1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/mdio.h>
56 #include <linux/phy.h>
57 #include <linux/fec.h>
58 #include <linux/of.h>
59 #include <linux/of_device.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73
74 #include <asm/cacheflush.h>
75
76 #include "fec.h"
77
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 int cpu, struct xdp_buff *xdp,
82 u32 dma_sync_len);
83
84 #define DRIVER_NAME "fec"
85
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88 /* Pause frame feild and FIFO threshold */
89 #define FEC_ENET_FCE (1 << 5)
90 #define FEC_ENET_RSEM_V 0x84
91 #define FEC_ENET_RSFL_V 16
92 #define FEC_ENET_RAEM_V 0x8
93 #define FEC_ENET_RAFL_V 0x8
94 #define FEC_ENET_OPD_V 0xFFF0
95 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
96
97 #define FEC_ENET_XDP_PASS 0
98 #define FEC_ENET_XDP_CONSUMED BIT(0)
99 #define FEC_ENET_XDP_TX BIT(1)
100 #define FEC_ENET_XDP_REDIR BIT(2)
101
102 struct fec_devinfo {
103 u32 quirks;
104 };
105
106 static const struct fec_devinfo fec_imx25_info = {
107 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109 };
110
111 static const struct fec_devinfo fec_imx27_info = {
112 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 FEC_QUIRK_HAS_MDIO_C45,
114 };
115
116 static const struct fec_devinfo fec_imx28_info = {
117 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121 };
122
123 static const struct fec_devinfo fec_imx6q_info = {
124 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129 };
130
131 static const struct fec_devinfo fec_mvf600_info = {
132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 FEC_QUIRK_HAS_MDIO_C45,
134 };
135
136 static const struct fec_devinfo fec_imx6x_info = {
137 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 FEC_QUIRK_HAS_MDIO_C45,
144 };
145
146 static const struct fec_devinfo fec_imx6ul_info = {
147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 FEC_QUIRK_HAS_MDIO_C45,
153 };
154
155 static const struct fec_devinfo fec_imx8mq_info = {
156 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 FEC_QUIRK_HAS_MDIO_C45,
164 };
165
166 static const struct fec_devinfo fec_imx8qm_info = {
167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174 };
175
176 static const struct fec_devinfo fec_s32v234_info = {
177 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 FEC_QUIRK_HAS_MDIO_C45,
182 };
183
184 static struct platform_device_id fec_devtype[] = {
185 {
186 /* keep it for coldfire */
187 .name = DRIVER_NAME,
188 .driver_data = 0,
189 }, {
190 .name = "imx25-fec",
191 .driver_data = (kernel_ulong_t)&fec_imx25_info,
192 }, {
193 .name = "imx27-fec",
194 .driver_data = (kernel_ulong_t)&fec_imx27_info,
195 }, {
196 .name = "imx28-fec",
197 .driver_data = (kernel_ulong_t)&fec_imx28_info,
198 }, {
199 .name = "imx6q-fec",
200 .driver_data = (kernel_ulong_t)&fec_imx6q_info,
201 }, {
202 .name = "mvf600-fec",
203 .driver_data = (kernel_ulong_t)&fec_mvf600_info,
204 }, {
205 .name = "imx6sx-fec",
206 .driver_data = (kernel_ulong_t)&fec_imx6x_info,
207 }, {
208 .name = "imx6ul-fec",
209 .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
210 }, {
211 .name = "imx8mq-fec",
212 .driver_data = (kernel_ulong_t)&fec_imx8mq_info,
213 }, {
214 .name = "imx8qm-fec",
215 .driver_data = (kernel_ulong_t)&fec_imx8qm_info,
216 }, {
217 .name = "s32v234-fec",
218 .driver_data = (kernel_ulong_t)&fec_s32v234_info,
219 }, {
220 /* sentinel */
221 }
222 };
223 MODULE_DEVICE_TABLE(platform, fec_devtype);
224
225 enum imx_fec_type {
226 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
227 IMX27_FEC, /* runs on i.mx27/35/51 */
228 IMX28_FEC,
229 IMX6Q_FEC,
230 MVF600_FEC,
231 IMX6SX_FEC,
232 IMX6UL_FEC,
233 IMX8MQ_FEC,
234 IMX8QM_FEC,
235 S32V234_FEC,
236 };
237
238 static const struct of_device_id fec_dt_ids[] = {
239 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
240 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
241 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
242 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
243 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
244 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
245 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
246 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
247 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
248 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
249 { /* sentinel */ }
250 };
251 MODULE_DEVICE_TABLE(of, fec_dt_ids);
252
253 static unsigned char macaddr[ETH_ALEN];
254 module_param_array(macaddr, byte, NULL, 0);
255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
256
257 #if defined(CONFIG_M5272)
258 /*
259 * Some hardware gets it MAC address out of local flash memory.
260 * if this is non-zero then assume it is the address to get MAC from.
261 */
262 #if defined(CONFIG_NETtel)
263 #define FEC_FLASHMAC 0xf0006006
264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
265 #define FEC_FLASHMAC 0xf0006000
266 #elif defined(CONFIG_CANCam)
267 #define FEC_FLASHMAC 0xf0020000
268 #elif defined (CONFIG_M5272C3)
269 #define FEC_FLASHMAC (0xffe04000 + 4)
270 #elif defined(CONFIG_MOD5272)
271 #define FEC_FLASHMAC 0xffc0406b
272 #else
273 #define FEC_FLASHMAC 0
274 #endif
275 #endif /* CONFIG_M5272 */
276
277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
278 *
279 * 2048 byte skbufs are allocated. However, alignment requirements
280 * varies between FEC variants. Worst case is 64, so round down by 64.
281 */
282 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
283 #define PKT_MINBUF_SIZE 64
284
285 /* FEC receive acceleration */
286 #define FEC_RACC_IPDIS BIT(1)
287 #define FEC_RACC_PRODIS BIT(2)
288 #define FEC_RACC_SHIFT16 BIT(7)
289 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
290
291 /* MIB Control Register */
292 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
293
294 /*
295 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
296 * size bits. Other FEC hardware does not, so we need to take that into
297 * account when setting it.
298 */
299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
300 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
301 defined(CONFIG_ARM64)
302 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
303 #else
304 #define OPT_FRAME_SIZE 0
305 #endif
306
307 /* FEC MII MMFR bits definition */
308 #define FEC_MMFR_ST (1 << 30)
309 #define FEC_MMFR_ST_C45 (0)
310 #define FEC_MMFR_OP_READ (2 << 28)
311 #define FEC_MMFR_OP_READ_C45 (3 << 28)
312 #define FEC_MMFR_OP_WRITE (1 << 28)
313 #define FEC_MMFR_OP_ADDR_WRITE (0)
314 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
315 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
316 #define FEC_MMFR_TA (2 << 16)
317 #define FEC_MMFR_DATA(v) (v & 0xffff)
318 /* FEC ECR bits definition */
319 #define FEC_ECR_RESET BIT(0)
320 #define FEC_ECR_ETHEREN BIT(1)
321 #define FEC_ECR_MAGICEN BIT(2)
322 #define FEC_ECR_SLEEP BIT(3)
323 #define FEC_ECR_EN1588 BIT(4)
324 #define FEC_ECR_BYTESWP BIT(8)
325 /* FEC RCR bits definition */
326 #define FEC_RCR_LOOP BIT(0)
327 #define FEC_RCR_HALFDPX BIT(1)
328 #define FEC_RCR_MII BIT(2)
329 #define FEC_RCR_PROMISC BIT(3)
330 #define FEC_RCR_BC_REJ BIT(4)
331 #define FEC_RCR_FLOWCTL BIT(5)
332 #define FEC_RCR_RMII BIT(8)
333 #define FEC_RCR_10BASET BIT(9)
334 /* TX WMARK bits */
335 #define FEC_TXWMRK_STRFWD BIT(8)
336
337 #define FEC_MII_TIMEOUT 30000 /* us */
338
339 /* Transmitter timeout */
340 #define TX_TIMEOUT (2 * HZ)
341
342 #define FEC_PAUSE_FLAG_AUTONEG 0x1
343 #define FEC_PAUSE_FLAG_ENABLE 0x2
344 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
345 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
346 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
347
348 /* Max number of allowed TCP segments for software TSO */
349 #define FEC_MAX_TSO_SEGS 100
350 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
351
352 #define IS_TSO_HEADER(txq, addr) \
353 ((addr >= txq->tso_hdrs_dma) && \
354 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
355
356 static int mii_cnt;
357
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)358 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
359 struct bufdesc_prop *bd)
360 {
361 return (bdp >= bd->last) ? bd->base
362 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
363 }
364
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)365 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
366 struct bufdesc_prop *bd)
367 {
368 return (bdp <= bd->base) ? bd->last
369 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
370 }
371
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)372 static int fec_enet_get_bd_index(struct bufdesc *bdp,
373 struct bufdesc_prop *bd)
374 {
375 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
376 }
377
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)378 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
379 {
380 int entries;
381
382 entries = (((const char *)txq->dirty_tx -
383 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
384
385 return entries >= 0 ? entries : entries + txq->bd.ring_size;
386 }
387
swap_buffer(void * bufaddr,int len)388 static void swap_buffer(void *bufaddr, int len)
389 {
390 int i;
391 unsigned int *buf = bufaddr;
392
393 for (i = 0; i < len; i += 4, buf++)
394 swab32s(buf);
395 }
396
fec_dump(struct net_device * ndev)397 static void fec_dump(struct net_device *ndev)
398 {
399 struct fec_enet_private *fep = netdev_priv(ndev);
400 struct bufdesc *bdp;
401 struct fec_enet_priv_tx_q *txq;
402 int index = 0;
403
404 netdev_info(ndev, "TX ring dump\n");
405 pr_info("Nr SC addr len SKB\n");
406
407 txq = fep->tx_queue[0];
408 bdp = txq->bd.base;
409
410 do {
411 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
412 index,
413 bdp == txq->bd.cur ? 'S' : ' ',
414 bdp == txq->dirty_tx ? 'H' : ' ',
415 fec16_to_cpu(bdp->cbd_sc),
416 fec32_to_cpu(bdp->cbd_bufaddr),
417 fec16_to_cpu(bdp->cbd_datlen),
418 txq->tx_buf[index].buf_p);
419 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
420 index++;
421 } while (bdp != txq->bd.base);
422 }
423
is_ipv4_pkt(struct sk_buff * skb)424 static inline bool is_ipv4_pkt(struct sk_buff *skb)
425 {
426 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
427 }
428
429 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)430 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
431 {
432 /* Only run for packets requiring a checksum. */
433 if (skb->ip_summed != CHECKSUM_PARTIAL)
434 return 0;
435
436 if (unlikely(skb_cow_head(skb, 0)))
437 return -1;
438
439 if (is_ipv4_pkt(skb))
440 ip_hdr(skb)->check = 0;
441 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
442
443 return 0;
444 }
445
446 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)447 fec_enet_create_page_pool(struct fec_enet_private *fep,
448 struct fec_enet_priv_rx_q *rxq, int size)
449 {
450 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
451 struct page_pool_params pp_params = {
452 .order = 0,
453 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
454 .pool_size = size,
455 .nid = dev_to_node(&fep->pdev->dev),
456 .dev = &fep->pdev->dev,
457 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
458 .offset = FEC_ENET_XDP_HEADROOM,
459 .max_len = FEC_ENET_RX_FRSIZE,
460 };
461 int err;
462
463 rxq->page_pool = page_pool_create(&pp_params);
464 if (IS_ERR(rxq->page_pool)) {
465 err = PTR_ERR(rxq->page_pool);
466 rxq->page_pool = NULL;
467 return err;
468 }
469
470 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
471 if (err < 0)
472 goto err_free_pp;
473
474 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
475 rxq->page_pool);
476 if (err)
477 goto err_unregister_rxq;
478
479 return 0;
480
481 err_unregister_rxq:
482 xdp_rxq_info_unreg(&rxq->xdp_rxq);
483 err_free_pp:
484 page_pool_destroy(rxq->page_pool);
485 rxq->page_pool = NULL;
486 return err;
487 }
488
489 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)490 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
491 struct sk_buff *skb,
492 struct net_device *ndev)
493 {
494 struct fec_enet_private *fep = netdev_priv(ndev);
495 struct bufdesc *bdp = txq->bd.cur;
496 struct bufdesc_ex *ebdp;
497 int nr_frags = skb_shinfo(skb)->nr_frags;
498 int frag, frag_len;
499 unsigned short status;
500 unsigned int estatus = 0;
501 skb_frag_t *this_frag;
502 unsigned int index;
503 void *bufaddr;
504 dma_addr_t addr;
505 int i;
506
507 for (frag = 0; frag < nr_frags; frag++) {
508 this_frag = &skb_shinfo(skb)->frags[frag];
509 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
510 ebdp = (struct bufdesc_ex *)bdp;
511
512 status = fec16_to_cpu(bdp->cbd_sc);
513 status &= ~BD_ENET_TX_STATS;
514 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
515 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
516
517 /* Handle the last BD specially */
518 if (frag == nr_frags - 1) {
519 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
520 if (fep->bufdesc_ex) {
521 estatus |= BD_ENET_TX_INT;
522 if (unlikely(skb_shinfo(skb)->tx_flags &
523 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
524 estatus |= BD_ENET_TX_TS;
525 }
526 }
527
528 if (fep->bufdesc_ex) {
529 if (fep->quirks & FEC_QUIRK_HAS_AVB)
530 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
531 if (skb->ip_summed == CHECKSUM_PARTIAL)
532 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
533
534 ebdp->cbd_bdu = 0;
535 ebdp->cbd_esc = cpu_to_fec32(estatus);
536 }
537
538 bufaddr = skb_frag_address(this_frag);
539
540 index = fec_enet_get_bd_index(bdp, &txq->bd);
541 if (((unsigned long) bufaddr) & fep->tx_align ||
542 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
543 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
544 bufaddr = txq->tx_bounce[index];
545
546 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
547 swap_buffer(bufaddr, frag_len);
548 }
549
550 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
551 DMA_TO_DEVICE);
552 if (dma_mapping_error(&fep->pdev->dev, addr)) {
553 if (net_ratelimit())
554 netdev_err(ndev, "Tx DMA memory map failed\n");
555 goto dma_mapping_error;
556 }
557
558 bdp->cbd_bufaddr = cpu_to_fec32(addr);
559 bdp->cbd_datlen = cpu_to_fec16(frag_len);
560 /* Make sure the updates to rest of the descriptor are
561 * performed before transferring ownership.
562 */
563 wmb();
564 bdp->cbd_sc = cpu_to_fec16(status);
565 }
566
567 return bdp;
568 dma_mapping_error:
569 bdp = txq->bd.cur;
570 for (i = 0; i < frag; i++) {
571 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
572 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
573 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
574 }
575 return ERR_PTR(-ENOMEM);
576 }
577
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)578 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
579 struct sk_buff *skb, struct net_device *ndev)
580 {
581 struct fec_enet_private *fep = netdev_priv(ndev);
582 int nr_frags = skb_shinfo(skb)->nr_frags;
583 struct bufdesc *bdp, *last_bdp;
584 void *bufaddr;
585 dma_addr_t addr;
586 unsigned short status;
587 unsigned short buflen;
588 unsigned int estatus = 0;
589 unsigned int index;
590 int entries_free;
591
592 entries_free = fec_enet_get_free_txdesc_num(txq);
593 if (entries_free < MAX_SKB_FRAGS + 1) {
594 dev_kfree_skb_any(skb);
595 if (net_ratelimit())
596 netdev_err(ndev, "NOT enough BD for SG!\n");
597 return NETDEV_TX_OK;
598 }
599
600 /* Protocol checksum off-load for TCP and UDP. */
601 if (fec_enet_clear_csum(skb, ndev)) {
602 dev_kfree_skb_any(skb);
603 return NETDEV_TX_OK;
604 }
605
606 /* Fill in a Tx ring entry */
607 bdp = txq->bd.cur;
608 last_bdp = bdp;
609 status = fec16_to_cpu(bdp->cbd_sc);
610 status &= ~BD_ENET_TX_STATS;
611
612 /* Set buffer length and buffer pointer */
613 bufaddr = skb->data;
614 buflen = skb_headlen(skb);
615
616 index = fec_enet_get_bd_index(bdp, &txq->bd);
617 if (((unsigned long) bufaddr) & fep->tx_align ||
618 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
619 memcpy(txq->tx_bounce[index], skb->data, buflen);
620 bufaddr = txq->tx_bounce[index];
621
622 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
623 swap_buffer(bufaddr, buflen);
624 }
625
626 /* Push the data cache so the CPM does not get stale memory data. */
627 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
628 if (dma_mapping_error(&fep->pdev->dev, addr)) {
629 dev_kfree_skb_any(skb);
630 if (net_ratelimit())
631 netdev_err(ndev, "Tx DMA memory map failed\n");
632 return NETDEV_TX_OK;
633 }
634
635 if (nr_frags) {
636 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
637 if (IS_ERR(last_bdp)) {
638 dma_unmap_single(&fep->pdev->dev, addr,
639 buflen, DMA_TO_DEVICE);
640 dev_kfree_skb_any(skb);
641 return NETDEV_TX_OK;
642 }
643 } else {
644 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
645 if (fep->bufdesc_ex) {
646 estatus = BD_ENET_TX_INT;
647 if (unlikely(skb_shinfo(skb)->tx_flags &
648 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
649 estatus |= BD_ENET_TX_TS;
650 }
651 }
652 bdp->cbd_bufaddr = cpu_to_fec32(addr);
653 bdp->cbd_datlen = cpu_to_fec16(buflen);
654
655 if (fep->bufdesc_ex) {
656
657 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
658
659 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
660 fep->hwts_tx_en))
661 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
662
663 if (fep->quirks & FEC_QUIRK_HAS_AVB)
664 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
665
666 if (skb->ip_summed == CHECKSUM_PARTIAL)
667 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
668
669 ebdp->cbd_bdu = 0;
670 ebdp->cbd_esc = cpu_to_fec32(estatus);
671 }
672
673 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
674 /* Save skb pointer */
675 txq->tx_buf[index].buf_p = skb;
676
677 /* Make sure the updates to rest of the descriptor are performed before
678 * transferring ownership.
