xref: /openbmc/linux/arch/sparc/math-emu/math_32.c (revision 4b4193256c8d3bc3a5397b5cd9494c2ad386317d)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * arch/sparc/math-emu/math.c
4   *
5   * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk)
6   * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
7   * Copyright (C) 1999 David S. Miller (davem@redhat.com)
8   *
9   * This is a good place to start if you're trying to understand the
10   * emulation code, because it's pretty simple. What we do is
11   * essentially analyse the instruction to work out what the operation
12   * is and which registers are involved. We then execute the appropriate
13   * FXXXX function. [The floating point queue introduces a minor wrinkle;
14   * see below...]
15   * The fxxxxx.c files each emulate a single insn. They look relatively
16   * simple because the complexity is hidden away in an unholy tangle
17   * of preprocessor macros.
18   *
19   * The first layer of macros is single.h, double.h, quad.h. Generally
20   * these files define macros for working with floating point numbers
21   * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles,
22   * for instance. These macros are usually defined as calls to more
23   * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
24   * of machine words required to store the given IEEE format is passed
25   * as a parameter. [double.h and co check the number of bits in a word
26   * and define FP_ADD_D & co appropriately].
27   * The generic macros are defined in op-common.h. This is where all
28   * the grotty stuff like handling NaNs is coded. To handle the possible
29   * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
30   * where wc is the 'number of machine words' parameter (here 2).
31   * These are defined in the third layer of macros: op-1.h, op-2.h
32   * and op-4.h. These handle operations on floating point numbers composed
33   * of 1,2 and 4 machine words respectively. [For example, on sparc64
34   * doubles are one machine word so macros in double.h eventually use
35   * constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
36   * soft-fp.h is on the same level as op-common.h, and defines some
37   * macros which are independent of both word size and FP format.
38   * Finally, sfp-machine.h is the machine dependent part of the
39   * code: it defines the word size and what type a word is. It also
40   * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
41   * provide several possible flavours of multiply algorithm, most
42   * of which require that you supply some form of asm or C primitive to
43   * do the actual multiply. (such asm primitives should be defined
44   * in sfp-machine.h too). udivmodti4.c is the same sort of thing.
45   *
46   * There may be some errors here because I'm working from a
47   * SPARC architecture manual V9, and what I really want is V8...
48   * Also, the insns which can generate exceptions seem to be a
49   * greater subset of the FPops than for V9 (for example, FCMPED
50   * has to be emulated on V8). So I think I'm going to have
51   * to emulate them all just to be on the safe side...
52   *
53   * Emulation routines originate from soft-fp package, which is
54   * part of glibc and has appropriate copyrights in it (allegedly).
55   *
56   * NB: on sparc int == long == 4 bytes, long long == 8 bytes.
57   * Most bits of the kernel seem to go for long rather than int,
58   * so we follow that practice...
59   */
60  
61  /* TODO:
62   * fpsave() saves the FP queue but fpload() doesn't reload it.
63   * Therefore when we context switch or change FPU ownership
64   * we have to check to see if the queue had anything in it and
65   * emulate it if it did. This is going to be a pain.
66   */
67  
68  #include <linux/types.h>
69  #include <linux/sched.h>
70  #include <linux/mm.h>
71  #include <linux/perf_event.h>
72  #include <linux/uaccess.h>
73  
74  #include "sfp-util_32.h"
75  #include <math-emu/soft-fp.h>
76  #include <math-emu/single.h>
77  #include <math-emu/double.h>
78  #include <math-emu/quad.h>
79  
80  #define FLOATFUNC(x) extern int x(void *,void *,void *)
81  
82  /* The Vn labels indicate what version of the SPARC architecture gas thinks
83   * each insn is. This is from the binutils source :->
84   */
85  /* quadword instructions */
86  #define FSQRTQ	0x02b		/* v8 */
87  #define FADDQ	0x043		/* v8 */
88  #define FSUBQ	0x047		/* v8 */
89  #define FMULQ	0x04b		/* v8 */
90  #define FDIVQ	0x04f		/* v8 */
91  #define FDMULQ	0x06e		/* v8 */
92  #define FQTOS	0x0c7		/* v8 */
93  #define FQTOD	0x0cb		/* v8 */
94  #define FITOQ	0x0cc		/* v8 */
95  #define FSTOQ	0x0cd		/* v8 */
96  #define FDTOQ	0x0ce		/* v8 */
97  #define FQTOI	0x0d3		/* v8 */
98  #define FCMPQ	0x053		/* v8 */
99  #define FCMPEQ	0x057		/* v8 */
100  /* single/double instructions (subnormal): should all work */
