
957 };
958
959 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
960 MT_FLAGS_USE_RCU)
961 extern struct mm_struct init_mm;
962
963 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)964 static inline void mm_init_cpumask(struct mm_struct *mm)
965 {
966 unsigned long cpu_bitmap = (unsigned long)mm;
967
968 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
969 cpumask_clear((struct cpumask *)cpu_bitmap);
970 }
971
972 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)973 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
974 {
975 return (struct cpumask *)&mm->cpu_bitmap;
976 }
977
978 #ifdef CONFIG_LRU_GEN
979
980 struct lru_gen_mm_list {
981 /* mm_struct list for page table walkers */
982 struct list_head fifo;
983 /* protects the list above */
984 spinlock_t lock;
985 };
986
987 void lru_gen_add_mm(struct mm_struct *mm);
988 void lru_gen_del_mm(struct mm_struct *mm);
989 #ifdef CONFIG_MEMCG
990 void lru_gen_migrate_mm(struct mm_struct *mm);
991 #endif
992
lru_gen_init_mm(struct mm_struct * mm)993 static inline void lru_gen_init_mm(struct mm_struct *mm)
994 {
995 INIT_LIST_HEAD(&mm->lru_gen.list);
996 mm->lru_gen.bitmap = 0;
997 #ifdef CONFIG_MEMCG
998 mm->lru_gen.memcg = NULL;
999 #endif
1000 }
1001
lru_gen_use_mm(struct mm_struct * mm)1002 static inline void lru_gen_use_mm(struct mm_struct *mm)
1003 {
1004 /*
1005 * When the bitmap is set, page reclaim knows this mm_struct has been
1006 * used since the last time it cleared the bitmap. So it might be worth
1007 * walking the page tables of this mm_struct to clear the accessed bit.
1008 */
1009 WRITE_ONCE(mm->lru_gen.bitmap, -1);
1010 }
1011
1012 #else /* !CONFIG_LRU_GEN */
1013
lru_gen_add_mm(struct mm_struct * mm)1014 static inline void lru_gen_add_mm(struct mm_struct *mm)
1015 {
1016 }
1017
lru_gen_del_mm(struct mm_struct * mm)1018 static inline void lru_gen_del_mm(struct mm_struct *mm)
1019 {
1020 }
1021
1022 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)1023 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1024 {
1025 }
1026 #endif
1027
lru_gen_init_mm(struct mm_struct * mm)1028 static inline void lru_gen_init_mm(struct mm_struct *mm)
1029 {
1030 }
1031
lru_gen_use_mm(struct mm_struct * mm)1032 static inline void lru_gen_use_mm(struct mm_struct *mm)
1033 {
1034 }
1035
1036 #endif /* CONFIG_LRU_GEN */
1037
1038 struct vma_iterator {
1039 struct ma_state mas;
1040 };
1041
1042 #define VMA_ITERATOR(name, __mm, __addr) \
1043 struct vma_iterator name = { \
1044 .mas = { \
1045 .tree = &(__mm)->mm_mt, \
1046 .index = __addr, \
1047 .node = MAS_START, \
1048 }, \
1049 }
1050
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1051 static inline void vma_iter_init(struct vma_iterator *vmi,
1052 struct mm_struct *mm, unsigned long addr)
1053 {
1054 mas_init(&vmi->mas, &mm->mm_mt, addr);
1055 }
1056
1057 #ifdef CONFIG_SCHED_MM_CID
1058
1059 enum mm_cid_state {
1060 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */
1061 MM_CID_LAZY_PUT = (1U << 31),
1062 };
1063
mm_cid_is_unset(int cid)1064 static inline bool mm_cid_is_unset(int cid)
1065 {
1066 return cid == MM_CID_UNSET;
1067 }
1068
mm_cid_is_lazy_put(int cid)1069 static inline bool mm_cid_is_lazy_put(int cid)
1070 {
1071 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1072 }
1073
mm_cid_is_valid(int cid)1074 static inline bool mm_cid_is_valid(int cid)
1075 {
1076 return !(cid & MM_CID_LAZY_PUT);
1077 }
1078
mm_cid_set_lazy_put(int cid)1079 static inline int mm_cid_set_lazy_put(int cid)
1080 {
1081 return cid | MM_CID_LAZY_PUT;
1082 }
1083
mm_cid_clear_lazy_put(int cid)1084 static inline int mm_cid_clear_lazy_put(int cid)
1085 {
1086 return cid & ~MM_CID_LAZY_PUT;
1087 }
1088
1089 /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1090 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1091 {
1092 unsigned long cid_bitmap = (unsigned long)mm;
1093
1094 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1095 /* Skip cpu_bitmap */
1096 cid_bitmap += cpumask_size();
1097 return (struct cpumask *)cid_bitmap;
1098 }
1099
mm_init_cid(struct mm_struct * mm)1100 static inline void mm_init_cid(struct mm_struct *mm)
1101 {
1102 int i;
1103
1104 for_each_possible_cpu(i) {
1105 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1106
1107 pcpu_cid->cid = MM_CID_UNSET;
1108 pcpu_cid->time = 0;
1109 }
1110 cpumask_clear(mm_cidmask(mm));
1111 }
1112
mm_alloc_cid(struct mm_struct * mm)1113 static inline int mm_alloc_cid(struct mm_struct *mm)
1114 {
1115 mm->pcpu_cid = alloc_percpu(struct mm_cid);
1116 if (!mm->pcpu_cid)
1117 return -ENOMEM;
1118 mm_init_cid(mm);
1119 return 0;
1120 }
1121
mm_destroy_cid(struct mm_struct * mm)1122 static inline void mm_destroy_cid(struct mm_struct *mm)
1123 {
1124 free_percpu(mm->pcpu_cid);
1125 mm->pcpu_cid = NULL;
1126 }
1127
mm_cid_size(void)1128 static inline unsigned int mm_cid_size(void)
1129 {
1130 return cpumask_size();
1131 }
1132 #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm)1133 static inline void mm_init_cid(struct mm_struct *mm) { }
mm_alloc_cid(struct mm_struct * mm)1134 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1135 static inline void mm_destroy_cid(struct mm_struct *mm) { }
mm_cid_size(void)1136 static inline unsigned int mm_cid_size(void)
1137 {
1138 return 0;
1139 }
1140 #endif /* CONFIG_SCHED_MM_CID */
1141
1142 struct mmu_gather;
1143 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1144 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1145 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1146
1147 struct vm_fault;
1148
1149 /**
1150 * typedef vm_fault_t - Return type for page fault handlers.