679 */
680 wmb();
681
682 /* Send it on its way. Tell FEC it's ready, interrupt when done,
683 * it's the last BD of the frame, and to put the CRC on the end.
684 */
685 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
686 bdp->cbd_sc = cpu_to_fec16(status);
687
688 /* If this was the last BD in the ring, start at the beginning again. */
689 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
690
691 skb_tx_timestamp(skb);
692
693 /* Make sure the update to bdp is performed before txq->bd.cur. */
694 wmb();
695 txq->bd.cur = bdp;
696
697 /* Trigger transmission start */
698 writel(0, txq->bd.reg_desc_active);
699
700 return 0;
701 }
702
703 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)704 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
705 struct net_device *ndev,
706 struct bufdesc *bdp, int index, char *data,
707 int size, bool last_tcp, bool is_last)
708 {
709 struct fec_enet_private *fep = netdev_priv(ndev);
710 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
711 unsigned short status;
712 unsigned int estatus = 0;
713 dma_addr_t addr;
714
715 status = fec16_to_cpu(bdp->cbd_sc);
716 status &= ~BD_ENET_TX_STATS;
717
718 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
719
720 if (((unsigned long) data) & fep->tx_align ||
721 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
722 memcpy(txq->tx_bounce[index], data, size);
723 data = txq->tx_bounce[index];
724
725 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
726 swap_buffer(data, size);
727 }
728
729 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
730 if (dma_mapping_error(&fep->pdev->dev, addr)) {
731 dev_kfree_skb_any(skb);
732 if (net_ratelimit())
733 netdev_err(ndev, "Tx DMA memory map failed\n");
734 return NETDEV_TX_OK;
735 }
736
737 bdp->cbd_datlen = cpu_to_fec16(size);
738 bdp->cbd_bufaddr = cpu_to_fec32(addr);
739
740 if (fep->bufdesc_ex) {
741 if (fep->quirks & FEC_QUIRK_HAS_AVB)
742 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
743 if (skb->ip_summed == CHECKSUM_PARTIAL)
744 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
745 ebdp->cbd_bdu = 0;
746 ebdp->cbd_esc = cpu_to_fec32(estatus);
747 }
748
749 /* Handle the last BD specially */
750 if (last_tcp)
751 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
752 if (is_last) {
753 status |= BD_ENET_TX_INTR;
754 if (fep->bufdesc_ex)
755 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
756 }
757
758 bdp->cbd_sc = cpu_to_fec16(status);
759
760 return 0;
761 }
762
763 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)764 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
765 struct sk_buff *skb, struct net_device *ndev,
766 struct bufdesc *bdp, int index)
767 {
768 struct fec_enet_private *fep = netdev_priv(ndev);
769 int hdr_len = skb_tcp_all_headers(skb);
770 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
771 void *bufaddr;
772 unsigned long dmabuf;
773 unsigned short status;
774 unsigned int estatus = 0;
775
776 status = fec16_to_cpu(bdp->cbd_sc);
777 status &= ~BD_ENET_TX_STATS;
778 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
779
780 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
781 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
782 if (((unsigned long)bufaddr) & fep->tx_align ||
783 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
784 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
785 bufaddr = txq->tx_bounce[index];
786
787 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
788 swap_buffer(bufaddr, hdr_len);
789
790 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
791 hdr_len, DMA_TO_DEVICE);
792 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
793 dev_kfree_skb_any(skb);
794 if (net_ratelimit())
795 netdev_err(ndev, "Tx DMA memory map failed\n");
796 return NETDEV_TX_OK;
797 }
798 }
799
800 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
801 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
802
803 if (fep->bufdesc_ex) {
804 if (fep->quirks & FEC_QUIRK_HAS_AVB)
805 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
806 if (skb->ip_summed == CHECKSUM_PARTIAL)
807 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
808 ebdp->cbd_bdu = 0;
809 ebdp->cbd_esc = cpu_to_fec32(estatus);
810 }
811
812 bdp->cbd_sc = cpu_to_fec16(status);
813
814 return 0;
815 }
816
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)817 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
818 struct sk_buff *skb,
819 struct net_device *ndev)
820 {
821 struct fec_enet_private *fep = netdev_priv(ndev);
822 int hdr_len, total_len, data_left;
823 struct bufdesc *bdp = txq->bd.cur;
824 struct tso_t tso;
825 unsigned int index = 0;
826 int ret;
827
828 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
829 dev_kfree_skb_any(skb);
830 if (net_ratelimit())
831 netdev_err(ndev, "NOT enough BD for TSO!\n");
832 return NETDEV_TX_OK;
833 }
834
835 /* Protocol checksum off-load for TCP and UDP. */
836 if (fec_enet_clear_csum(skb, ndev)) {
837 dev_kfree_skb_any(skb);
838 return NETDEV_TX_OK;
839 }
840
841 /* Initialize the TSO handler, and prepare the first payload */
842 hdr_len = tso_start(skb, &tso);
843
844 total_len = skb->len - hdr_len;
845 while (total_len > 0) {
846 char *hdr;
847
848 index = fec_enet_get_bd_index(bdp, &txq->bd);
849 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
850 total_len -= data_left;
851
852 /* prepare packet headers: MAC + IP + TCP */
853 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
854 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
855 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
856 if (ret)
857 goto err_release;
858
859 while (data_left > 0) {
860 int size;
861
862 size = min_t(int, tso.size, data_left);
863 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
864 index = fec_enet_get_bd_index(bdp, &txq->bd);
865 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
866 bdp, index,
867 tso.data, size,
868 size == data_left,
869 total_len == 0);
870 if (ret)
871 goto err_release;
872
873 data_left -= size;
874 tso_build_data(skb, &tso, size);
875 }
876
877 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
878 }
879
880 /* Save skb pointer */
881 txq->tx_buf[index].buf_p = skb;
882
883 skb_tx_timestamp(skb);
884 txq->bd.cur = bdp;
885
886 /* Trigger transmission start */
887 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
888 !readl(txq->bd.reg_desc_active) ||
889 !readl(txq->bd.reg_desc_active) ||
890 !readl(txq->bd.reg_desc_active) ||
891 !readl(txq->bd.reg_desc_active))
892 writel(0, txq->bd.reg_desc_active);
893
894 return 0;
895
896 err_release:
897 /* TODO: Release all used data descriptors for TSO */
898 return ret;
899 }
900
901 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)902 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
903 {
904 struct fec_enet_private *fep = netdev_priv(ndev);
905 int entries_free;
906 unsigned short queue;
907 struct fec_enet_priv_tx_q *txq;
908 struct netdev_queue *nq;
909 int ret;
910
911 queue = skb_get_queue_mapping(skb);
912 txq = fep->tx_queue[queue];
913 nq = netdev_get_tx_queue(ndev, queue);
914
915 if (skb_is_gso(skb))
916 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
917 else
918 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
919 if (ret)
920 return ret;
921
922 entries_free = fec_enet_get_free_txdesc_num(txq);
923 if (entries_free <= txq->tx_stop_threshold)
924 netif_tx_stop_queue(nq);
925
926 return NETDEV_TX_OK;
927 }
928
929 /* Init RX & TX buffer descriptors
930 */
fec_enet_bd_init(struct net_device * dev)931 static void fec_enet_bd_init(struct net_device *dev)
932 {
933 struct fec_enet_private *fep = netdev_priv(dev);
934 struct fec_enet_priv_tx_q *txq;
935 struct fec_enet_priv_rx_q *rxq;
936 struct bufdesc *bdp;
937 unsigned int i;
938 unsigned int q;
939
940 for (q = 0; q < fep->num_rx_queues; q++) {
941 /* Initialize the receive buffer descriptors. */
942 rxq = fep->rx_queue[q];
943 bdp = rxq->bd.base;
944
945 for (i = 0; i < rxq->bd.ring_size; i++) {
946
947 /* Initialize the BD for every fragment in the page. */
948 if (bdp->cbd_bufaddr)
949 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
950 else
951 bdp->cbd_sc = cpu_to_fec16(0);
952 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
953 }
954
955 /* Set the last buffer to wrap */
956 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
957 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
958
959 rxq->bd.cur = rxq->bd.base;
960 }
961
962 for (q = 0; q < fep->num_tx_queues; q++) {
963 /* ...and the same for transmit */
964 txq = fep->tx_queue[q];
965 bdp = txq->bd.base;
966 txq->bd.cur = bdp;
967
968 for (i = 0; i < txq->bd.ring_size; i++) {
969 /* Initialize the BD for every fragment in the page. */
970 bdp->cbd_sc = cpu_to_fec16(0);
971 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
972 if (bdp->cbd_bufaddr &&
973 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
974 dma_unmap_single(&fep->pdev->dev,
975 fec32_to_cpu(bdp->cbd_bufaddr),
976 fec16_to_cpu(bdp->cbd_datlen),
977 DMA_TO_DEVICE);
978 if (txq->tx_buf[i].buf_p)
979 dev_kfree_skb_any(txq->tx_buf[i].buf_p);
980 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
981 if (bdp->cbd_bufaddr)
982 dma_unmap_single(&fep->pdev->dev,
983 fec32_to_cpu(bdp->cbd_bufaddr),
984 fec16_to_cpu(bdp->cbd_datlen),
985 DMA_TO_DEVICE);
986
987 if (txq->tx_buf[i].buf_p)
988 xdp_return_frame(txq->tx_buf[i].buf_p);
989 } else {
990 struct page *page = txq->tx_buf[i].buf_p;
991
992 if (page)
993 page_pool_put_page(page->pp, page, 0, false);
994 }
995
996 txq->tx_buf[i].buf_p = NULL;
997 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
998 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
999 bdp->cbd_bufaddr = cpu_to_fec32(0);
1000 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1001 }
1002
1003 /* Set the last buffer to wrap */
1004 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1005 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006 txq->dirty_tx = bdp;
1007 }
1008 }
1009
fec_enet_active_rxring(struct net_device * ndev)1010 static void fec_enet_active_rxring(struct net_device *ndev)
1011 {
1012 struct fec_enet_private *fep = netdev_priv(ndev);
1013 int i;
1014
1015 for (i = 0; i < fep->num_rx_queues; i++)
1016 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1017 }
1018
fec_enet_enable_ring(struct net_device * ndev)1019 static void fec_enet_enable_ring(struct net_device *ndev)
1020 {
1021 struct fec_enet_private *fep = netdev_priv(ndev);
1022 struct fec_enet_priv_tx_q *txq;
1023 struct fec_enet_priv_rx_q *rxq;
1024 int i;
1025
1026 for (i = 0; i < fep->num_rx_queues; i++) {
1027 rxq = fep->rx_queue[i];
1028 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1029 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1030
1031 /* enable DMA1/2 */
1032 if (i)
1033 writel(RCMR_MATCHEN | RCMR_CMP(i),
1034 fep->hwp + FEC_RCMR(i));
1035 }
1036
1037 for (i = 0; i < fep->num_tx_queues; i++) {
1038 txq = fep->tx_queue[i];
1039 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1040
1041 /* enable DMA1/2 */
1042 if (i)
1043 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1044 fep->hwp + FEC_DMA_CFG(i));
1045 }
1046 }
1047
1048 /*
1049 * This function is called to start or restart the FEC during a link
1050 * change, transmit timeout, or to reconfigure the FEC. The network
1051 * packet processing for this device must be stopped before this call.
1052 */
1053 static void
fec_restart(struct net_device * ndev)1054 fec_restart(struct net_device *ndev)
1055 {
1056 struct fec_enet_private *fep = netdev_priv(ndev);
1057 u32 temp_mac[2];
1058 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1059 u32 ecntl = FEC_ECR_ETHEREN;
1060
1061 if (fep->bufdesc_ex)
1062 fec_ptp_save_state(fep);
1063
1064 /* Whack a reset. We should wait for this.
1065 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1066 * instead of reset MAC itself.
1067 */
1068 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1069 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1070 writel(0, fep->hwp + FEC_ECNTRL);
1071 } else {
1072 writel(1, fep->hwp + FEC_ECNTRL);
1073 udelay(10);
1074 }
1075
1076 /*
1077 * enet-mac reset will reset mac address registers too,
1078 * so need to reconfigure it.
1079 */
1080 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1081 writel((__force u32)cpu_to_be32(temp_mac[0]),
1082 fep->hwp + FEC_ADDR_LOW);
1083 writel((__force u32)cpu_to_be32(temp_mac[1]),
1084 fep->hwp + FEC_ADDR_HIGH);
1085
1086 /* Clear any outstanding interrupt, except MDIO. */
1087 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1088
1089 fec_enet_bd_init(ndev);
1090
1091 fec_enet_enable_ring(ndev);
1092
1093 /* Enable MII mode */
1094 if (fep->full_duplex == DUPLEX_FULL) {
1095 /* FD enable */
1096 writel(0x04, fep->hwp + FEC_X_CNTRL);
1097 } else {
1098 /* No Rcv on Xmit */
1099 rcntl |= 0x02;
1100 writel(0x0, fep->hwp + FEC_X_CNTRL);
1101 }
1102
1103 /* Set MII speed */
1104 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1105
1106 #if !defined(CONFIG_M5272)
1107 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1108 u32 val = readl(fep->hwp + FEC_RACC);
1109
1110 /* align IP header */
1111 val |= FEC_RACC_SHIFT16;
1112 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1113 /* set RX checksum */
1114 val |= FEC_RACC_OPTIONS;
1115 else
1116 val &= ~FEC_RACC_OPTIONS;
1117 writel(val, fep->hwp + FEC_RACC);
1118 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1119 }
1120 #endif
1121
1122 /*
1123 * The phy interface and speed need to get configured
1124 * differently on enet-mac.
1125 */
1126 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1127 /* Enable flow control and length check */
1128 rcntl |= 0x40000000 | 0x00000020;
1129
1130 /* RGMII, RMII or MII */
1131 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1132 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1133 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1134 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1135 rcntl |= (1 << 6);
1136 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1137 rcntl |= FEC_RCR_RMII;
1138 else
1139 rcntl &= ~FEC_RCR_RMII;
1140
1141 /* 1G, 100M or 10M */
1142 if (ndev->phydev) {
1143 if (ndev->phydev->speed == SPEED_1000)
1144 ecntl |= (1 << 5);
1145 else if (ndev->phydev->speed == SPEED_100)
1146 rcntl &= ~FEC_RCR_10BASET;
1147 else
1148 rcntl |= FEC_RCR_10BASET;
1149 }
1150 } else {
1151 #ifdef FEC_MIIGSK_ENR
1152 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1153 u32 cfgr;
1154 /* disable the gasket and wait */
1155 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1156 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1157 udelay(1);
1158
1159 /*
1160 * configure the gasket:
1161 * RMII, 50 MHz, no loopback, no echo
1162 * MII, 25 MHz, no loopback, no echo
1163 */
1164 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1165 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1166 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1167 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1168 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1169
1170 /* re-enable the gasket */
1171 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1172 }
1173 #endif
1174 }
1175
1176 #if !defined(CONFIG_M5272)
1177 /* enable pause frame*/
1178 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1179 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1180 ndev->phydev && ndev->phydev->pause)) {
1181 rcntl |= FEC_ENET_FCE;
1182
1183 /* set FIFO threshold parameter to reduce overrun */
1184 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1185 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1186 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1187 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1188
1189 /* OPD */
1190 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1191 } else {
1192 rcntl &= ~FEC_ENET_FCE;
1193 }
1194 #endif /* !defined(CONFIG_M5272) */
1195
1196 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1197
1198 /* Setup multicast filter. */
1199 set_multicast_list(ndev);
1200 #ifndef CONFIG_M5272
1201 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1202 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1203 #endif
1204
1205 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1206 /* enable ENET endian swap */
1207 ecntl |= FEC_ECR_BYTESWP;
1208 /* enable ENET store and forward mode */
1209 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1210 }
1211
1212 if (fep->bufdesc_ex)
1213 ecntl |= FEC_ECR_EN1588;
1214
1215 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1216 fep->rgmii_txc_dly)
1217 ecntl |= FEC_ENET_TXC_DLY;
1218 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1219 fep->rgmii_rxc_dly)
1220 ecntl |= FEC_ENET_RXC_DLY;
1221
1222 #ifndef CONFIG_M5272
1223 /* Enable the MIB statistic event counters */
1224 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1225 #endif
1226
1227 /* And last, enable the transmit and receive processing */
1228 writel(ecntl, fep->hwp + FEC_ECNTRL);
1229 fec_enet_active_rxring(ndev);
1230
1231 if (fep->bufdesc_ex) {
1232 fec_ptp_start_cyclecounter(ndev);
1233 fec_ptp_restore_state(fep);
1234 }
1235
1236 /* Enable interrupts we wish to service */
1237 if (fep->link)
1238 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1239 else
1240 writel(0, fep->hwp + FEC_IMASK);
1241
1242 /* Init the interrupt coalescing */
1243 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1244 fec_enet_itr_coal_set(ndev);
1245 }
1246
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1247 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1248 {
1249 if (!(of_machine_is_compatible("fsl,imx8qm") ||
1250 of_machine_is_compatible("fsl,imx8qxp") ||
1251 of_machine_is_compatible("fsl,imx8dxl")))
1252 return 0;
1253
1254 return imx_scu_get_handle(&fep->ipc_handle);
1255 }
1256
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1257 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1258 {
1259 struct device_node *np = fep->pdev->dev.of_node;
1260 u32 rsrc_id, val;
1261 int idx;
1262
1263 if (!np || !fep->ipc_handle)
1264 return;
1265
1266 idx = of_alias_get_id(np, "ethernet");
1267 if (idx < 0)
1268 idx = 0;
1269 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1270
1271 val = enabled ? 1 : 0;
1272 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1273 }
1274
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1275 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1276 {
1277 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1278 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1279
1280 if (stop_gpr->gpr) {
1281 if (enabled)
1282 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1283 BIT(stop_gpr->bit),
1284 BIT(stop_gpr->bit));
1285 else
1286 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1287 BIT(stop_gpr->bit), 0);
1288 } else if (pdata && pdata->sleep_mode_enable) {
1289 pdata->sleep_mode_enable(enabled);
1290 } else {
1291 fec_enet_ipg_stop_set(fep, enabled);
1292 }
1293 }
1294
fec_irqs_disable(struct net_device * ndev)1295 static void fec_irqs_disable(struct net_device *ndev)
1296 {
1297 struct fec_enet_private *fep = netdev_priv(ndev);
1298
1299 writel(0, fep->hwp + FEC_IMASK);
1300 }
1301
fec_irqs_disable_except_wakeup(struct net_device * ndev)1302 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1303 {
1304 struct fec_enet_private *fep = netdev_priv(ndev);
1305
1306 writel(0, fep->hwp + FEC_IMASK);
1307 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1308 }
1309
1310 static void
fec_stop(struct net_device * ndev)1311 fec_stop(struct net_device *ndev)
1312 {
1313 struct fec_enet_private *fep = netdev_priv(ndev);
1314 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1315 u32 val;
1316
1317 /* We cannot expect a graceful transmit stop without link !!! */
1318 if (fep->link) {
1319 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1320 udelay(10);
1321 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1322 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1323 }
1324
1325 if (fep->bufdesc_ex)
1326 fec_ptp_save_state(fep);
1327
1328 /* Whack a reset. We should wait for this.