101  #define FSQRTS	0x029		/* v7 */
102  #define FSQRTD	0x02a		/* v7 */
103  #define FADDS	0x041		/* v6 */
104  #define FADDD	0x042		/* v6 */
105  #define FSUBS	0x045		/* v6 */
106  #define FSUBD	0x046		/* v6 */
107  #define FMULS	0x049		/* v6 */
108  #define FMULD	0x04a		/* v6 */
109  #define FDIVS	0x04d		/* v6 */
110  #define FDIVD	0x04e		/* v6 */
111  #define FSMULD	0x069		/* v6 */
112  #define FDTOS	0x0c6		/* v6 */
113  #define FSTOD	0x0c9		/* v6 */
114  #define FSTOI	0x0d1		/* v6 */
115  #define FDTOI	0x0d2		/* v6 */
116  #define FABSS	0x009		/* v6 */
117  #define FCMPS	0x051		/* v6 */
118  #define FCMPES	0x055		/* v6 */
119  #define FCMPD	0x052		/* v6 */
120  #define FCMPED	0x056		/* v6 */
121  #define FMOVS	0x001		/* v6 */
122  #define FNEGS	0x005		/* v6 */
123  #define FITOS	0x0c4		/* v6 */
124  #define FITOD	0x0c8		/* v6 */
125  
126  #define FSR_TEM_SHIFT	23UL
127  #define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT)
128  #define FSR_AEXC_SHIFT	5UL
129  #define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT)
130  #define FSR_CEXC_SHIFT	0UL
131  #define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT)
132  
133  static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
134  
135  /* Unlike the Sparc64 version (which has a struct fpustate), we
136   * pass the taskstruct corresponding to the task which currently owns the
137   * FPU. This is partly because we don't have the fpustate struct and
138   * partly because the task owning the FPU isn't always current (as is
139   * the case for the Sparc64 port). This is probably SMP-related...
140   * This function returns 1 if all queued insns were emulated successfully.
141   * The test for unimplemented FPop in kernel mode has been moved into
142   * kernel/traps.c for simplicity.
143   */
do_mathemu(struct pt_regs * regs,struct task_struct * fpt)144  int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
145  {
146  	/* regs->pc isn't necessarily the PC at which the offending insn is sitting.
147  	 * The FPU maintains a queue of FPops which cause traps.
148  	 * When it hits an instruction that requires that the trapped op succeeded
149  	 * (usually because it reads a reg. that the trapped op wrote) then it
150  	 * causes this exception. We need to emulate all the insns on the queue
151  	 * and then allow the op to proceed.
152  	 * This code should also handle the case where the trap was precise,
153  	 * in which case the queue length is zero and regs->pc points at the
154  	 * single FPop to be emulated. (this case is untested, though :->)
155  	 * You'll need this case if you want to be able to emulate all FPops
156  	 * because the FPU either doesn't exist or has been software-disabled.
157  	 * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
158  	 * might sound because the Ultra does funky things with a superscalar
159  	 * architecture.]
160  	 */
161  
162  	/* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
163  
164  	int i;
165  	int retcode = 0;                               /* assume all succeed */
166  	unsigned long insn;
167  
168  	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
169  
170  #ifdef DEBUG_MATHEMU
171  	printk("In do_mathemu()... pc is %08lx\n", regs->pc);
172  	printk("fpqdepth is %ld\n", fpt->thread.fpqdepth);
173  	for (i = 0; i < fpt->thread.fpqdepth; i++)
174  		printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn,
175  		       (unsigned long)fpt->thread.fpqueue[i].insn_addr);
176  #endif
177  
178  	if (fpt->thread.fpqdepth == 0) {                   /* no queue, guilty insn is at regs->pc */
179  #ifdef DEBUG_MATHEMU
180  		printk("precise trap at %08lx\n", regs->pc);
181  #endif
182  		if (!get_user(insn, (u32 __user *) regs->pc)) {
183  			retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs);
184  			if (retcode) {
185  				/* in this case we need to fix up PC & nPC */
186  				regs->pc = regs->npc;
187  				regs->npc += 4;
188  			}
189  		}
190  		return retcode;
191  	}
192  
193  	/* Normal case: need to empty the queue... */
194  	for (i = 0; i < fpt->thread.fpqdepth; i++) {
195  		retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs);
196  		if (!retcode)                               /* insn failed, no point doing any more */
197  			break;
198  	}
199  	/* Now empty the queue and clear the queue_not_empty flag */
200  	if (retcode)
201  		fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK);
202  	else
203  		fpt->thread.fsr &= ~0x3000;
204  	fpt->thread.fpqdepth = 0;
205  
206  	return retcode;
207  }
208  
209  /* All routines returning an exception to raise should detect
210   * such exceptions _before_ rounding to be consistent with
211   * the behavior of the hardware in the implemented cases
212   * (and thus with the recommendations in the V9 architecture
213   * manual).