1151 *
1152 * Page fault handlers return a bitmask of %VM_FAULT values.
1153 */
1154 typedef __bitwise unsigned int vm_fault_t;
1155
1156 /**
1157 * enum vm_fault_reason - Page fault handlers return a bitmask of
1158 * these values to tell the core VM what happened when handling the
1159 * fault. Used to decide whether a process gets delivered SIGBUS or
1160 * just gets major/minor fault counters bumped up.
1161 *
1162 * @VM_FAULT_OOM: Out Of Memory
1163 * @VM_FAULT_SIGBUS: Bad access
1164 * @VM_FAULT_MAJOR: Page read from storage
1165 * @VM_FAULT_HWPOISON: Hit poisoned small page
1166 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
1167 * in upper bits
1168 * @VM_FAULT_SIGSEGV: segmentation fault
1169 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
1170 * @VM_FAULT_LOCKED: ->fault locked the returned page
1171 * @VM_FAULT_RETRY: ->fault blocked, must retry
1172 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
1173 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
1174 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
1175 * fsync() to complete (for synchronous page faults
1176 * in DAX)
1177 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released
1178 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
1179 *
1180 */
1181 enum vm_fault_reason {
1182 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
1183 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
1184 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
1185 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
1186 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1187 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
1188 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
1189 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
1190 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
1191 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
1192 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
1193 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
1194 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000,
1195 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
1196 };
1197
1198 /* Encode hstate index for a hwpoisoned large page */
1199 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1200 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1201
1202 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
1203 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
1204 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1205
1206 #define VM_FAULT_RESULT_TRACE \
1207 { VM_FAULT_OOM, "OOM" }, \
1208 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1209 { VM_FAULT_MAJOR, "MAJOR" }, \
1210 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1211 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1212 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1213 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1214 { VM_FAULT_LOCKED, "LOCKED" }, \
1215 { VM_FAULT_RETRY, "RETRY" }, \
1216 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1217 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1218 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \
1219 { VM_FAULT_COMPLETED, "COMPLETED" }
1220
1221 struct vm_special_mapping {
1222 const char *name; /* The name, e.g. "[vdso]". */
1223
1224 /*
1225 * If .fault is not provided, this points to a
1226 * NULL-terminated array of pages that back the special mapping.
1227 *
1228 * This must not be NULL unless .fault is provided.
1229 */
1230 struct page **pages;
1231
1232 /*
1233 * If non-NULL, then this is called to resolve page faults
1234 * on the special mapping. If used, .pages is not checked.
1235 */
1236 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1237 struct vm_area_struct *vma,
1238 struct vm_fault *vmf);
1239
1240 int (*mremap)(const struct vm_special_mapping *sm,
1241 struct vm_area_struct *new_vma);
1242 };
1243
1244 enum tlb_flush_reason {
1245 TLB_FLUSH_ON_TASK_SWITCH,
1246 TLB_REMOTE_SHOOTDOWN,
1247 TLB_LOCAL_SHOOTDOWN,
1248 TLB_LOCAL_MM_SHOOTDOWN,
1249 TLB_REMOTE_SEND_IPI,
1250 NR_TLB_FLUSH_REASONS,
1251 };
1252
1253 /**
1254 * enum fault_flag - Fault flag definitions.
1255 * @FAULT_FLAG_WRITE: Fault was a write fault.
1256 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1257 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1258 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1259 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1260 * @FAULT_FLAG_TRIED: The fault has been tried once.
1261 * @FAULT_FLAG_USER: The fault originated in userspace.
1262 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1263 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1264 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1265 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1266 * COW mapping, making sure that an exclusive anon page is
1267 * mapped after the fault.