1329 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1330 * instead of reset MAC itself.
1331 */
1332 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1333 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1334 writel(0, fep->hwp + FEC_ECNTRL);
1335 } else {
1336 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1337 udelay(10);
1338 }
1339 } else {
1340 val = readl(fep->hwp + FEC_ECNTRL);
1341 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1342 writel(val, fep->hwp + FEC_ECNTRL);
1343 }
1344 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1345 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1346
1347 /* We have to keep ENET enabled to have MII interrupt stay working */
1348 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1349 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1350 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1351 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1352 }
1353
1354 if (fep->bufdesc_ex) {
1355 val = readl(fep->hwp + FEC_ECNTRL);
1356 val |= FEC_ECR_EN1588;
1357 writel(val, fep->hwp + FEC_ECNTRL);
1358
1359 fec_ptp_start_cyclecounter(ndev);
1360 fec_ptp_restore_state(fep);
1361 }
1362 }
1363
1364 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1365 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1366 {
1367 struct fec_enet_private *fep = netdev_priv(ndev);
1368
1369 fec_dump(ndev);
1370
1371 ndev->stats.tx_errors++;
1372
1373 schedule_work(&fep->tx_timeout_work);
1374 }
1375
fec_enet_timeout_work(struct work_struct * work)1376 static void fec_enet_timeout_work(struct work_struct *work)
1377 {
1378 struct fec_enet_private *fep =
1379 container_of(work, struct fec_enet_private, tx_timeout_work);
1380 struct net_device *ndev = fep->netdev;
1381
1382 rtnl_lock();
1383 if (netif_device_present(ndev) || netif_running(ndev)) {
1384 napi_disable(&fep->napi);
1385 netif_tx_lock_bh(ndev);
1386 fec_restart(ndev);
1387 netif_tx_wake_all_queues(ndev);
1388 netif_tx_unlock_bh(ndev);
1389 napi_enable(&fep->napi);
1390 }
1391 rtnl_unlock();
1392 }
1393
1394 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1395 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1396 struct skb_shared_hwtstamps *hwtstamps)
1397 {
1398 unsigned long flags;
1399 u64 ns;
1400
1401 spin_lock_irqsave(&fep->tmreg_lock, flags);
1402 ns = timecounter_cyc2time(&fep->tc, ts);
1403 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1404
1405 memset(hwtstamps, 0, sizeof(*hwtstamps));
1406 hwtstamps->hwtstamp = ns_to_ktime(ns);
1407 }
1408
1409 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1410 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1411 {
1412 struct fec_enet_private *fep;
1413 struct xdp_frame *xdpf;
1414 struct bufdesc *bdp;
1415 unsigned short status;
1416 struct sk_buff *skb;
1417 struct fec_enet_priv_tx_q *txq;
1418 struct netdev_queue *nq;
1419 int index = 0;
1420 int entries_free;
1421 struct page *page;
1422 int frame_len;
1423
1424 fep = netdev_priv(ndev);
1425
1426 txq = fep->tx_queue[queue_id];
1427 /* get next bdp of dirty_tx */
1428 nq = netdev_get_tx_queue(ndev, queue_id);
1429 bdp = txq->dirty_tx;
1430
1431 /* get next bdp of dirty_tx */
1432 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1433
1434 while (bdp != READ_ONCE(txq->bd.cur)) {
1435 /* Order the load of bd.cur and cbd_sc */
1436 rmb();
1437 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1438 if (status & BD_ENET_TX_READY)
1439 break;
1440
1441 index = fec_enet_get_bd_index(bdp, &txq->bd);
1442
1443 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1444 skb = txq->tx_buf[index].buf_p;
1445 if (bdp->cbd_bufaddr &&
1446 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1447 dma_unmap_single(&fep->pdev->dev,
1448 fec32_to_cpu(bdp->cbd_bufaddr),
1449 fec16_to_cpu(bdp->cbd_datlen),
1450 DMA_TO_DEVICE);
1451 bdp->cbd_bufaddr = cpu_to_fec32(0);
1452 if (!skb)
1453 goto tx_buf_done;
1454 } else {
1455 /* Tx processing cannot call any XDP (or page pool) APIs if
1456 * the "budget" is 0. Because NAPI is called with budget of
1457 * 0 (such as netpoll) indicates we may be in an IRQ context,
1458 * however, we can't use the page pool from IRQ context.
1459 */
1460 if (unlikely(!budget))
1461 break;
1462
1463 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1464 xdpf = txq->tx_buf[index].buf_p;
1465 if (bdp->cbd_bufaddr)
1466 dma_unmap_single(&fep->pdev->dev,
1467 fec32_to_cpu(bdp->cbd_bufaddr),
1468 fec16_to_cpu(bdp->cbd_datlen),
1469 DMA_TO_DEVICE);
1470 } else {
1471 page = txq->tx_buf[index].buf_p;
1472 }
1473
1474 bdp->cbd_bufaddr = cpu_to_fec32(0);
1475 if (unlikely(!txq->tx_buf[index].buf_p)) {
1476 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1477 goto tx_buf_done;
1478 }
1479
1480 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1481 }
1482
1483 /* Check for errors. */
1484 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1485 BD_ENET_TX_RL | BD_ENET_TX_UN |
1486 BD_ENET_TX_CSL)) {
1487 ndev->stats.tx_errors++;
1488 if (status & BD_ENET_TX_HB) /* No heartbeat */
1489 ndev->stats.tx_heartbeat_errors++;
1490 if (status & BD_ENET_TX_LC) /* Late collision */
1491 ndev->stats.tx_window_errors++;
1492 if (status & BD_ENET_TX_RL) /* Retrans limit */
1493 ndev->stats.tx_aborted_errors++;
1494 if (status & BD_ENET_TX_UN) /* Underrun */
1495 ndev->stats.tx_fifo_errors++;
1496 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1497 ndev->stats.tx_carrier_errors++;
1498 } else {
1499 ndev->stats.tx_packets++;
1500
1501 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1502 ndev->stats.tx_bytes += skb->len;
1503 else
1504 ndev->stats.tx_bytes += frame_len;
1505 }
1506
1507 /* Deferred means some collisions occurred during transmit,
1508 * but we eventually sent the packet OK.
1509 */
1510 if (status & BD_ENET_TX_DEF)
1511 ndev->stats.collisions++;
1512
1513 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1514 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1515 * are to time stamp the packet, so we still need to check time
1516 * stamping enabled flag.
1517 */
1518 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1519 fep->hwts_tx_en) && fep->bufdesc_ex) {
1520 struct skb_shared_hwtstamps shhwtstamps;
1521 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1522
1523 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1524 skb_tstamp_tx(skb, &shhwtstamps);
1525 }
1526
1527 /* Free the sk buffer associated with this last transmit */
1528 napi_consume_skb(skb, budget);
1529 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1530 xdp_return_frame_rx_napi(xdpf);
1531 } else { /* recycle pages of XDP_TX frames */
1532 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1533 page_pool_put_page(page->pp, page, 0, true);
1534 }
1535
1536 txq->tx_buf[index].buf_p = NULL;
1537 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1538 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1539
1540 tx_buf_done:
1541 /* Make sure the update to bdp and tx_buf are performed
1542 * before dirty_tx
1543 */
1544 wmb();
1545 txq->dirty_tx = bdp;
1546
1547 /* Update pointer to next buffer descriptor to be transmitted */
1548 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1549
1550 /* Since we have freed up a buffer, the ring is no longer full
1551 */
1552 if (netif_tx_queue_stopped(nq)) {
1553 entries_free = fec_enet_get_free_txdesc_num(txq);
1554 if (entries_free >= txq->tx_wake_threshold)
1555 netif_tx_wake_queue(nq);
1556 }
1557 }
1558
1559 /* ERR006358: Keep the transmitter going */
1560 if (bdp != txq->bd.cur &&
1561 readl(txq->bd.reg_desc_active) == 0)
1562 writel(0, txq->bd.reg_desc_active);
1563 }
1564
fec_enet_tx(struct net_device * ndev,int budget)1565 static void fec_enet_tx(struct net_device *ndev, int budget)
1566 {
1567 struct fec_enet_private *fep = netdev_priv(ndev);
1568 int i;
1569
1570 /* Make sure that AVB queues are processed first. */
1571 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1572 fec_enet_tx_queue(ndev, i, budget);
1573 }
1574
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1575 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1576 struct bufdesc *bdp, int index)
1577 {
1578 struct page *new_page;
1579 dma_addr_t phys_addr;
1580
1581 new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1582 WARN_ON(!new_page);
1583 rxq->rx_skb_info[index].page = new_page;
1584
1585 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1586 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1587 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1588 }
1589
1590 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1591 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1592 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1593 {
1594 unsigned int sync, len = xdp->data_end - xdp->data;
1595 u32 ret = FEC_ENET_XDP_PASS;
1596 struct page *page;
1597 int err;
1598 u32 act;
1599
1600 act = bpf_prog_run_xdp(prog, xdp);
1601
1602 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1603 * max len CPU touch
1604 */
1605 sync = xdp->data_end - xdp->data;
1606 sync = max(sync, len);
1607
1608 switch (act) {
1609 case XDP_PASS:
1610 rxq->stats[RX_XDP_PASS]++;
1611 ret = FEC_ENET_XDP_PASS;
1612 break;
1613
1614 case XDP_REDIRECT:
1615 rxq->stats[RX_XDP_REDIRECT]++;
1616 err = xdp_do_redirect(fep->netdev, xdp, prog);
1617 if (unlikely(err))
1618 goto xdp_err;
1619
1620 ret = FEC_ENET_XDP_REDIR;
1621 break;
1622
1623 case XDP_TX:
1624 rxq->stats[RX_XDP_TX]++;
1625 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1626 if (unlikely(err)) {
1627 rxq->stats[RX_XDP_TX_ERRORS]++;
1628 goto xdp_err;
1629 }
1630
1631 ret = FEC_ENET_XDP_TX;
1632 break;
1633
1634 default:
1635 bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1636 fallthrough;
1637
1638 case XDP_ABORTED:
1639 fallthrough; /* handle aborts by dropping packet */
1640
1641 case XDP_DROP:
1642 rxq->stats[RX_XDP_DROP]++;
1643 xdp_err:
1644 ret = FEC_ENET_XDP_CONSUMED;
1645 page = virt_to_head_page(xdp->data);
1646 page_pool_put_page(rxq->page_pool, page, sync, true);
1647 if (act != XDP_DROP)
1648 trace_xdp_exception(fep->netdev, prog, act);
1649 break;
1650 }
1651
1652 return ret;
1653 }
1654
1655 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1656 * When we update through the ring, if the next incoming buffer has
1657 * not been given to the system, we just set the empty indicator,
1658 * effectively tossing the packet.
1659 */
1660 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1661 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1662 {
1663 struct fec_enet_private *fep = netdev_priv(ndev);
1664 struct fec_enet_priv_rx_q *rxq;
1665 struct bufdesc *bdp;
1666 unsigned short status;
1667 struct sk_buff *skb;
1668 ushort pkt_len;
1669 __u8 *data;
1670 int pkt_received = 0;
1671 struct bufdesc_ex *ebdp = NULL;
1672 bool vlan_packet_rcvd = false;
1673 u16 vlan_tag;
1674 int index = 0;
1675 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1676 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1677 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1678 u32 data_start = FEC_ENET_XDP_HEADROOM;
1679 int cpu = smp_processor_id();
1680 struct xdp_buff xdp;
1681 struct page *page;
1682 u32 sub_len = 4;
1683
1684 #if !defined(CONFIG_M5272)
1685 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1686 * FEC_RACC_SHIFT16 is set by default in the probe function.
1687 */
1688 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1689 data_start += 2;
1690 sub_len += 2;
1691 }
1692 #endif
1693
1694 #ifdef CONFIG_M532x
1695 flush_cache_all();
1696 #endif
1697 rxq = fep->rx_queue[queue_id];
1698
1699 /* First, grab all of the stats for the incoming packet.
1700 * These get messed up if we get called due to a busy condition.
1701 */
1702 bdp = rxq->bd.cur;
1703 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1704
1705 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1706
1707 if (pkt_received >= budget)
1708 break;
1709 pkt_received++;
1710
1711 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1712
1713 /* Check for errors. */
1714 status ^= BD_ENET_RX_LAST;
1715 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1716 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1717 BD_ENET_RX_CL)) {
1718 ndev->stats.rx_errors++;
1719 if (status & BD_ENET_RX_OV) {
1720 /* FIFO overrun */
1721 ndev->stats.rx_fifo_errors++;
1722 goto rx_processing_done;
1723 }
1724 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1725 | BD_ENET_RX_LAST)) {
1726 /* Frame too long or too short. */
1727 ndev->stats.rx_length_errors++;
1728 if (status & BD_ENET_RX_LAST)
1729 netdev_err(ndev, "rcv is not +last\n");
1730 }
1731 if (status & BD_ENET_RX_CR) /* CRC Error */
1732 ndev->stats.rx_crc_errors++;
1733 /* Report late collisions as a frame error. */
1734 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1735 ndev->stats.rx_frame_errors++;
1736 goto rx_processing_done;
1737 }
1738
1739 /* Process the incoming frame. */
1740 ndev->stats.rx_packets++;
1741 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1742 ndev->stats.rx_bytes += pkt_len;
1743
1744 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1745 page = rxq->rx_skb_info[index].page;
1746 dma_sync_single_for_cpu(&fep->pdev->dev,
1747 fec32_to_cpu(bdp->cbd_bufaddr),
1748 pkt_len,
1749 DMA_FROM_DEVICE);
1750 prefetch(page_address(page));
1751 fec_enet_update_cbd(rxq, bdp, index);
1752
1753 if (xdp_prog) {
1754 xdp_buff_clear_frags_flag(&xdp);
1755 /* subtract 16bit shift and FCS */
1756 xdp_prepare_buff(&xdp, page_address(page),
1757 data_start, pkt_len - sub_len, false);
1758 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1759 xdp_result |= ret;
1760 if (ret != FEC_ENET_XDP_PASS)
1761 goto rx_processing_done;
1762 }
1763
1764 /* The packet length includes FCS, but we don't want to
1765 * include that when passing upstream as it messes up
1766 * bridging applications.
1767 */
1768 skb = build_skb(page_address(page), PAGE_SIZE);
1769 if (unlikely(!skb)) {
1770 page_pool_recycle_direct(rxq->page_pool, page);
1771 ndev->stats.rx_dropped++;
1772
1773 netdev_err_once(ndev, "build_skb failed!\n");
1774 goto rx_processing_done;
1775 }
1776
1777 skb_reserve(skb, data_start);
1778 skb_put(skb, pkt_len - sub_len);
1779 skb_mark_for_recycle(skb);
1780
1781 if (unlikely(need_swap)) {
1782 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1783 swap_buffer(data, pkt_len);
1784 }
1785 data = skb->data;
1786
1787 /* Extract the enhanced buffer descriptor */
1788 ebdp = NULL;
1789 if (fep->bufdesc_ex)
1790 ebdp = (struct bufdesc_ex *)bdp;
1791
1792 /* If this is a VLAN packet remove the VLAN Tag */
1793 vlan_packet_rcvd = false;
1794 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1795 fep->bufdesc_ex &&
1796 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1797 /* Push and remove the vlan tag */
1798 struct vlan_hdr *vlan_header =
1799 (struct vlan_hdr *) (data + ETH_HLEN);
1800 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1801
1802 vlan_packet_rcvd = true;
1803
1804 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1805 skb_pull(skb, VLAN_HLEN);
1806 }
1807
1808 skb->protocol = eth_type_trans(skb, ndev);
1809
1810 /* Get receive timestamp from the skb */
1811 if (fep->hwts_rx_en && fep->bufdesc_ex)
1812 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1813 skb_hwtstamps(skb));
1814
1815 if (fep->bufdesc_ex &&
1816 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1817 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1818 /* don't check it */
1819 skb->ip_summed = CHECKSUM_UNNECESSARY;
1820 } else {
1821 skb_checksum_none_assert(skb);
1822 }
1823 }
1824
1825 /* Handle received VLAN packets */
1826 if (vlan_packet_rcvd)
1827 __vlan_hwaccel_put_tag(skb,
1828 htons(ETH_P_8021Q),
1829 vlan_tag);
1830
1831 skb_record_rx_queue(skb, queue_id);
1832 napi_gro_receive(&fep->napi, skb);
1833
1834 rx_processing_done:
1835 /* Clear the status flags for this buffer */
1836 status &= ~BD_ENET_RX_STATS;
1837
1838 /* Mark the buffer empty */
1839 status |= BD_ENET_RX_EMPTY;
1840
1841 if (fep->bufdesc_ex) {
1842 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1843
1844 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1845 ebdp->cbd_prot = 0;
1846 ebdp->cbd_bdu = 0;
1847 }
1848 /* Make sure the updates to rest of the descriptor are
1849 * performed before transferring ownership.