214   *
215   * We return 0 if a SIGFPE should be sent, 1 otherwise.
216   */
record_exception(unsigned long * pfsr,int eflag)217  static inline int record_exception(unsigned long *pfsr, int eflag)
218  {
219  	unsigned long fsr = *pfsr;
220  	int would_trap;
221  
222  	/* Determine if this exception would have generated a trap. */
223  	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
224  
225  	/* If trapping, we only want to signal one bit. */
226  	if (would_trap != 0) {
227  		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
228  		if ((eflag & (eflag - 1)) != 0) {
229  			if (eflag & FP_EX_INVALID)
230  				eflag = FP_EX_INVALID;
231  			else if (eflag & FP_EX_OVERFLOW)
232  				eflag = FP_EX_OVERFLOW;
233  			else if (eflag & FP_EX_UNDERFLOW)
234  				eflag = FP_EX_UNDERFLOW;
235  			else if (eflag & FP_EX_DIVZERO)
236  				eflag = FP_EX_DIVZERO;
237  			else if (eflag & FP_EX_INEXACT)
238  				eflag = FP_EX_INEXACT;
239  		}
240  	}
241  
242  	/* Set CEXC, here is the rule:
243  	 *
244  	 *    In general all FPU ops will set one and only one
245  	 *    bit in the CEXC field, this is always the case
246  	 *    when the IEEE exception trap is enabled in TEM.
247  	 */
248  	fsr &= ~(FSR_CEXC_MASK);
249  	fsr |= ((long)eflag << FSR_CEXC_SHIFT);
250  
251  	/* Set the AEXC field, rule is:
252  	 *
253  	 *    If a trap would not be generated, the
254  	 *    CEXC just generated is OR'd into the
255  	 *    existing value of AEXC.
256  	 */
257  	if (would_trap == 0)
258  		fsr |= ((long)eflag << FSR_AEXC_SHIFT);
259  
260  	/* If trapping, indicate fault trap type IEEE. */
261  	if (would_trap != 0)
262  		fsr |= (1UL << 14);
263  
264  	*pfsr = fsr;
265  
266  	return (would_trap ? 0 : 1);
267  }
268  
269  typedef union {
270  	u32 s;
271  	u64 d;
272  	u64 q[2];
273  } *argp;
274  
do_one_mathemu(u32 insn,unsigned long * pfsr,unsigned long * fregs)275  static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs)
276  {
277  	/* Emulate the given insn, updating fsr and fregs appropriately. */
278  	int type = 0;
279  	/* r is rd, b is rs2 and a is rs1. The *u arg tells
280  	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
281  	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
282  #define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6)
283  	int freg;
284  	argp rs1 = NULL, rs2 = NULL, rd = NULL;
285  	FP_DECL_EX;
286  	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
287  	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
288  	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
289  	int IR;
290  	long fsr;
291  
292  #ifdef DEBUG_MATHEMU
293  	printk("In do_mathemu(), emulating %08lx\n", insn);
294  #endif
295  
296  	if ((insn & 0xc1f80000) == 0x81a00000)	/* FPOP1 */ {
297  		switch ((insn >> 5) & 0x1ff) {
298  		case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
299  		case FADDQ:
300  		case FSUBQ:
301  		case FMULQ:
302  		case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
303  		case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
304  		case FQTOS: TYPE(3,1,1,3,1,0,0); break;
305  		case FQTOD: TYPE(3,2,1,3,1,0,0); break;
306  		case FITOQ: TYPE(3,3,1,1,0,0,0); break;
307  		case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
308  		case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
309  		case FQTOI: TYPE(3,1,0,3,1,0,0); break;
310  		case FSQRTS: TYPE(2,1,1,1,1,0,0); break;
311  		case FSQRTD: TYPE(2,2,1,2,1,0,0); break;
312  		case FADDD:
313  		case FSUBD:
314  		case FMULD:
315  		case FDIVD: TYPE(2,2,1,2,1,2,1); break;
316  		case FADDS:
317  		case FSUBS:
318  		case FMULS:
319  		case FDIVS: TYPE(2,1,1,1,1,1,1); break;
320  		case FSMULD: TYPE(2,2,1,1,1,1,1); break;
321  		case FDTOS: TYPE(2,1,1,2,1,0,0); break;