1268 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1269 * We should only access orig_pte if this flag set.
1270 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1271 *
1272 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1273 * whether we would allow page faults to retry by specifying these two
1274 * fault flags correctly. Currently there can be three legal combinations:
1275 *
1276 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
1277 * this is the first try
1278 *
1279 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
1280 * we've already tried at least once
1281 *
1282 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1283 *
1284 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1285 * be used. Note that page faults can be allowed to retry for multiple times,
1286 * in which case we'll have an initial fault with flags (a) then later on
1287 * continuous faults with flags (b). We should always try to detect pending
1288 * signals before a retry to make sure the continuous page faults can still be
1289 * interrupted if necessary.
1290 *
1291 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1292 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1293 * applied to mappings that are not COW mappings.
1294 */
1295 enum fault_flag {
1296 FAULT_FLAG_WRITE = 1 << 0,
1297 FAULT_FLAG_MKWRITE = 1 << 1,
1298 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
1299 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
1300 FAULT_FLAG_KILLABLE = 1 << 4,
1301 FAULT_FLAG_TRIED = 1 << 5,
1302 FAULT_FLAG_USER = 1 << 6,
1303 FAULT_FLAG_REMOTE = 1 << 7,
1304 FAULT_FLAG_INSTRUCTION = 1 << 8,
1305 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
1306 FAULT_FLAG_UNSHARE = 1 << 10,
1307 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11,
1308 FAULT_FLAG_VMA_LOCK = 1 << 12,
1309 };
1310
1311 typedef unsigned int __bitwise zap_flags_t;
1312
1313 /*
1314 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1315 * other. Here is what they mean, and how to use them:
1316 *
1317 *
1318 * FIXME: For pages which are part of a filesystem, mappings are subject to the
1319 * lifetime enforced by the filesystem and we need guarantees that longterm
1320 * users like RDMA and V4L2 only establish mappings which coordinate usage with
1321 * the filesystem. Ideas for this coordination include revoking the longterm
1322 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
1323 * added after the problem with filesystems was found FS DAX VMAs are
1324 * specifically failed. Filesystem pages are still subject to bugs and use of
1325 * FOLL_LONGTERM should be avoided on those pages.
1326 *
1327 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1328 * that region. And so, CMA attempts to migrate the page before pinning, when
1329 * FOLL_LONGTERM is specified.
1330 *
1331 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1332 * but an additional pin counting system) will be invoked. This is intended for
1333 * anything that gets a page reference and then touches page data (for example,
1334 * Direct IO). This lets the filesystem know that some non-file-system entity is
1335 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1336 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1337 * a call to unpin_user_page().
1338 *
1339 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1340 * and separate refcounting mechanisms, however, and that means that each has
1341 * its own acquire and release mechanisms:
1342 *
1343 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1344 *
1345 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1346 *
1347 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1348 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1349 * calls applied to them, and that's perfectly OK. This is a constraint on the
1350 * callers, not on the pages.)
1351 *
1352 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1353 * directly by the caller. That's in order to help avoid mismatches when
1354 * releasing pages: get_user_pages*() pages must be released via put_page(),
1355 * while pin_user_pages*() pages must be released via unpin_user_page().
1356 *
1357 * Please see Documentation/core-api/pin_user_pages.rst for more information.
1358 */
1359
1360 enum {
1361 /* check pte is writable */
1362 FOLL_WRITE = 1 << 0,
1363 /* do get_page on page */
1364 FOLL_GET = 1 << 1,
1365 /* give error on hole if it would be zero */
1366 FOLL_DUMP = 1 << 2,
1367 /* get_user_pages read/write w/o permission */
1368 FOLL_FORCE = 1 << 3,
1369 /*
1370 * if a disk transfer is needed, start the IO and return without waiting
1371 * upon it
1372 */
1373 FOLL_NOWAIT = 1 << 4,
1374 /* do not fault in pages */
1375 FOLL_NOFAULT = 1 << 5,
1376 /* check page is hwpoisoned */
1377 FOLL_HWPOISON = 1 << 6,
1378 /* don't do file mappings */
1379 FOLL_ANON = 1 << 7,
1380 /*
1381 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1382 * time period _often_ under userspace control. This is in contrast to
1383 * iov_iter_get_pages(), whose usages are transient.
1384 */
1385 FOLL_LONGTERM = 1 << 8,
1386 /* split huge pmd before returning */
1387 FOLL_SPLIT_PMD = 1 << 9,
1388 /* allow returning PCI P2PDMA pages */
1389 FOLL_PCI_P2PDMA = 1 << 10,
1390 /* allow interrupts from generic signals */
1391 FOLL_INTERRUPTIBLE = 1 << 11,
1392 /*
1393 * Always honor (trigger) NUMA hinting faults.
1394 *
1395 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1396 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1397 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1398 * hinting faults.
1399 */
1400 FOLL_HONOR_NUMA_FAULT = 1 << 12,
1401
1402 /* See also internal only FOLL flags in mm/internal.h */
1403 };
1404
1405 #endif /* _LINUX_MM_TYPES_H */
1406