1850 */
1851 wmb();
1852 bdp->cbd_sc = cpu_to_fec16(status);
1853
1854 /* Update BD pointer to next entry */
1855 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1856
1857 /* Doing this here will keep the FEC running while we process
1858 * incoming frames. On a heavily loaded network, we should be
1859 * able to keep up at the expense of system resources.
1860 */
1861 writel(0, rxq->bd.reg_desc_active);
1862 }
1863 rxq->bd.cur = bdp;
1864
1865 if (xdp_result & FEC_ENET_XDP_REDIR)
1866 xdp_do_flush_map();
1867
1868 return pkt_received;
1869 }
1870
fec_enet_rx(struct net_device * ndev,int budget)1871 static int fec_enet_rx(struct net_device *ndev, int budget)
1872 {
1873 struct fec_enet_private *fep = netdev_priv(ndev);
1874 int i, done = 0;
1875
1876 /* Make sure that AVB queues are processed first. */
1877 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1878 done += fec_enet_rx_queue(ndev, budget - done, i);
1879
1880 return done;
1881 }
1882
fec_enet_collect_events(struct fec_enet_private * fep)1883 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1884 {
1885 uint int_events;
1886
1887 int_events = readl(fep->hwp + FEC_IEVENT);
1888
1889 /* Don't clear MDIO events, we poll for those */
1890 int_events &= ~FEC_ENET_MII;
1891
1892 writel(int_events, fep->hwp + FEC_IEVENT);
1893
1894 return int_events != 0;
1895 }
1896
1897 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1898 fec_enet_interrupt(int irq, void *dev_id)
1899 {
1900 struct net_device *ndev = dev_id;
1901 struct fec_enet_private *fep = netdev_priv(ndev);
1902 irqreturn_t ret = IRQ_NONE;
1903
1904 if (fec_enet_collect_events(fep) && fep->link) {
1905 ret = IRQ_HANDLED;
1906
1907 if (napi_schedule_prep(&fep->napi)) {
1908 /* Disable interrupts */
1909 writel(0, fep->hwp + FEC_IMASK);
1910 __napi_schedule(&fep->napi);
1911 }
1912 }
1913
1914 return ret;
1915 }
1916
fec_enet_rx_napi(struct napi_struct * napi,int budget)1917 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1918 {
1919 struct net_device *ndev = napi->dev;
1920 struct fec_enet_private *fep = netdev_priv(ndev);
1921 int done = 0;
1922
1923 do {
1924 done += fec_enet_rx(ndev, budget - done);
1925 fec_enet_tx(ndev, budget);
1926 } while ((done < budget) && fec_enet_collect_events(fep));
1927
1928 if (done < budget) {
1929 napi_complete_done(napi, done);
1930 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1931 }
1932
1933 return done;
1934 }
1935
1936 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1937 static int fec_get_mac(struct net_device *ndev)
1938 {
1939 struct fec_enet_private *fep = netdev_priv(ndev);
1940 unsigned char *iap, tmpaddr[ETH_ALEN];
1941 int ret;
1942
1943 /*
1944 * try to get mac address in following order:
1945 *
1946 * 1) module parameter via kernel command line in form
1947 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1948 */
1949 iap = macaddr;
1950
1951 /*
1952 * 2) from device tree data
1953 */
1954 if (!is_valid_ether_addr(iap)) {
1955 struct device_node *np = fep->pdev->dev.of_node;
1956 if (np) {
1957 ret = of_get_mac_address(np, tmpaddr);
1958 if (!ret)
1959 iap = tmpaddr;
1960 else if (ret == -EPROBE_DEFER)
1961 return ret;
1962 }
1963 }
1964
1965 /*
1966 * 3) from flash or fuse (via platform data)
1967 */
1968 if (!is_valid_ether_addr(iap)) {
1969 #ifdef CONFIG_M5272
1970 if (FEC_FLASHMAC)
1971 iap = (unsigned char *)FEC_FLASHMAC;
1972 #else
1973 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1974
1975 if (pdata)
1976 iap = (unsigned char *)&pdata->mac;
1977 #endif
1978 }
1979
1980 /*
1981 * 4) FEC mac registers set by bootloader
1982 */
1983 if (!is_valid_ether_addr(iap)) {
1984 *((__be32 *) &tmpaddr[0]) =
1985 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1986 *((__be16 *) &tmpaddr[4]) =
1987 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1988 iap = &tmpaddr[0];
1989 }
1990
1991 /*
1992 * 5) random mac address
1993 */
1994 if (!is_valid_ether_addr(iap)) {
1995 /* Report it and use a random ethernet address instead */
1996 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1997 eth_hw_addr_random(ndev);
1998 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1999 ndev->dev_addr);
2000 return 0;
2001 }
2002
2003 /* Adjust MAC if using macaddr */
2004 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2005
2006 return 0;
2007 }
2008
2009 /* ------------------------------------------------------------------------- */
2010
2011 /*
2012 * Phy section
2013 */
fec_enet_adjust_link(struct net_device * ndev)2014 static void fec_enet_adjust_link(struct net_device *ndev)
2015 {
2016 struct fec_enet_private *fep = netdev_priv(ndev);
2017 struct phy_device *phy_dev = ndev->phydev;
2018 int status_change = 0;
2019
2020 /*
2021 * If the netdev is down, or is going down, we're not interested
2022 * in link state events, so just mark our idea of the link as down
2023 * and ignore the event.
2024 */
2025 if (!netif_running(ndev) || !netif_device_present(ndev)) {
2026 fep->link = 0;
2027 } else if (phy_dev->link) {
2028 if (!fep->link) {
2029 fep->link = phy_dev->link;
2030 status_change = 1;
2031 }
2032
2033 if (fep->full_duplex != phy_dev->duplex) {
2034 fep->full_duplex = phy_dev->duplex;
2035 status_change = 1;
2036 }
2037
2038 if (phy_dev->speed != fep->speed) {
2039 fep->speed = phy_dev->speed;
2040 status_change = 1;
2041 }
2042
2043 /* if any of the above changed restart the FEC */
2044 if (status_change) {
2045 netif_stop_queue(ndev);
2046 napi_disable(&fep->napi);
2047 netif_tx_lock_bh(ndev);
2048 fec_restart(ndev);
2049 netif_tx_wake_all_queues(ndev);
2050 netif_tx_unlock_bh(ndev);
2051 napi_enable(&fep->napi);
2052 }
2053 } else {
2054 if (fep->link) {
2055 netif_stop_queue(ndev);
2056 napi_disable(&fep->napi);
2057 netif_tx_lock_bh(ndev);
2058 fec_stop(ndev);
2059 netif_tx_unlock_bh(ndev);
2060 napi_enable(&fep->napi);
2061 fep->link = phy_dev->link;
2062 status_change = 1;
2063 }
2064 }
2065
2066 if (status_change)
2067 phy_print_status(phy_dev);
2068 }
2069
fec_enet_mdio_wait(struct fec_enet_private * fep)2070 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2071 {
2072 uint ievent;
2073 int ret;
2074
2075 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2076 ievent & FEC_ENET_MII, 2, 30000);
2077
2078 if (!ret)
2079 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2080
2081 return ret;
2082 }
2083
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2084 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2085 {
2086 struct fec_enet_private *fep = bus->priv;
2087 struct device *dev = &fep->pdev->dev;
2088 int ret = 0, frame_start, frame_addr, frame_op;
2089
2090 ret = pm_runtime_resume_and_get(dev);
2091 if (ret < 0)
2092 return ret;
2093
2094 /* C22 read */
2095 frame_op = FEC_MMFR_OP_READ;
2096 frame_start = FEC_MMFR_ST;
2097 frame_addr = regnum;
2098
2099 /* start a read op */
2100 writel(frame_start | frame_op |
2101 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2102 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2103
2104 /* wait for end of transfer */
2105 ret = fec_enet_mdio_wait(fep);
2106 if (ret) {
2107 netdev_err(fep->netdev, "MDIO read timeout\n");
2108 goto out;
2109 }
2110
2111 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2112
2113 out:
2114 pm_runtime_mark_last_busy(dev);
2115 pm_runtime_put_autosuspend(dev);
2116
2117 return ret;
2118 }
2119
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2120 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2121 int devad, int regnum)
2122 {
2123 struct fec_enet_private *fep = bus->priv;
2124 struct device *dev = &fep->pdev->dev;
2125 int ret = 0, frame_start, frame_op;
2126
2127 ret = pm_runtime_resume_and_get(dev);
2128 if (ret < 0)
2129 return ret;
2130
2131 frame_start = FEC_MMFR_ST_C45;
2132
2133 /* write address */
2134 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2135 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2136 FEC_MMFR_TA | (regnum & 0xFFFF),
2137 fep->hwp + FEC_MII_DATA);
2138
2139 /* wait for end of transfer */
2140 ret = fec_enet_mdio_wait(fep);
2141 if (ret) {
2142 netdev_err(fep->netdev, "MDIO address write timeout\n");
2143 goto out;
2144 }
2145
2146 frame_op = FEC_MMFR_OP_READ_C45;
2147
2148 /* start a read op */
2149 writel(frame_start | frame_op |
2150 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2151 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2152
2153 /* wait for end of transfer */
2154 ret = fec_enet_mdio_wait(fep);
2155 if (ret) {
2156 netdev_err(fep->netdev, "MDIO read timeout\n");
2157 goto out;
2158 }
2159
2160 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2161
2162 out:
2163 pm_runtime_mark_last_busy(dev);
2164 pm_runtime_put_autosuspend(dev);
2165
2166 return ret;
2167 }
2168
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2169 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2170 u16 value)
2171 {
2172 struct fec_enet_private *fep = bus->priv;
2173 struct device *dev = &fep->pdev->dev;
2174 int ret, frame_start, frame_addr;
2175
2176 ret = pm_runtime_resume_and_get(dev);
2177 if (ret < 0)
2178 return ret;
2179
2180 /* C22 write */
2181 frame_start = FEC_MMFR_ST;
2182 frame_addr = regnum;
2183
2184 /* start a write op */
2185 writel(frame_start | FEC_MMFR_OP_WRITE |
2186 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2187 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2188 fep->hwp + FEC_MII_DATA);
2189
2190 /* wait for end of transfer */
2191 ret = fec_enet_mdio_wait(fep);
2192 if (ret)
2193 netdev_err(fep->netdev, "MDIO write timeout\n");
2194
2195 pm_runtime_mark_last_busy(dev);
2196 pm_runtime_put_autosuspend(dev);
2197
2198 return ret;
2199 }
2200
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2201 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2202 int devad, int regnum, u16 value)
2203 {
2204 struct fec_enet_private *fep = bus->priv;
2205 struct device *dev = &fep->pdev->dev;
2206 int ret, frame_start;
2207
2208 ret = pm_runtime_resume_and_get(dev);
2209 if (ret < 0)
2210 return ret;
2211
2212 frame_start = FEC_MMFR_ST_C45;
2213
2214 /* write address */
2215 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2216 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2217 FEC_MMFR_TA | (regnum & 0xFFFF),
2218 fep->hwp + FEC_MII_DATA);
2219
2220 /* wait for end of transfer */
2221 ret = fec_enet_mdio_wait(fep);
2222 if (ret) {
2223 netdev_err(fep->netdev, "MDIO address write timeout\n");
2224 goto out;
2225 }
2226
2227 /* start a write op */
2228 writel(frame_start | FEC_MMFR_OP_WRITE |
2229 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2230 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2231 fep->hwp + FEC_MII_DATA);
2232
2233 /* wait for end of transfer */
2234 ret = fec_enet_mdio_wait(fep);
2235 if (ret)
2236 netdev_err(fep->netdev, "MDIO write timeout\n");
2237
2238 out:
2239 pm_runtime_mark_last_busy(dev);
2240 pm_runtime_put_autosuspend(dev);
2241
2242 return ret;
2243 }
2244
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2245 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2246 {
2247 struct fec_enet_private *fep = netdev_priv(ndev);
2248 struct phy_device *phy_dev = ndev->phydev;
2249
2250 if (phy_dev) {
2251 phy_reset_after_clk_enable(phy_dev);
2252 } else if (fep->phy_node) {
2253 /*
2254 * If the PHY still is not bound to the MAC, but there is
2255 * OF PHY node and a matching PHY device instance already,
2256 * use the OF PHY node to obtain the PHY device instance,
2257 * and then use that PHY device instance when triggering
2258 * the PHY reset.
2259 */
2260 phy_dev = of_phy_find_device(fep->phy_node);
2261 phy_reset_after_clk_enable(phy_dev);
2262 put_device(&phy_dev->mdio.dev);
2263 }
2264 }
2265
fec_enet_clk_enable(struct net_device * ndev,bool enable)2266 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2267 {
2268 struct fec_enet_private *fep = netdev_priv(ndev);
2269 int ret;
2270
2271 if (enable) {
2272 ret = clk_prepare_enable(fep->clk_enet_out);
2273 if (ret)
2274 return ret;
2275
2276 if (fep->clk_ptp) {
2277 mutex_lock(&fep->ptp_clk_mutex);
2278 ret = clk_prepare_enable(fep->clk_ptp);
2279 if (ret) {
2280 mutex_unlock(&fep->ptp_clk_mutex);
2281 goto failed_clk_ptp;
2282 } else {
2283 fep->ptp_clk_on = true;
2284 }
2285 mutex_unlock(&fep->ptp_clk_mutex);
2286 }
2287
2288 ret = clk_prepare_enable(fep->clk_ref);
2289 if (ret)
2290 goto failed_clk_ref;
2291
2292 ret = clk_prepare_enable(fep->clk_2x_txclk);
2293 if (ret)
2294 goto failed_clk_2x_txclk;
2295
2296 fec_enet_phy_reset_after_clk_enable(ndev);
2297 } else {
2298 clk_disable_unprepare(fep->clk_enet_out);
2299 if (fep->clk_ptp) {
2300 mutex_lock(&fep->ptp_clk_mutex);
2301 clk_disable_unprepare(fep->clk_ptp);
2302 fep->ptp_clk_on = false;
2303 mutex_unlock(&fep->ptp_clk_mutex);
2304 }
2305 clk_disable_unprepare(fep->clk_ref);
2306 clk_disable_unprepare(fep->clk_2x_txclk);
2307 }
2308
2309 return 0;
2310
2311 failed_clk_2x_txclk:
2312 if (fep->clk_ref)
2313 clk_disable_unprepare(fep->clk_ref);
2314 failed_clk_ref:
2315 if (fep->clk_ptp) {
2316 mutex_lock(&fep->ptp_clk_mutex);
2317 clk_disable_unprepare(fep->clk_ptp);
2318 fep->ptp_clk_on = false;
2319 mutex_unlock(&fep->ptp_clk_mutex);
2320 }
2321 failed_clk_ptp:
2322 clk_disable_unprepare(fep->clk_enet_out);
2323
2324 return ret;
2325 }
2326
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2327 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2328 struct device_node *np)
2329 {
2330 u32 rgmii_tx_delay, rgmii_rx_delay;
2331
2332 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2333 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2334 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2335 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2336 return -EINVAL;
2337 } else if (rgmii_tx_delay == 2000) {
2338 fep->rgmii_txc_dly = true;
2339 }
2340 }
2341
2342 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2343 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2344 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2345 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2346 return -EINVAL;
2347 } else if (rgmii_rx_delay == 2000) {
2348 fep->rgmii_rxc_dly = true;
2349 }
2350 }
2351
2352 return 0;
2353 }
2354
fec_enet_mii_probe(struct net_device * ndev)2355 static int fec_enet_mii_probe(struct net_device *ndev)
2356 {
2357 struct fec_enet_private *fep = netdev_priv(ndev);
2358 struct phy_device *phy_dev = NULL;
2359 char mdio_bus_id[MII_BUS_ID_SIZE];
2360 char phy_name[MII_BUS_ID_SIZE + 3];
2361 int phy_id;
2362 int dev_id = fep->dev_id;
2363
2364 if (fep->phy_node) {
2365 phy_dev = of_phy_connect(ndev, fep->phy_node,
2366 &fec_enet_adjust_link, 0,
2367 fep->phy_interface);
2368 if (!phy_dev) {
2369 netdev_err(ndev, "Unable to connect to phy\n");
2370 return -ENODEV;
2371 }
2372 } else {
2373 /* check for attached phy */
2374 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2375 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2376 continue;
2377 if (dev_id--)
2378 continue;
2379 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2380 break;
2381 }
2382
2383 if (phy_id >= PHY_MAX_ADDR) {
2384 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2385 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2386 phy_id = 0;
2387 }
2388
2389 snprintf(phy_name, sizeof(phy_name),
2390 PHY_ID_FMT, mdio_bus_id, phy_id);
2391 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2392 fep->phy_interface);
2393 }
2394
2395 if (IS_ERR(phy_dev)) {
2396 netdev_err(ndev, "could not attach to PHY\n");
2397 return PTR_ERR(phy_dev);
2398 }
2399
2400 /* mask with MAC supported features */
2401 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2402 phy_set_max_speed(phy_dev, 1000);
2403 phy_remove_link_mode(phy_dev,
2404 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2405 #if !defined(CONFIG_M5272)
2406 phy_support_sym_pause(phy_dev);
2407 #endif
2408 }
2409 else
2410 phy_set_max_speed(phy_dev, 100);
2411
2412 fep->link = 0;
2413 fep->full_duplex = 0;
2414
2415 phy_attached_info(phy_dev);
2416
2417 return 0;
2418 }
2419
fec_enet_mii_init(struct platform_device * pdev)2420 static int fec_enet_mii_init(struct platform_device *pdev)
2421 {
2422 static struct mii_bus *fec0_mii_bus;
2423 struct net_device *ndev = platform_get_drvdata(pdev);
2424 struct fec_enet_private *fep = netdev_priv(ndev);
2425 bool suppress_preamble = false;
2426 struct phy_device *phydev;
2427 struct device_node *node;
2428 int err = -ENXIO;
2429 u32 mii_speed, holdtime;
2430 u32 bus_freq;
2431 int addr;
2432
2433 /*
2434 * The i.MX28 dual fec interfaces are not equal.
2435 * Here are the differences:
2436 *
2437 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2438 * - fec0 acts as the 1588 time master while fec1 is slave
2439 * - external phys can only be configured by fec0
2440 *
2441 * That is to say fec1 can not work independently. It only works
2442 * when fec0 is working. The reason behind this design is that the
2443 * second interface is added primarily for Switch mode.
2444 *
2445 * Because of the last point above, both phys are attached on fec0
2446 * mdio interface in board design, and need to be configured by
2447 * fec0 mii_bus.
2448 */
2449 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2450 /* fec1 uses fec0 mii_bus */
2451 if (mii_cnt && fec0_mii_bus) {
2452 fep->mii_bus = fec0_mii_bus;
2453 mii_cnt++;
2454 return 0;
2455 }
2456 return -ENOENT;
2457 }
2458
2459 bus_freq = 2500000; /* 2.5MHz by default */
2460 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2461 if (node) {
2462 of_property_read_u32(node, "clock-frequency", &bus_freq);
2463 suppress_preamble = of_property_read_bool(node,
2464 "suppress-preamble");
2465 }
2466
2467 /*
2468 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2469 *
2470 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2471 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2472 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2473 * document.
2474 */
2475 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2476 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2477 mii_speed--;
2478 if (mii_speed > 63) {
2479 dev_err(&pdev->dev,
2480 "fec clock (%lu) too fast to get right mii speed\n",
2481 clk_get_rate(fep->clk_ipg));
2482 err = -EINVAL;
2483 goto err_out;
2484 }
2485
2486 /*
2487 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2488 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2489 * versions are RAZ there, so just ignore the difference and write the
2490 * register always.
2491 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2492 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2493 * output.
2494 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2495 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2496 * holdtime cannot result in a value greater than 3.
2497 */
2498 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2499
2500 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2501
2502 if (suppress_preamble)
2503 fep->phy_speed |= BIT(7);
2504
2505 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2506 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2507 * MII event generation condition:
2508 * - writing MSCR:
2509 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2510 * mscr_reg_data_in[7:0] != 0
2511 * - writing MMFR:
2512 * - mscr[7:0]_not_zero
2513 */
2514 writel(0, fep->hwp + FEC_MII_DATA);
2515 }
2516
2517 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2518
2519 /* Clear any pending transaction complete indication */
2520 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2521
2522 fep->mii_bus = mdiobus_alloc();
2523 if (fep->mii_bus == NULL) {
2524 err = -ENOMEM;
2525 goto err_out;
2526 }
2527
2528 fep->mii_bus->name = "fec_enet_mii_bus";
2529 fep->mii_bus->read = fec_enet_mdio_read_c22;
2530 fep->mii_bus->write = fec_enet_mdio_write_c22;
2531 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2532 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2533 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2534 }
2535 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2536 pdev->name, fep->dev_id + 1);
2537 fep->mii_bus->priv = fep;
2538 fep->mii_bus->parent = &pdev->dev;
2539
2540 err = of_mdiobus_register(fep->mii_bus, node);
2541 if (err)
2542 goto err_out_free_mdiobus;
2543 of_node_put(node);
2544
2545 /* find all the PHY devices on the bus and set mac_managed_pm to true */
2546 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2547 phydev = mdiobus_get_phy(fep->mii_bus, addr);
2548 if (phydev)
2549 phydev->mac_managed_pm = true;
2550 }
2551
2552 mii_cnt++;
2553
2554 /* save fec0 mii_bus */
2555 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2556 fec0_mii_bus = fep->mii_bus;
2557
2558 return 0;
2559
2560 err_out_free_mdiobus:
2561 mdiobus_free(fep->mii_bus);
2562 err_out:
2563 of_node_put(node);
2564 return err;
2565 }
2566
fec_enet_mii_remove(struct fec_enet_private * fep)2567 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2568 {
2569 if (--mii_cnt == 0) {
2570 mdiobus_unregister(fep->mii_bus);
2571 mdiobus_free(fep->mii_bus);
2572 }
2573 }
2574
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2575 static void fec_enet_get_drvinfo(struct net_device *ndev,
2576 struct ethtool_drvinfo *info)
2577 {
2578 struct fec_enet_private *fep = netdev_priv(ndev);
2579
2580 strscpy(info->driver, fep->pdev->dev.driver->name,
2581 sizeof(info->driver));
2582 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2583 }
2584
fec_enet_get_regs_len(struct net_device * ndev)2585 static int fec_enet_get_regs_len(struct net_device *ndev)
2586 {
2587 struct fec_enet_private *fep = netdev_priv(ndev);
2588 struct resource *r;
2589 int s = 0;
2590
2591 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2592 if (r)
2593 s = resource_size(r);
2594
2595 return s;
2596 }
2597
2598 /* List of registers that can be safety be read to dump them with ethtool */
2599 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2600 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2601 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2602 static __u32 fec_enet_register_version = 2;
2603 static u32 fec_enet_register_offset[] = {
2604 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2605 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2606 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2607 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2608 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2609 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2610 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2611 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2612 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2613 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2614 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2615 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2616 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2617 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2618 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2619 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2620 RMON_T_P_GTE2048, RMON_T_OCTETS,
2621 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2622 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2623 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2624 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2625 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2626 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2627 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2628 RMON_R_P_GTE2048, RMON_R_OCTETS,
2629 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2630 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2631 };
2632 /* for i.MX6ul */
2633 static u32 fec_enet_register_offset_6ul[] = {
2634 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2635 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2636 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2637 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2638 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2639 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2640 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2641 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2642 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2643 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2644 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2645 RMON_T_P_GTE2048, RMON_T_OCTETS,
2646 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2647 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2648 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2649 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2650 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2651 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2652 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2653 RMON_R_P_GTE2048, RMON_R_OCTETS,
2654 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2655 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2656 };
2657 #else
2658 static __u32 fec_enet_register_version = 1;
2659 static u32 fec_enet_register_offset[] = {
2660 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2661 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2662 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2663 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2664 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2665 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2666 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2667 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2668 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2669 };
2670 #endif
2671
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2672 static void fec_enet_get_regs(struct net_device *ndev,
2673 struct ethtool_regs *regs, void *regbuf)
2674 {
2675 struct fec_enet_private *fep = netdev_priv(ndev);
2676 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2677 struct device *dev = &fep->pdev->dev;
2678 u32 *buf = (u32 *)regbuf;
2679 u32 i, off;
2680 int ret;
2681 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2682 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2683 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2684 u32 *reg_list;
2685 u32 reg_cnt;
2686
2687 if (!of_machine_is_compatible("fsl,imx6ul")) {
2688 reg_list = fec_enet_register_offset;
2689 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2690 } else {
2691 reg_list = fec_enet_register_offset_6ul;
2692 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2693 }
2694 #else
2695 /* coldfire */
2696 static u32 *reg_list = fec_enet_register_offset;
2697 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2698 #endif
2699 ret = pm_runtime_resume_and_get(dev);
2700 if (ret < 0)
2701 return;
2702
2703 regs->version = fec_enet_register_version;
2704
2705 memset(buf, 0, regs->len);
2706
2707 for (i = 0; i < reg_cnt; i++) {
2708 off = reg_list[i];
2709
2710 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2711 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2712 continue;
2713
2714 off >>= 2;
2715 buf[off] = readl(&theregs[off]);
2716 }
2717
2718 pm_runtime_mark_last_busy(dev);
2719 pm_runtime_put_autosuspend(dev);
2720 }
2721
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2722 static int fec_enet_get_ts_info(struct net_device *ndev,
2723 struct ethtool_ts_info *info)
2724 {
2725 struct fec_enet_private *fep = netdev_priv(ndev);
2726
2727 if (fep->bufdesc_ex) {
2728
2729 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2730 SOF_TIMESTAMPING_RX_SOFTWARE |
2731 SOF_TIMESTAMPING_SOFTWARE |
2732 SOF_TIMESTAMPING_TX_HARDWARE |
2733 SOF_TIMESTAMPING_RX_HARDWARE |
2734 SOF_TIMESTAMPING_RAW_HARDWARE;
2735 if (fep->ptp_clock)
2736 info->phc_index = ptp_clock_index(fep->ptp_clock);
2737 else
2738 info->phc_index = -1;
2739
2740 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2741 (1 << HWTSTAMP_TX_ON);
2742
2743 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2744 (1 << HWTSTAMP_FILTER_ALL);
2745 return 0;
2746 } else {
2747 return ethtool_op_get_ts_info(ndev, info);
2748 }
2749 }
2750
2751 #if !defined(CONFIG_M5272)
2752
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2753 static void fec_enet_get_pauseparam(struct net_device *ndev,
2754 struct ethtool_pauseparam *pause)
2755 {
2756 struct fec_enet_private *fep = netdev_priv(ndev);
2757
2758 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2759 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2760 pause->rx_pause = pause->tx_pause;
2761 }
2762
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2763 static int fec_enet_set_pauseparam(struct net_device *ndev,
2764 struct ethtool_pauseparam *pause)
2765 {
2766 struct fec_enet_private *fep = netdev_priv(ndev);
2767
2768 if (!ndev->phydev)
2769 return -ENODEV;
2770
2771 if (pause->tx_pause != pause->rx_pause) {
2772 netdev_info(ndev,
2773 "hardware only support enable/disable both tx and rx");
2774 return -EINVAL;
2775 }
2776
2777 fep->pause_flag = 0;
2778
2779 /* tx pause must be same as rx pause */
2780 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2781 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2782
2783 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2784 pause->autoneg);
2785
2786 if (pause->autoneg) {
2787 if (netif_running(ndev))
2788 fec_stop(ndev);
2789 phy_start_aneg(ndev->phydev);
2790 }
2791 if (netif_running(ndev)) {
2792 napi_disable(&fep->napi);
2793 netif_tx_lock_bh(ndev);
2794 fec_restart(ndev);
2795 netif_tx_wake_all_queues(ndev);
2796 netif_tx_unlock_bh(ndev);
2797 napi_enable(&fep->napi);
2798 }
2799
2800 return 0;
2801 }
2802
2803 static const struct fec_stat {
2804 char name[ETH_GSTRING_LEN];
2805 u16 offset;
2806 } fec_stats[] = {
2807 /* RMON TX */
2808 { "tx_dropped", RMON_T_DROP },
2809 { "tx_packets", RMON_T_PACKETS },
2810 { "tx_broadcast", RMON_T_BC_PKT },
2811 { "tx_multicast", RMON_T_MC_PKT },
2812 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2813 { "tx_undersize", RMON_T_UNDERSIZE },
2814 { "tx_oversize", RMON_T_OVERSIZE },
2815 { "tx_fragment", RMON_T_FRAG },
2816 { "tx_jabber", RMON_T_JAB },
2817 { "tx_collision", RMON_T_COL },
2818 { "tx_64byte", RMON_T_P64 },
2819 { "tx_65to127byte", RMON_T_P65TO127 },
2820 { "tx_128to255byte", RMON_T_P128TO255 },
2821 { "tx_256to511byte", RMON_T_P256TO511 },
2822 { "tx_512to1023byte", RMON_T_P512TO1023 },
2823 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2824 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2825 { "tx_octets", RMON_T_OCTETS },
2826
2827 /* IEEE TX */
2828 { "IEEE_tx_drop", IEEE_T_DROP },
2829 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2830 { "IEEE_tx_1col", IEEE_T_1COL },
2831 { "IEEE_tx_mcol", IEEE_T_MCOL },
2832 { "IEEE_tx_def", IEEE_T_DEF },
2833 { "IEEE_tx_lcol", IEEE_T_LCOL },
2834 { "IEEE_tx_excol", IEEE_T_EXCOL },
2835 { "IEEE_tx_macerr", IEEE_T_MACERR },
2836 { "IEEE_tx_cserr", IEEE_T_CSERR },
2837 { "IEEE_tx_sqe", IEEE_T_SQE },
2838 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2839 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2840
2841 /* RMON RX */
2842 { "rx_packets", RMON_R_PACKETS },
2843 { "rx_broadcast", RMON_R_BC_PKT },
2844 { "rx_multicast", RMON_R_MC_PKT },
2845 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2846 { "rx_undersize", RMON_R_UNDERSIZE },
2847 { "rx_oversize", RMON_R_OVERSIZE },
2848 { "rx_fragment", RMON_R_FRAG },
2849 { "rx_jabber", RMON_R_JAB },
2850 { "rx_64byte", RMON_R_P64 },
2851 { "rx_65to127byte", RMON_R_P65TO127 },
2852 { "rx_128to255byte", RMON_R_P128TO255 },
2853 { "rx_256to511byte", RMON_R_P256TO511 },
2854 { "rx_512to1023byte", RMON_R_P512TO1023 },
2855 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2856 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2857 { "rx_octets", RMON_R_OCTETS },
2858
2859 /* IEEE RX */
2860 { "IEEE_rx_drop", IEEE_R_DROP },
2861 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2862 { "IEEE_rx_crc", IEEE_R_CRC },
2863 { "IEEE_rx_align", IEEE_R_ALIGN },
2864 { "IEEE_rx_macerr", IEEE_R_MACERR },
2865 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2866 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2867 };
2868
2869 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2870
2871 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2872 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2873 "rx_xdp_pass", /* RX_XDP_PASS, */
2874 "rx_xdp_drop", /* RX_XDP_DROP, */
2875 "rx_xdp_tx", /* RX_XDP_TX, */
2876 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2877 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2878 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2879 };
2880
fec_enet_update_ethtool_stats(struct net_device * dev)2881 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2882 {
2883 struct fec_enet_private *fep = netdev_priv(dev);
2884 int i;
2885
2886 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2887 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2888 }
2889
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2890 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2891 {
2892 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2893 struct fec_enet_priv_rx_q *rxq;
2894 int i, j;
2895
2896 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2897 rxq = fep->rx_queue[i];
2898
2899 for (j = 0; j < XDP_STATS_TOTAL; j++)
2900 xdp_stats[j] += rxq->stats[j];
2901 }
2902
2903 memcpy(data, xdp_stats, sizeof(xdp_stats));
2904 }
2905
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2906 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2907 {
2908 #ifdef CONFIG_PAGE_POOL_STATS
2909 struct page_pool_stats stats = {};
2910 struct fec_enet_priv_rx_q *rxq;
2911 int i;
2912
2913 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2914 rxq = fep->rx_queue[i];
2915
2916 if (!rxq->page_pool)
2917 continue;
2918
2919 page_pool_get_stats(rxq->page_pool, &stats);
2920 }
2921
2922 page_pool_ethtool_stats_get(data, &stats);
2923 #endif
2924 }
2925
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2926 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2927 struct ethtool_stats *stats, u64 *data)
2928 {
2929 struct fec_enet_private *fep = netdev_priv(dev);
2930
2931 if (netif_running(dev))
2932 fec_enet_update_ethtool_stats(dev);
2933
2934 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2935 data += FEC_STATS_SIZE / sizeof(u64);
2936
2937 fec_enet_get_xdp_stats(fep, data);
2938 data += XDP_STATS_TOTAL;
2939
2940 fec_enet_page_pool_stats(fep, data);
2941 }
2942
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2943 static void fec_enet_get_strings(struct net_device *netdev,
2944 u32 stringset, u8 *data)
2945 {
2946 int i;
2947 switch (stringset) {
2948 case ETH_SS_STATS:
2949 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2950 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2951 data += ETH_GSTRING_LEN;
2952 }
2953 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2954 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2955 data += ETH_GSTRING_LEN;
2956 }
2957 page_pool_ethtool_stats_get_strings(data);
2958
2959 break;
2960 case ETH_SS_TEST:
2961 net_selftest_get_strings(data);
2962 break;
2963 }
2964 }
2965
fec_enet_get_sset_count(struct net_device * dev,int sset)2966 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2967 {
2968 int count;
2969
2970 switch (sset) {
2971 case ETH_SS_STATS:
2972 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2973 count += page_pool_ethtool_stats_get_count();
2974 return count;
2975
2976 case ETH_SS_TEST:
2977 return net_selftest_get_count();
2978 default:
2979 return -EOPNOTSUPP;
2980 }
2981 }
2982
fec_enet_clear_ethtool_stats(struct net_device * dev)2983 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2984 {
2985 struct fec_enet_private *fep = netdev_priv(dev);
2986 struct fec_enet_priv_rx_q *rxq;
2987 int i, j;
2988
2989 /* Disable MIB statistics counters */
2990 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2991
2992 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2993 writel(0, fep->hwp + fec_stats[i].offset);
2994
2995 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2996 rxq = fep->rx_queue[i];
2997 for (j = 0; j < XDP_STATS_TOTAL; j++)
2998 rxq->stats[j] = 0;
2999 }
3000
3001 /* Don't disable MIB statistics counters */
3002 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3003 }
3004
3005 #else /* !defined(CONFIG_M5272) */
3006 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)3007 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3008 {
3009 }
3010
fec_enet_clear_ethtool_stats(struct net_device * dev)3011 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3012 {
3013 }
3014 #endif /* !defined(CONFIG_M5272) */
3015
3016 /* ITR clock source is enet system clock (clk_ahb).
3017 * TCTT unit is cycle_ns * 64 cycle
3018 * So, the ICTT value = X us / (cycle_ns * 64)
3019 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3020 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3021 {
3022 struct fec_enet_private *fep = netdev_priv(ndev);
3023
3024 return us * (fep->itr_clk_rate / 64000) / 1000;
3025 }
3026
3027 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3028 static void fec_enet_itr_coal_set(struct net_device *ndev)
3029 {
3030 struct fec_enet_private *fep = netdev_priv(ndev);
3031 int rx_itr, tx_itr;
3032
3033 /* Must be greater than zero to avoid unpredictable behavior */
3034 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3035 !fep->tx_time_itr || !fep->tx_pkts_itr)
3036 return;
3037
3038 /* Select enet system clock as Interrupt Coalescing
3039 * timer Clock Source
3040 */
3041 rx_itr = FEC_ITR_CLK_SEL;
3042 tx_itr = FEC_ITR_CLK_SEL;
3043
3044 /* set ICFT and ICTT */
3045 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3046 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3047 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3048 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3049
3050 rx_itr |= FEC_ITR_EN;
3051 tx_itr |= FEC_ITR_EN;
3052
3053 writel(tx_itr, fep->hwp + FEC_TXIC0);
3054 writel(rx_itr, fep->hwp + FEC_RXIC0);
3055 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3056 writel(tx_itr, fep->hwp + FEC_TXIC1);
3057 writel(rx_itr, fep->hwp + FEC_RXIC1);
3058 writel(tx_itr, fep->hwp + FEC_TXIC2);
3059 writel(rx_itr, fep->hwp + FEC_RXIC2);
3060 }
3061 }
3062
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3063 static int fec_enet_get_coalesce(struct net_device *ndev,
3064 struct ethtool_coalesce *ec,
3065 struct kernel_ethtool_coalesce *kernel_coal,
3066 struct netlink_ext_ack *extack)
3067 {
3068 struct fec_enet_private *fep = netdev_priv(ndev);
3069
3070 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3071 return -EOPNOTSUPP;
3072
3073 ec->rx_coalesce_usecs = fep->rx_time_itr;
3074 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3075
3076 ec->tx_coalesce_usecs = fep->tx_time_itr;
3077 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3078
3079 return 0;
3080 }
3081
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3082 static int fec_enet_set_coalesce(struct net_device *ndev,
3083 struct ethtool_coalesce *ec,
3084 struct kernel_ethtool_coalesce *kernel_coal,
3085 struct netlink_ext_ack *extack)
3086 {
3087 struct fec_enet_private *fep = netdev_priv(ndev);
3088 struct device *dev = &fep->pdev->dev;
3089 unsigned int cycle;
3090
3091 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3092 return -EOPNOTSUPP;
3093
3094 if (ec->rx_max_coalesced_frames > 255) {
3095 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3096 return -EINVAL;
3097 }
3098
3099 if (ec->tx_max_coalesced_frames > 255) {
3100 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3101 return -EINVAL;
3102 }
3103
3104 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3105 if (cycle > 0xFFFF) {
3106 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3107 return -EINVAL;
3108 }
3109
3110 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3111 if (cycle > 0xFFFF) {
3112 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3113 return -EINVAL;
3114 }
3115
3116 fep->rx_time_itr = ec->rx_coalesce_usecs;
3117 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3118
3119 fep->tx_time_itr = ec->tx_coalesce_usecs;
3120 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3121
3122 fec_enet_itr_coal_set(ndev);
3123
3124 return 0;
3125 }
3126
3127 /* LPI Sleep Ts count base on tx clk (clk_ref).
3128 * The lpi sleep cnt value = X us / (cycle_ns).
3129 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)3130 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3131 {
3132 struct fec_enet_private *fep = netdev_priv(ndev);
3133
3134 return us * (fep->clk_ref_rate / 1000) / 1000;
3135 }
3136
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)3137 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3138 {
3139 struct fec_enet_private *fep = netdev_priv(ndev);
3140 struct ethtool_eee *p = &fep->eee;
3141 unsigned int sleep_cycle, wake_cycle;
3142 int ret = 0;
3143
3144 if (enable) {
3145 ret = phy_init_eee(ndev->phydev, false);
3146 if (ret)
3147 return ret;
3148
3149 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3150 wake_cycle = sleep_cycle;
3151 } else {
3152 sleep_cycle = 0;
3153 wake_cycle = 0;
3154 }
3155
3156 p->tx_lpi_enabled = enable;
3157 p->eee_enabled = enable;
3158 p->eee_active = enable;
3159
3160 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3161 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3162
3163 return 0;
3164 }
3165
3166 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_eee * edata)3167 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3168 {
3169 struct fec_enet_private *fep = netdev_priv(ndev);
3170 struct ethtool_eee *p = &fep->eee;
3171
3172 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3173 return -EOPNOTSUPP;
3174
3175 if (!netif_running(ndev))
3176 return -ENETDOWN;
3177
3178 edata->eee_enabled = p->eee_enabled;
3179 edata->eee_active = p->eee_active;
3180 edata->tx_lpi_timer = p->tx_lpi_timer;
3181 edata->tx_lpi_enabled = p->tx_lpi_enabled;
3182
3183 return phy_ethtool_get_eee(ndev->phydev, edata);
3184 }
3185
3186 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_eee * edata)3187 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3188 {
3189 struct fec_enet_private *fep = netdev_priv(ndev);
3190 struct ethtool_eee *p = &fep->eee;
3191 int ret = 0;
3192
3193 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3194 return -EOPNOTSUPP;
3195
3196 if (!netif_running(ndev))
3197 return -ENETDOWN;
3198
3199 p->tx_lpi_timer = edata->tx_lpi_timer;
3200
3201 if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3202 !edata->tx_lpi_timer)
3203 ret = fec_enet_eee_mode_set(ndev, false);
3204 else
3205 ret = fec_enet_eee_mode_set(ndev, true);
3206
3207 if (ret)
3208 return ret;
3209
3210 return phy_ethtool_set_eee(ndev->phydev, edata);
3211 }
3212
3213 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3214 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3215 {
3216 struct fec_enet_private *fep = netdev_priv(ndev);
3217
3218 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3219 wol->supported = WAKE_MAGIC;
3220 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3221 } else {
3222 wol->supported = wol->wolopts = 0;
3223 }
3224 }
3225
3226 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3227 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3228 {
3229 struct fec_enet_private *fep = netdev_priv(ndev);
3230
3231 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3232 return -EINVAL;
3233
3234 if (wol->wolopts & ~WAKE_MAGIC)
3235 return -EINVAL;
3236
3237 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3238 if (device_may_wakeup(&ndev->dev))
3239 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3240 else
3241 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3242
3243 return 0;
3244 }
3245
3246 static const struct ethtool_ops fec_enet_ethtool_ops = {
3247 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3248 ETHTOOL_COALESCE_MAX_FRAMES,
3249 .get_drvinfo = fec_enet_get_drvinfo,
3250 .get_regs_len = fec_enet_get_regs_len,
3251 .get_regs = fec_enet_get_regs,
3252 .nway_reset = phy_ethtool_nway_reset,
3253 .get_link = ethtool_op_get_link,
3254 .get_coalesce = fec_enet_get_coalesce,
3255 .set_coalesce = fec_enet_set_coalesce,
3256 #ifndef CONFIG_M5272
3257 .get_pauseparam = fec_enet_get_pauseparam,
3258 .set_pauseparam = fec_enet_set_pauseparam,
3259 .get_strings = fec_enet_get_strings,
3260 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3261 .get_sset_count = fec_enet_get_sset_count,
3262 #endif
3263 .get_ts_info = fec_enet_get_ts_info,
3264 .get_wol = fec_enet_get_wol,
3265 .set_wol = fec_enet_set_wol,
3266 .get_eee = fec_enet_get_eee,
3267 .set_eee = fec_enet_set_eee,
3268 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3269 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3270 .self_test = net_selftest,
3271 };
3272
fec_enet_free_buffers(struct net_device * ndev)3273 static void fec_enet_free_buffers(struct net_device *ndev)
3274 {
3275 struct fec_enet_private *fep = netdev_priv(ndev);
3276 unsigned int i;
3277 struct fec_enet_priv_tx_q *txq;
3278 struct fec_enet_priv_rx_q *rxq;
3279 unsigned int q;
3280
3281 for (q = 0; q < fep->num_rx_queues; q++) {
3282 rxq = fep->rx_queue[q];
3283 for (i = 0; i < rxq->bd.ring_size; i++)
3284 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3285
3286 for (i = 0; i < XDP_STATS_TOTAL; i++)
3287 rxq->stats[i] = 0;
3288
3289 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3290 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3291 page_pool_destroy(rxq->page_pool);
3292 rxq->page_pool = NULL;
3293 }
3294
3295 for (q = 0; q < fep->num_tx_queues; q++) {
3296 txq = fep->tx_queue[q];
3297 for (i = 0; i < txq->bd.ring_size; i++) {
3298 kfree(txq->tx_bounce[i]);
3299 txq->tx_bounce[i] = NULL;
3300
3301 if (!txq->tx_buf[i].buf_p) {
3302 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3303 continue;
3304 }
3305
3306 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3307 dev_kfree_skb(txq->tx_buf[i].buf_p);
3308 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3309 xdp_return_frame(txq->tx_buf[i].buf_p);
3310 } else {
3311 struct page *page = txq->tx_buf[i].buf_p;
3312
3313 page_pool_put_page(page->pp, page, 0, false);
3314 }
3315
3316 txq->tx_buf[i].buf_p = NULL;
3317 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3318 }
3319 }
3320 }
3321
fec_enet_free_queue(struct net_device * ndev)3322 static void fec_enet_free_queue(struct net_device *ndev)
3323 {
3324 struct fec_enet_private *fep = netdev_priv(ndev);
3325 int i;
3326 struct fec_enet_priv_tx_q *txq;
3327
3328 for (i = 0; i < fep->num_tx_queues; i++)
3329 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3330 txq = fep->tx_queue[i];
3331 dma_free_coherent(&fep->pdev->dev,
3332 txq->bd.ring_size * TSO_HEADER_SIZE,
3333 txq->tso_hdrs,
3334 txq->tso_hdrs_dma);
3335 }
3336
3337 for (i = 0; i < fep->num_rx_queues; i++)
3338 kfree(fep->rx_queue[i]);
3339 for (i = 0; i < fep->num_tx_queues; i++)
3340 kfree(fep->tx_queue[i]);
3341 }
3342
fec_enet_alloc_queue(struct net_device * ndev)3343 static int fec_enet_alloc_queue(struct net_device *ndev)
3344 {
3345 struct fec_enet_private *fep = netdev_priv(ndev);
3346 int i;
3347 int ret = 0;
3348 struct fec_enet_priv_tx_q *txq;
3349
3350 for (i = 0; i < fep->num_tx_queues; i++) {
3351 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3352 if (!txq) {
3353 ret = -ENOMEM;
3354 goto alloc_failed;
3355 }
3356
3357 fep->tx_queue[i] = txq;
3358 txq->bd.ring_size = TX_RING_SIZE;
3359 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3360
3361 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3362 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3363
3364 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3365 txq->bd.ring_size * TSO_HEADER_SIZE,
3366 &txq->tso_hdrs_dma,
3367 GFP_KERNEL);
3368 if (!txq->tso_hdrs) {
3369 ret = -ENOMEM;
3370 goto alloc_failed;
3371 }
3372 }
3373
3374 for (i = 0; i < fep->num_rx_queues; i++) {
3375 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3376 GFP_KERNEL);
3377 if (!fep->rx_queue[i]) {
3378 ret = -ENOMEM;
3379 goto alloc_failed;
3380 }
3381
3382 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3383 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3384 }
3385 return ret;
3386
3387 alloc_failed:
3388 fec_enet_free_queue(ndev);
3389 return ret;
3390 }
3391
3392 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3393 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3394 {
3395 struct fec_enet_private *fep = netdev_priv(ndev);
3396 struct fec_enet_priv_rx_q *rxq;
3397 dma_addr_t phys_addr;
3398 struct bufdesc *bdp;
3399 struct page *page;
3400 int i, err;
3401
3402 rxq = fep->rx_queue[queue];
3403 bdp = rxq->bd.base;
3404
3405 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3406 if (err < 0) {
3407 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3408 return err;
3409 }
3410
3411 for (i = 0; i < rxq->bd.ring_size; i++) {
3412 page = page_pool_dev_alloc_pages(rxq->page_pool);
3413 if (!page)
3414 goto err_alloc;
3415
3416 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3417 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3418
3419 rxq->rx_skb_info[i].page = page;
3420 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3421 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3422
3423 if (fep->bufdesc_ex) {
3424 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3425 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3426 }
3427
3428 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3429 }
3430
3431 /* Set the last buffer to wrap. */
3432 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3433 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3434 return 0;
3435
3436 err_alloc:
3437 fec_enet_free_buffers(ndev);
3438 return -ENOMEM;
3439 }
3440
3441 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3442 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3443 {
3444 struct fec_enet_private *fep = netdev_priv(ndev);
3445 unsigned int i;
3446 struct bufdesc *bdp;
3447 struct fec_enet_priv_tx_q *txq;
3448
3449 txq = fep->tx_queue[queue];
3450 bdp = txq->bd.base;
3451 for (i = 0; i < txq->bd.ring_size; i++) {
3452 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3453 if (!txq->tx_bounce[i])
3454 goto err_alloc;
3455
3456 bdp->cbd_sc = cpu_to_fec16(0);
3457 bdp->cbd_bufaddr = cpu_to_fec32(0);
3458
3459 if (fep->bufdesc_ex) {
3460 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3461 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3462 }
3463
3464 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3465 }
3466
3467 /* Set the last buffer to wrap. */
3468 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3469 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3470
3471 return 0;
3472
3473 err_alloc:
3474 fec_enet_free_buffers(ndev);
3475 return -ENOMEM;
3476 }
3477
fec_enet_alloc_buffers(struct net_device * ndev)3478 static int fec_enet_alloc_buffers(struct net_device *ndev)
3479 {
3480 struct fec_enet_private *fep = netdev_priv(ndev);
3481 unsigned int i;
3482
3483 for (i = 0; i < fep->num_rx_queues; i++)
3484 if (fec_enet_alloc_rxq_buffers(ndev, i))
3485 return -ENOMEM;
3486
3487 for (i = 0; i < fep->num_tx_queues; i++)
3488 if (fec_enet_alloc_txq_buffers(ndev, i))
3489 return -ENOMEM;
3490 return 0;
3491 }
3492
3493 static int
fec_enet_open(struct net_device * ndev)3494 fec_enet_open(struct net_device *ndev)
3495 {
3496 struct fec_enet_private *fep = netdev_priv(ndev);
3497 int ret;
3498 bool reset_again;
3499
3500 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3501 if (ret < 0)
3502 return ret;
3503
3504 pinctrl_pm_select_default_state(&fep->pdev->dev);
3505 ret = fec_enet_clk_enable(ndev, true);
3506 if (ret)
3507 goto clk_enable;
3508
3509 /* During the first fec_enet_open call the PHY isn't probed at this
3510 * point. Therefore the phy_reset_after_clk_enable() call within
3511 * fec_enet_clk_enable() fails. As we need this reset in order to be
3512 * sure the PHY is working correctly we check if we need to reset again
3513 * later when the PHY is probed
3514 */
3515 if (ndev->phydev && ndev->phydev->drv)
3516 reset_again = false;
3517 else
3518 reset_again = true;
3519
3520 /* I should reset the ring buffers here, but I don't yet know
3521 * a simple way to do that.
3522 */
3523
3524 ret = fec_enet_alloc_buffers(ndev);
3525 if (ret)
3526 goto err_enet_alloc;
3527
3528 /* Init MAC prior to mii bus probe */
3529 fec_restart(ndev);
3530
3531 /* Call phy_reset_after_clk_enable() again if it failed during
3532 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3533 */
3534 if (reset_again)
3535 fec_enet_phy_reset_after_clk_enable(ndev);
3536
3537 /* Probe and connect to PHY when open the interface */
3538 ret = fec_enet_mii_probe(ndev);
3539 if (ret)
3540 goto err_enet_mii_probe;
3541
3542 if (fep->quirks & FEC_QUIRK_ERR006687)
3543 imx6q_cpuidle_fec_irqs_used();
3544
3545 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3546 cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3547
3548 napi_enable(&fep->napi);
3549 phy_start(ndev->phydev);
3550 netif_tx_start_all_queues(ndev);
3551
3552 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3553 FEC_WOL_FLAG_ENABLE);
3554
3555 return 0;
3556
3557 err_enet_mii_probe:
3558 fec_enet_free_buffers(ndev);
3559 err_enet_alloc:
3560 fec_enet_clk_enable(ndev, false);
3561 clk_enable:
3562 pm_runtime_mark_last_busy(&fep->pdev->dev);
3563 pm_runtime_put_autosuspend(&fep->pdev->dev);
3564 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3565 return ret;
3566 }
3567
3568 static int
fec_enet_close(struct net_device * ndev)3569 fec_enet_close(struct net_device *ndev)
3570 {
3571 struct fec_enet_private *fep = netdev_priv(ndev);
3572
3573 phy_stop(ndev->phydev);
3574
3575 if (netif_device_present(ndev)) {
3576 napi_disable(&fep->napi);
3577 netif_tx_disable(ndev);
3578 fec_stop(ndev);
3579 }
3580
3581 phy_disconnect(ndev->phydev);
3582
3583 if (fep->quirks & FEC_QUIRK_ERR006687)
3584 imx6q_cpuidle_fec_irqs_unused();
3585
3586 fec_enet_update_ethtool_stats(ndev);
3587
3588 fec_enet_clk_enable(ndev, false);
3589 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3590 cpu_latency_qos_remove_request(&fep->pm_qos_req);
3591
3592 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3593 pm_runtime_mark_last_busy(&fep->pdev->dev);
3594 pm_runtime_put_autosuspend(&fep->pdev->dev);
3595
3596 fec_enet_free_buffers(ndev);
3597
3598 return 0;
3599 }
3600
3601 /* Set or clear the multicast filter for this adaptor.
3602 * Skeleton taken from sunlance driver.
3603 * The CPM Ethernet implementation allows Multicast as well as individual
3604 * MAC address filtering. Some of the drivers check to make sure it is
3605 * a group multicast address, and discard those that are not. I guess I
3606 * will do the same for now, but just remove the test if you want
3607 * individual filtering as well (do the upper net layers want or support
3608 * this kind of feature?).
3609 */
3610
3611 #define FEC_HASH_BITS 6 /* #bits in hash */
3612
set_multicast_list(struct net_device * ndev)3613 static void set_multicast_list(struct net_device *ndev)
3614 {
3615 struct fec_enet_private *fep = netdev_priv(ndev);
3616 struct netdev_hw_addr *ha;
3617 unsigned int crc, tmp;
3618 unsigned char hash;
3619 unsigned int hash_high = 0, hash_low = 0;
3620
3621 if (ndev->flags & IFF_PROMISC) {
3622 tmp = readl(fep->hwp + FEC_R_CNTRL);
3623 tmp |= 0x8;
3624 writel(tmp, fep->hwp + FEC_R_CNTRL);
3625 return;
3626 }
3627
3628 tmp = readl(fep->hwp + FEC_R_CNTRL);
3629 tmp &= ~0x8;
3630 writel(tmp, fep->hwp + FEC_R_CNTRL);
3631
3632 if (ndev->flags & IFF_ALLMULTI) {
3633 /* Catch all multicast addresses, so set the
3634 * filter to all 1's
3635 */
3636 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3637 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3638
3639 return;
3640 }
3641
3642 /* Add the addresses in hash register */
3643 netdev_for_each_mc_addr(ha, ndev) {
3644 /* calculate crc32 value of mac address */
3645 crc = ether_crc_le(ndev->addr_len, ha->addr);
3646
3647 /* only upper 6 bits (FEC_HASH_BITS) are used
3648 * which point to specific bit in the hash registers
3649 */
3650 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3651
3652 if (hash > 31)
3653 hash_high |= 1 << (hash - 32);
3654 else
3655 hash_low |= 1 << hash;
3656 }
3657
3658 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3659 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3660 }
3661
3662 /* Set a MAC change in hardware. */
3663 static int
fec_set_mac_address(struct net_device * ndev,void * p)3664 fec_set_mac_address(struct net_device *ndev, void *p)
3665 {
3666 struct fec_enet_private *fep = netdev_priv(ndev);
3667 struct sockaddr *addr = p;
3668
3669 if (addr) {
3670 if (!is_valid_ether_addr(addr->sa_data))
3671 return -EADDRNOTAVAIL;
3672 eth_hw_addr_set(ndev, addr->sa_data);
3673 }
3674
3675 /* Add netif status check here to avoid system hang in below case:
3676 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3677 * After ethx down, fec all clocks are gated off and then register
3678 * access causes system hang.
3679 */
3680 if (!netif_running(ndev))
3681 return 0;
3682
3683 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3684 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3685 fep->hwp + FEC_ADDR_LOW);
3686 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3687 fep->hwp + FEC_ADDR_HIGH);
3688 return 0;
3689 }
3690
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3691 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3692 netdev_features_t features)
3693 {
3694 struct fec_enet_private *fep = netdev_priv(netdev);
3695 netdev_features_t changed = features ^ netdev->features;
3696
3697 netdev->features = features;
3698
3699 /* Receive checksum has been changed */
3700 if (changed & NETIF_F_RXCSUM) {
3701 if (features & NETIF_F_RXCSUM)
3702 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3703 else
3704 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3705 }
3706 }
3707
fec_set_features(struct net_device * netdev,netdev_features_t features)3708 static int fec_set_features(struct net_device *netdev,
3709 netdev_features_t features)
3710 {
3711 struct fec_enet_private *fep = netdev_priv(netdev);
3712 netdev_features_t changed = features ^ netdev->features;
3713
3714 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3715 napi_disable(&fep->napi);
3716 netif_tx_lock_bh(netdev);
3717 fec_stop(netdev);
3718 fec_enet_set_netdev_features(netdev, features);
3719 fec_restart(netdev);
3720 netif_tx_wake_all_queues(netdev);
3721 netif_tx_unlock_bh(netdev);
3722 napi_enable(&fep->napi);
3723 } else {
3724 fec_enet_set_netdev_features(netdev, features);
3725 }
3726
3727 return 0;
3728 }
3729
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3730 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3731 struct net_device *sb_dev)
3732 {
3733 struct fec_enet_private *fep = netdev_priv(ndev);
3734 u16 vlan_tag = 0;
3735
3736 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3737 return netdev_pick_tx(ndev, skb, NULL);
3738
3739 /* VLAN is present in the payload.*/
3740 if (eth_type_vlan(skb->protocol)) {
3741 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3742
3743 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3744 /* VLAN is present in the skb but not yet pushed in the payload.*/
3745 } else if (skb_vlan_tag_present(skb)) {
3746 vlan_tag = skb->vlan_tci;
3747 } else {
3748 return vlan_tag;
3749 }
3750
3751 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3752 }
3753
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3754 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3755 {
3756 struct fec_enet_private *fep = netdev_priv(dev);
3757 bool is_run = netif_running(dev);
3758 struct bpf_prog *old_prog;
3759
3760 switch (bpf->command) {
3761 case XDP_SETUP_PROG:
3762 /* No need to support the SoCs that require to
3763 * do the frame swap because the performance wouldn't be
3764 * better than the skb mode.
3765 */
3766 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3767 return -EOPNOTSUPP;
3768
3769 if (!bpf->prog)
3770 xdp_features_clear_redirect_target(dev);
3771
3772 if (is_run) {
3773 napi_disable(&fep->napi);
3774 netif_tx_disable(dev);
3775 }
3776
3777 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3778 if (old_prog)
3779 bpf_prog_put(old_prog);
3780
3781 fec_restart(dev);
3782
3783 if (is_run) {
3784 napi_enable(&fep->napi);
3785 netif_tx_start_all_queues(dev);
3786 }
3787
3788 if (bpf->prog)
3789 xdp_features_set_redirect_target(dev, false);
3790
3791 return 0;
3792
3793 case XDP_SETUP_XSK_POOL:
3794 return -EOPNOTSUPP;
3795
3796 default:
3797 return -EOPNOTSUPP;
3798 }
3799 }
3800
3801 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3802 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3803 {
3804 if (unlikely(index < 0))
3805 return 0;
3806
3807 return (index % fep->num_tx_queues);
3808 }
3809
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3810 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3811 struct fec_enet_priv_tx_q *txq,
3812 void *frame, u32 dma_sync_len,
3813 bool ndo_xmit)
3814 {
3815 unsigned int index, status, estatus;
3816 struct bufdesc *bdp;
3817 dma_addr_t dma_addr;
3818 int entries_free;
3819 u16 frame_len;
3820
3821 entries_free = fec_enet_get_free_txdesc_num(txq);
3822 if (entries_free < MAX_SKB_FRAGS + 1) {
3823 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3824 return -EBUSY;
3825 }
3826
3827 /* Fill in a Tx ring entry */
3828 bdp = txq->bd.cur;
3829 status = fec16_to_cpu(bdp->cbd_sc);
3830 status &= ~BD_ENET_TX_STATS;
3831
3832 index = fec_enet_get_bd_index(bdp, &txq->bd);
3833
3834 if (ndo_xmit) {
3835 struct xdp_frame *xdpf = frame;
3836
3837 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3838 xdpf->len, DMA_TO_DEVICE);
3839 if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3840 return -ENOMEM;
3841
3842 frame_len = xdpf->len;
3843 txq->tx_buf[index].buf_p = xdpf;
3844 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3845 } else {
3846 struct xdp_buff *xdpb = frame;
3847 struct page *page;
3848
3849 page = virt_to_page(xdpb->data);
3850 dma_addr = page_pool_get_dma_addr(page) +
3851 (xdpb->data - xdpb->data_hard_start);
3852 dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3853 dma_sync_len, DMA_BIDIRECTIONAL);
3854 frame_len = xdpb->data_end - xdpb->data;
3855 txq->tx_buf[index].buf_p = page;
3856 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3857 }
3858
3859 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3860 if (fep->bufdesc_ex)
3861 estatus = BD_ENET_TX_INT;
3862
3863 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3864 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3865
3866 if (fep->bufdesc_ex) {
3867 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3868
3869 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3870 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3871
3872 ebdp->cbd_bdu = 0;
3873 ebdp->cbd_esc = cpu_to_fec32(estatus);
3874 }
3875
3876 /* Make sure the updates to rest of the descriptor are performed before
3877 * transferring ownership.
3878 */
3879 dma_wmb();
3880
3881 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3882 * it's the last BD of the frame, and to put the CRC on the end.
3883 */
3884 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3885 bdp->cbd_sc = cpu_to_fec16(status);
3886
3887 /* If this was the last BD in the ring, start at the beginning again. */
3888 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3889
3890 /* Make sure the update to bdp are performed before txq->bd.cur. */
3891 dma_wmb();
3892
3893 txq->bd.cur = bdp;
3894
3895 /* Trigger transmission start */
3896 writel(0, txq->bd.reg_desc_active);
3897
3898 return 0;
3899 }
3900
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3901 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3902 int cpu, struct xdp_buff *xdp,
3903 u32 dma_sync_len)
3904 {
3905 struct fec_enet_priv_tx_q *txq;
3906 struct netdev_queue *nq;
3907 int queue, ret;
3908
3909 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3910 txq = fep->tx_queue[queue];
3911 nq = netdev_get_tx_queue(fep->netdev, queue);
3912
3913 __netif_tx_lock(nq, cpu);
3914
3915 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3916 txq_trans_cond_update(nq);
3917 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3918
3919 __netif_tx_unlock(nq);
3920
3921 return ret;
3922 }
3923
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3924 static int fec_enet_xdp_xmit(struct net_device *dev,
3925 int num_frames,
3926 struct xdp_frame **frames,
3927 u32 flags)
3928 {
3929 struct fec_enet_private *fep = netdev_priv(dev);
3930 struct fec_enet_priv_tx_q *txq;
3931 int cpu = smp_processor_id();
3932 unsigned int sent_frames = 0;
3933 struct netdev_queue *nq;
3934 unsigned int queue;
3935 int i;
3936
3937 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3938 txq = fep->tx_queue[queue];
3939 nq = netdev_get_tx_queue(fep->netdev, queue);
3940
3941 __netif_tx_lock(nq, cpu);
3942
3943 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3944 txq_trans_cond_update(nq);
3945 for (i = 0; i < num_frames; i++) {
3946 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3947 break;
3948 sent_frames++;
3949 }
3950
3951 __netif_tx_unlock(nq);
3952
3953 return sent_frames;
3954 }
3955
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3956 static int fec_hwtstamp_get(struct net_device *ndev,
3957 struct kernel_hwtstamp_config *config)
3958 {
3959 struct fec_enet_private *fep = netdev_priv(ndev);
3960
3961 if (!netif_running(ndev))
3962 return -EINVAL;
3963
3964 if (!fep->bufdesc_ex)
3965 return -EOPNOTSUPP;
3966
3967 fec_ptp_get(ndev, config);
3968
3969 return 0;
3970 }
3971
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)3972 static int fec_hwtstamp_set(struct net_device *ndev,
3973 struct kernel_hwtstamp_config *config,
3974 struct netlink_ext_ack *extack)
3975 {
3976 struct fec_enet_private *fep = netdev_priv(ndev);
3977
3978 if (!netif_running(ndev))
3979 return -EINVAL;
3980
3981 if (!fep->bufdesc_ex)
3982 return -EOPNOTSUPP;
3983
3984 return fec_ptp_set(ndev, config, extack);
3985 }
3986
3987 static const struct net_device_ops fec_netdev_ops = {
3988 .ndo_open = fec_enet_open,
3989 .ndo_stop = fec_enet_close,
3990 .ndo_start_xmit = fec_enet_start_xmit,
3991 .ndo_select_queue = fec_enet_select_queue,
3992 .ndo_set_rx_mode = set_multicast_list,
3993 .ndo_validate_addr = eth_validate_addr,
3994 .ndo_tx_timeout = fec_timeout,
3995 .ndo_set_mac_address = fec_set_mac_address,
3996 .ndo_eth_ioctl = phy_do_ioctl_running,
3997 .ndo_set_features = fec_set_features,
3998 .ndo_bpf = fec_enet_bpf,
3999 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4000 .ndo_hwtstamp_get = fec_hwtstamp_get,
4001 .ndo_hwtstamp_set = fec_hwtstamp_set,
4002 };
4003
4004 static const unsigned short offset_des_active_rxq[] = {
4005 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4006 };
4007
4008 static const unsigned short offset_des_active_txq[] = {
4009 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4010 };
4011
4012 /*
4013 * XXX: We need to clean up on failure exits here.
4014 *
4015 */
fec_enet_init(struct net_device * ndev)4016 static int fec_enet_init(struct net_device *ndev)
4017 {
4018 struct fec_enet_private *fep = netdev_priv(ndev);
4019 struct bufdesc *cbd_base;
4020 dma_addr_t bd_dma;
4021 int bd_size;
4022 unsigned int i;
4023 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4024 sizeof(struct bufdesc);
4025 unsigned dsize_log2 = __fls(dsize);
4026 int ret;
4027
4028 WARN_ON(dsize != (1 << dsize_log2));
4029 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4030 fep->rx_align = 0xf;
4031 fep->tx_align = 0xf;
4032 #else
4033 fep->rx_align = 0x3;
4034 fep->tx_align = 0x3;
4035 #endif
4036 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4037 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4038 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4039 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4040
4041 /* Check mask of the streaming and coherent API */
4042 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4043 if (ret < 0) {
4044 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4045 return ret;
4046 }
4047
4048 ret = fec_enet_alloc_queue(ndev);
4049 if (ret)
4050 return ret;
4051
4052 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4053
4054 /* Allocate memory for buffer descriptors. */
4055 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4056 GFP_KERNEL);
4057 if (!cbd_base) {
4058 ret = -ENOMEM;
4059 goto free_queue_mem;
4060 }
4061
4062 /* Get the Ethernet address */
4063 ret = fec_get_mac(ndev);
4064 if (ret)
4065 goto free_queue_mem;
4066
4067 /* Set receive and transmit descriptor base. */
4068 for (i = 0; i < fep->num_rx_queues; i++) {
4069 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4070 unsigned size = dsize * rxq->bd.ring_size;
4071
4072 rxq->bd.qid = i;
4073 rxq->bd.base = cbd_base;
4074 rxq->bd.cur = cbd_base;
4075 rxq->bd.dma = bd_dma;
4076 rxq->bd.dsize = dsize;
4077 rxq->bd.dsize_log2 = dsize_log2;
4078 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4079 bd_dma += size;
4080 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4081 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4082 }
4083
4084 for (i = 0; i < fep->num_tx_queues; i++) {
4085 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4086 unsigned size = dsize * txq->bd.ring_size;
4087
4088 txq->bd.qid = i;
4089 txq->bd.base = cbd_base;
4090 txq->bd.cur = cbd_base;
4091 txq->bd.dma = bd_dma;
4092 txq->bd.dsize = dsize;
4093 txq->bd.dsize_log2 = dsize_log2;
4094 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4095 bd_dma += size;
4096 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4097 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4098 }
4099
4100
4101 /* The FEC Ethernet specific entries in the device structure */
4102 ndev->watchdog_timeo = TX_TIMEOUT;
4103 ndev->netdev_ops = &fec_netdev_ops;
4104 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4105
4106 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4107 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4108
4109 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4110 /* enable hw VLAN support */
4111 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4112
4113 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4114 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4115
4116 /* enable hw accelerator */
4117 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4118 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4119 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4120 }
4121
4122 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4123 fep->tx_align = 0;
4124 fep->rx_align = 0x3f;
4125 }
4126
4127 ndev->hw_features = ndev->features;
4128
4129 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4130 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4131 NETDEV_XDP_ACT_REDIRECT;
4132
4133 fec_restart(ndev);
4134
4135 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4136 fec_enet_clear_ethtool_stats(ndev);
4137 else
4138 fec_enet_update_ethtool_stats(ndev);
4139
4140 return 0;
4141
4142 free_queue_mem:
4143 fec_enet_free_queue(ndev);
4144 return ret;
4145 }
4146
fec_enet_deinit(struct net_device * ndev)4147 static void fec_enet_deinit(struct net_device *ndev)
4148 {
4149 struct fec_enet_private *fep = netdev_priv(ndev);
4150
4151 netif_napi_del(&fep->napi);
4152 fec_enet_free_queue(ndev);
4153 }
4154
4155 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4156 static int fec_reset_phy(struct platform_device *pdev)
4157 {
4158 struct gpio_desc *phy_reset;
4159 int msec = 1, phy_post_delay = 0;
4160 struct device_node *np = pdev->dev.of_node;
4161 int err;
4162
4163 if (!np)
4164 return 0;
4165
4166 err = of_property_read_u32(np, "phy-reset-duration", &msec);
4167 /* A sane reset duration should not be longer than 1s */
4168 if (!err && msec > 1000)
4169 msec = 1;
4170
4171 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4172 /* valid reset duration should be less than 1s */
4173 if (!err && phy_post_delay > 1000)
4174 return -EINVAL;
4175
4176 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4177 GPIOD_OUT_HIGH);
4178 if (IS_ERR(phy_reset))
4179 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4180 "failed to get phy-reset-gpios\n");
4181
4182 if (!phy_reset)
4183 return 0;
4184
4185 if (msec > 20)
4186 msleep(msec);
4187 else
4188 usleep_range(msec * 1000, msec * 1000 + 1000);
4189
4190 gpiod_set_value_cansleep(phy_reset, 0);
4191
4192 if (!phy_post_delay)
4193 return 0;
4194
4195 if (phy_post_delay > 20)
4196 msleep(phy_post_delay);
4197 else
4198 usleep_range(phy_post_delay * 1000,
4199 phy_post_delay * 1000 + 1000);
4200
4201 return 0;
4202 }
4203 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4204 static int fec_reset_phy(struct platform_device *pdev)
4205 {
4206 /*
4207 * In case of platform probe, the reset has been done
4208 * by machine code.
4209 */
4210 return 0;
4211 }
4212 #endif /* CONFIG_OF */
4213
4214 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4215 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4216 {
4217 struct device_node *np = pdev->dev.of_node;
4218
4219 *num_tx = *num_rx = 1;
4220
4221 if (!np || !of_device_is_available(np))
4222 return;
4223
4224 /* parse the num of tx and rx queues */
4225 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4226
4227 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4228
4229 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4230 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4231 *num_tx);
4232 *num_tx = 1;
4233 return;
4234 }
4235
4236 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4237 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4238 *num_rx);
4239 *num_rx = 1;
4240 return;
4241 }
4242
4243 }
4244
fec_enet_get_irq_cnt(struct platform_device * pdev)4245 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4246 {
4247 int irq_cnt = platform_irq_count(pdev);
4248
4249 if (irq_cnt > FEC_IRQ_NUM)
4250 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4251 else if (irq_cnt == 2)
4252 irq_cnt = 1; /* last for pps */
4253 else if (irq_cnt <= 0)
4254 irq_cnt = 1; /* At least 1 irq is needed */
4255 return irq_cnt;
4256 }
4257
fec_enet_get_wakeup_irq(struct platform_device * pdev)4258 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4259 {
4260 struct net_device *ndev = platform_get_drvdata(pdev);
4261 struct fec_enet_private *fep = netdev_priv(ndev);
4262
4263 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4264 fep->wake_irq = fep->irq[2];
4265 else
4266 fep->wake_irq = fep->irq[0];
4267 }
4268
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4269 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4270 struct device_node *np)
4271 {
4272 struct device_node *gpr_np;
4273 u32 out_val[3];
4274 int ret = 0;
4275
4276 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4277 if (!gpr_np)
4278 return 0;
4279
4280 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4281 ARRAY_SIZE(out_val));
4282 if (ret) {
4283 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4284 goto out;
4285 }
4286
4287 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4288 if (IS_ERR(fep->stop_gpr.gpr)) {
4289 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4290 ret = PTR_ERR(fep->stop_gpr.gpr);
4291 fep->stop_gpr.gpr = NULL;
4292 goto out;
4293 }
4294
4295 fep->stop_gpr.reg = out_val[1];
4296 fep->stop_gpr.bit = out_val[2];
4297
4298 out:
4299 of_node_put(gpr_np);
4300
4301 return ret;
4302 }
4303
4304 static int
fec_probe(struct platform_device * pdev)4305 fec_probe(struct platform_device *pdev)
4306 {
4307 struct fec_enet_private *fep;
4308 struct fec_platform_data *pdata;
4309 phy_interface_t interface;
4310 struct net_device *ndev;
4311 int i, irq, ret = 0;
4312 const struct of_device_id *of_id;
4313 static int dev_id;
4314 struct device_node *np = pdev->dev.of_node, *phy_node;
4315 int num_tx_qs;
4316 int num_rx_qs;
4317 char irq_name[8];
4318 int irq_cnt;
4319 struct fec_devinfo *dev_info;
4320
4321 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4322
4323 /* Init network device */
4324 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4325 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4326 if (!ndev)
4327 return -ENOMEM;
4328
4329 SET_NETDEV_DEV(ndev, &pdev->dev);
4330
4331 /* setup board info structure */
4332 fep = netdev_priv(ndev);
4333
4334 of_id = of_match_device(fec_dt_ids, &pdev->dev);
4335 if (of_id)
4336 pdev->id_entry = of_id->data;
4337 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4338 if (dev_info)
4339 fep->quirks = dev_info->quirks;
4340
4341 fep->netdev = ndev;
4342 fep->num_rx_queues = num_rx_qs;
4343 fep->num_tx_queues = num_tx_qs;
4344
4345 #if !defined(CONFIG_M5272)
4346 /* default enable pause frame auto negotiation */
4347 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4348 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4349 #endif
4350
4351 /* Select default pin state */
4352 pinctrl_pm_select_default_state(&pdev->dev);
4353
4354 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4355 if (IS_ERR(fep->hwp)) {
4356 ret = PTR_ERR(fep->hwp);
4357 goto failed_ioremap;
4358 }
4359
4360 fep->pdev = pdev;
4361 fep->dev_id = dev_id++;
4362
4363 platform_set_drvdata(pdev, ndev);
4364
4365 if ((of_machine_is_compatible("fsl,imx6q") ||
4366 of_machine_is_compatible("fsl,imx6dl")) &&
4367 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4368 fep->quirks |= FEC_QUIRK_ERR006687;
4369
4370 ret = fec_enet_ipc_handle_init(fep);
4371 if (ret)
4372 goto failed_ipc_init;
4373
4374 if (of_property_read_bool(np, "fsl,magic-packet"))
4375 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4376
4377 ret = fec_enet_init_stop_mode(fep, np);
4378 if (ret)
4379 goto failed_stop_mode;
4380
4381 phy_node = of_parse_phandle(np, "phy-handle", 0);
4382 if (!phy_node && of_phy_is_fixed_link(np)) {
4383 ret = of_phy_register_fixed_link(np);
4384 if (ret < 0) {
4385 dev_err(&pdev->dev,
4386 "broken fixed-link specification\n");
4387 goto failed_phy;
4388 }
4389 phy_node = of_node_get(np);
4390 }
4391 fep->phy_node = phy_node;
4392
4393 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4394 if (ret) {
4395 pdata = dev_get_platdata(&pdev->dev);
4396 if (pdata)
4397 fep->phy_interface = pdata->phy;
4398 else
4399 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4400 } else {
4401 fep->phy_interface = interface;
4402 }
4403
4404 ret = fec_enet_parse_rgmii_delay(fep, np);
4405 if (ret)
4406 goto failed_rgmii_delay;
4407
4408 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4409 if (IS_ERR(fep->clk_ipg)) {
4410 ret = PTR_ERR(fep->clk_ipg);
4411 goto failed_clk;
4412 }
4413
4414 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4415 if (IS_ERR(fep->clk_ahb)) {
4416 ret = PTR_ERR(fep->clk_ahb);
4417 goto failed_clk;
4418 }
4419
4420 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4421
4422 /* enet_out is optional, depends on board */
4423 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4424 if (IS_ERR(fep->clk_enet_out)) {
4425 ret = PTR_ERR(fep->clk_enet_out);
4426 goto failed_clk;
4427 }
4428
4429 fep->ptp_clk_on = false;
4430 mutex_init(&fep->ptp_clk_mutex);
4431
4432 /* clk_ref is optional, depends on board */
4433 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4434 if (IS_ERR(fep->clk_ref)) {
4435 ret = PTR_ERR(fep->clk_ref);
4436 goto failed_clk;
4437 }
4438 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4439
4440 /* clk_2x_txclk is optional, depends on board */
4441 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4442 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4443 if (IS_ERR(fep->clk_2x_txclk))
4444 fep->clk_2x_txclk = NULL;
4445 }
4446
4447 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4448 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4449 if (IS_ERR(fep->clk_ptp)) {
4450 fep->clk_ptp = NULL;
4451 fep->bufdesc_ex = false;
4452 }
4453
4454 ret = fec_enet_clk_enable(ndev, true);
4455 if (ret)
4456 goto failed_clk;
4457
4458 ret = clk_prepare_enable(fep->clk_ipg);
4459 if (ret)
4460 goto failed_clk_ipg;
4461 ret = clk_prepare_enable(fep->clk_ahb);
4462 if (ret)
4463 goto failed_clk_ahb;
4464
4465 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4466 if (!IS_ERR(fep->reg_phy)) {
4467 ret = regulator_enable(fep->reg_phy);
4468 if (ret) {
4469 dev_err(&pdev->dev,
4470 "Failed to enable phy regulator: %d\n", ret);
4471 goto failed_regulator;
4472 }
4473 } else {
4474 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4475 ret = -EPROBE_DEFER;
4476 goto failed_regulator;
4477 }
4478 fep->reg_phy = NULL;
4479 }
4480
4481 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4482 pm_runtime_use_autosuspend(&pdev->dev);
4483 pm_runtime_get_noresume(&pdev->dev);
4484 pm_runtime_set_active(&pdev->dev);
4485 pm_runtime_enable(&pdev->dev);
4486
4487 ret = fec_reset_phy(pdev);
4488 if (ret)
4489 goto failed_reset;
4490
4491 irq_cnt = fec_enet_get_irq_cnt(pdev);
4492 if (fep->bufdesc_ex)
4493 fec_ptp_init(pdev, irq_cnt);
4494
4495 ret = fec_enet_init(ndev);
4496 if (ret)
4497 goto failed_init;
4498
4499 for (i = 0; i < irq_cnt; i++) {
4500 snprintf(irq_name, sizeof(irq_name), "int%d", i);
4501 irq = platform_get_irq_byname_optional(pdev, irq_name);
4502 if (irq < 0)
4503 irq = platform_get_irq(pdev, i);
4504 if (irq < 0) {
4505 ret = irq;
4506 goto failed_irq;
4507 }
4508 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4509 0, pdev->name, ndev);
4510 if (ret)
4511 goto failed_irq;
4512
4513 fep->irq[i] = irq;
4514 }
4515
4516 /* Decide which interrupt line is wakeup capable */
4517 fec_enet_get_wakeup_irq(pdev);
4518
4519 ret = fec_enet_mii_init(pdev);
4520 if (ret)
4521 goto failed_mii_init;
4522
4523 /* Carrier starts down, phylib will bring it up */
4524 netif_carrier_off(ndev);
4525 fec_enet_clk_enable(ndev, false);
4526 pinctrl_pm_select_sleep_state(&pdev->dev);
4527
4528 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4529
4530 ret = register_netdev(ndev);
4531 if (ret)
4532 goto failed_register;
4533
4534 device_init_wakeup(&ndev->dev, fep->wol_flag &
4535 FEC_WOL_HAS_MAGIC_PACKET);
4536
4537 if (fep->bufdesc_ex && fep->ptp_clock)
4538 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4539
4540 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4541
4542 pm_runtime_mark_last_busy(&pdev->dev);
4543 pm_runtime_put_autosuspend(&pdev->dev);
4544
4545 return 0;
4546
4547 failed_register:
4548 fec_enet_mii_remove(fep);
4549 failed_mii_init:
4550 failed_irq:
4551 fec_enet_deinit(ndev);
4552 failed_init:
4553 fec_ptp_stop(pdev);
4554 failed_reset:
4555 pm_runtime_put_noidle(&pdev->dev);
4556 pm_runtime_disable(&pdev->dev);
4557 if (fep->reg_phy)
4558 regulator_disable(fep->reg_phy);
4559 failed_regulator:
4560 clk_disable_unprepare(fep->clk_ahb);
4561 failed_clk_ahb:
4562 clk_disable_unprepare(fep->clk_ipg);
4563 failed_clk_ipg:
4564 fec_enet_clk_enable(ndev, false);
4565 failed_clk:
4566 failed_rgmii_delay:
4567 if (of_phy_is_fixed_link(np))
4568 of_phy_deregister_fixed_link(np);
4569 of_node_put(phy_node);
4570 failed_stop_mode:
4571 failed_ipc_init:
4572 failed_phy:
4573 dev_id--;
4574 failed_ioremap:
4575 free_netdev(ndev);
4576
4577 return ret;
4578 }
4579
4580 static void
fec_drv_remove(struct platform_device * pdev)4581 fec_drv_remove(struct platform_device *pdev)
4582 {
4583 struct net_device *ndev = platform_get_drvdata(pdev);
4584 struct fec_enet_private *fep = netdev_priv(ndev);
4585 struct device_node *np = pdev->dev.of_node;
4586 int ret;
4587
4588 ret = pm_runtime_get_sync(&pdev->dev);
4589 if (ret < 0)
4590 dev_err(&pdev->dev,
4591 "Failed to resume device in remove callback (%pe)\n",
4592 ERR_PTR(ret));
4593
4594 cancel_work_sync(&fep->tx_timeout_work);
4595 fec_ptp_stop(pdev);
4596 unregister_netdev(ndev);
4597 fec_enet_mii_remove(fep);
4598 if (fep->reg_phy)
4599 regulator_disable(fep->reg_phy);
4600
4601 if (of_phy_is_fixed_link(np))
4602 of_phy_deregister_fixed_link(np);
4603 of_node_put(fep->phy_node);
4604
4605 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4606 * disabling them again.
4607 */
4608 if (ret >= 0) {
4609 clk_disable_unprepare(fep->clk_ahb);
4610 clk_disable_unprepare(fep->clk_ipg);
4611 }
4612 pm_runtime_put_noidle(&pdev->dev);
4613 pm_runtime_disable(&pdev->dev);
4614
4615 fec_enet_deinit(ndev);
4616 free_netdev(ndev);
4617 }
4618
fec_suspend(struct device * dev)4619 static int __maybe_unused fec_suspend(struct device *dev)
4620 {
4621 struct net_device *ndev = dev_get_drvdata(dev);
4622 struct fec_enet_private *fep = netdev_priv(ndev);
4623 int ret;
4624
4625 rtnl_lock();
4626 if (netif_running(ndev)) {
4627 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4628 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4629 phy_stop(ndev->phydev);
4630 napi_disable(&fep->napi);
4631 netif_tx_lock_bh(ndev);
4632 netif_device_detach(ndev);
4633 netif_tx_unlock_bh(ndev);
4634 fec_stop(ndev);
4635 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4636 fec_irqs_disable(ndev);
4637 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4638 } else {
4639 fec_irqs_disable_except_wakeup(ndev);
4640 if (fep->wake_irq > 0) {
4641 disable_irq(fep->wake_irq);
4642 enable_irq_wake(fep->wake_irq);
4643 }
4644 fec_enet_stop_mode(fep, true);
4645 }
4646 /* It's safe to disable clocks since interrupts are masked */
4647 fec_enet_clk_enable(ndev, false);
4648
4649 fep->rpm_active = !pm_runtime_status_suspended(dev);
4650 if (fep->rpm_active) {
4651 ret = pm_runtime_force_suspend(dev);
4652 if (ret < 0) {
4653 rtnl_unlock();
4654 return ret;
4655 }
4656 }
4657 }
4658 rtnl_unlock();
4659
4660 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4661 regulator_disable(fep->reg_phy);
4662
4663 /* SOC supply clock to phy, when clock is disabled, phy link down
4664 * SOC control phy regulator, when regulator is disabled, phy link down
4665 */
4666 if (fep->clk_enet_out || fep->reg_phy)
4667 fep->link = 0;
4668
4669 return 0;
4670 }
4671
fec_resume(struct device * dev)4672 static int __maybe_unused fec_resume(struct device *dev)
4673 {
4674 struct net_device *ndev = dev_get_drvdata(dev);
4675 struct fec_enet_private *fep = netdev_priv(ndev);
4676 int ret;
4677 int val;
4678
4679 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4680 ret = regulator_enable(fep->reg_phy);
4681 if (ret)
4682 return ret;
4683 }
4684
4685 rtnl_lock();
4686 if (netif_running(ndev)) {
4687 if (fep->rpm_active)
4688 pm_runtime_force_resume(dev);
4689
4690 ret = fec_enet_clk_enable(ndev, true);
4691 if (ret) {
4692 rtnl_unlock();
4693 goto failed_clk;
4694 }
4695 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4696 fec_enet_stop_mode(fep, false);
4697 if (fep->wake_irq) {
4698 disable_irq_wake(fep->wake_irq);
4699 enable_irq(fep->wake_irq);
4700 }
4701
4702 val = readl(fep->hwp + FEC_ECNTRL);
4703 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4704 writel(val, fep->hwp + FEC_ECNTRL);
4705 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4706 } else {
4707 pinctrl_pm_select_default_state(&fep->pdev->dev);
4708 }
4709 fec_restart(ndev);
4710 netif_tx_lock_bh(ndev);
4711 netif_device_attach(ndev);
4712 netif_tx_unlock_bh(ndev);
4713 napi_enable(&fep->napi);
4714 phy_init_hw(ndev->phydev);
4715 phy_start(ndev->phydev);
4716 }
4717 rtnl_unlock();
4718
4719 return 0;
4720
4721 failed_clk:
4722 if (fep->reg_phy)
4723 regulator_disable(fep->reg_phy);
4724 return ret;
4725 }
4726
fec_runtime_suspend(struct device * dev)4727 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4728 {
4729 struct net_device *ndev = dev_get_drvdata(dev);
4730 struct fec_enet_private *fep = netdev_priv(ndev);
4731
4732 clk_disable_unprepare(fep->clk_ahb);
4733 clk_disable_unprepare(fep->clk_ipg);
4734
4735 return 0;
4736 }
4737
fec_runtime_resume(struct device * dev)4738 static int __maybe_unused fec_runtime_resume(struct device *dev)
4739 {
4740 struct net_device *ndev = dev_get_drvdata(dev);
4741 struct fec_enet_private *fep = netdev_priv(ndev);
4742 int ret;
4743
4744 ret = clk_prepare_enable(fep->clk_ahb);
4745 if (ret)
4746 return ret;
4747 ret = clk_prepare_enable(fep->clk_ipg);
4748 if (ret)
4749 goto failed_clk_ipg;
4750
4751 return 0;
4752
4753 failed_clk_ipg:
4754 clk_disable_unprepare(fep->clk_ahb);
4755 return ret;
4756 }
4757
4758 static const struct dev_pm_ops fec_pm_ops = {
4759 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4760 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4761 };
4762
4763 static struct platform_driver fec_driver = {
4764 .driver = {
4765 .name = DRIVER_NAME,
4766 .pm = &fec_pm_ops,
4767 .of_match_table = fec_dt_ids,
4768 .suppress_bind_attrs = true,
4769 },
4770 .id_table = fec_devtype,
4771 .probe = fec_probe,
4772 .remove_new = fec_drv_remove,
4773 };
4774
4775 module_platform_driver(fec_driver);
4776
4777 MODULE_LICENSE("GPL");
4778