322  		case FSTOD: TYPE(2,2,1,1,1,0,0); break;
323  		case FSTOI: TYPE(2,1,0,1,1,0,0); break;
324  		case FDTOI: TYPE(2,1,0,2,1,0,0); break;
325  		case FITOS: TYPE(2,1,1,1,0,0,0); break;
326  		case FITOD: TYPE(2,2,1,1,0,0,0); break;
327  		case FMOVS:
328  		case FABSS:
329  		case FNEGS: TYPE(2,1,0,1,0,0,0); break;
330  		}
331  	} else if ((insn & 0xc1f80000) == 0x81a80000)	/* FPOP2 */ {
332  		switch ((insn >> 5) & 0x1ff) {
333  		case FCMPS: TYPE(3,0,0,1,1,1,1); break;
334  		case FCMPES: TYPE(3,0,0,1,1,1,1); break;
335  		case FCMPD: TYPE(3,0,0,2,1,2,1); break;
336  		case FCMPED: TYPE(3,0,0,2,1,2,1); break;
337  		case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
338  		case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
339  		}
340  	}
341  
342  	if (!type) {	/* oops, didn't recognise that FPop */
343  #ifdef DEBUG_MATHEMU
344  		printk("attempt to emulate unrecognised FPop!\n");
345  #endif
346  		return 0;
347  	}
348  
349  	/* Decode the registers to be used */
350  	freg = (*pfsr >> 14) & 0xf;
351  
352  	*pfsr &= ~0x1c000;				/* clear the traptype bits */
353  
354  	freg = ((insn >> 14) & 0x1f);
355  	switch (type & 0x3) {				/* is rs1 single, double or quad? */
356  	case 3:
357  		if (freg & 3) {				/* quadwords must have bits 4&5 of the */
358  							/* encoded reg. number set to zero. */
359  			*pfsr |= (6 << 14);
360  			return 0;			/* simulate invalid_fp_register exception */
361  		}
362  		fallthrough;
363  	case 2:
364  		if (freg & 1) {				/* doublewords must have bit 5 zeroed */
365  			*pfsr |= (6 << 14);
366  			return 0;
367  		}
368  	}
369  	rs1 = (argp)&fregs[freg];
370  	switch (type & 0x7) {
371  	case 7: FP_UNPACK_QP (QA, rs1); break;
372  	case 6: FP_UNPACK_DP (DA, rs1); break;
373  	case 5: FP_UNPACK_SP (SA, rs1); break;
374  	}
375  	freg = (insn & 0x1f);
376  	switch ((type >> 3) & 0x3) {			/* same again for rs2 */
377  	case 3:
378  		if (freg & 3) {				/* quadwords must have bits 4&5 of the */
379  							/* encoded reg. number set to zero. */
380  			*pfsr |= (6 << 14);
381  			return 0;			/* simulate invalid_fp_register exception */
382  		}
383  		fallthrough;
384  	case 2:
385  		if (freg & 1) {				/* doublewords must have bit 5 zeroed */
386  			*pfsr |= (6 << 14);
387  			return 0;
388  		}
389  	}
390  	rs2 = (argp)&fregs[freg];
391  	switch ((type >> 3) & 0x7) {
392  	case 7: FP_UNPACK_QP (QB, rs2); break;
393  	case 6: FP_UNPACK_DP (DB, rs2); break;
394  	case 5: FP_UNPACK_SP (SB, rs2); break;
395  	}
396  	freg = ((insn >> 25) & 0x1f);
397  	switch ((type >> 6) & 0x3) {			/* and finally rd. This one's a bit different */
398  	case 0:						/* dest is fcc. (this must be FCMPQ or FCMPEQ) */
399  		if (freg) {				/* V8 has only one set of condition codes, so */
400  							/* anything but 0 in the rd field is an error */
401  			*pfsr |= (6 << 14);		/* (should probably flag as invalid opcode */
402  			return 0;			/* but SIGFPE will do :-> ) */
403  		}
404  		break;
405  	case 3:
406  		if (freg & 3) {				/* quadwords must have bits 4&5 of the */
407  							/* encoded reg. number set to zero. */
408  			*pfsr |= (6 << 14);
409  			return 0;			/* simulate invalid_fp_register exception */
410  		}
411  		fallthrough;
412  	case 2:
413  		if (freg & 1) {				/* doublewords must have bit 5 zeroed */
414  			*pfsr |= (6 << 14);
415  			return 0;
416  		}
417  		fallthrough;
418  	case 1:
419  		rd = (void *)&fregs[freg];
420  		break;
421  	}
422  #ifdef DEBUG_MATHEMU
423  	printk("executing insn...\n");
424  #endif
425  	/* do the Right Thing */
426  	switch ((insn >> 5) & 0x1ff) {
427  	/* + */
428  	case FADDS: FP_ADD_S (SR, SA, SB); break;
429  	case FADDD: FP_ADD_D (DR, DA, DB); break;
430  	case FADDQ: FP_ADD_Q (QR, QA, QB); break;
431  	/* - */
432  	case FSUBS: FP_SUB_S (SR, SA, SB); break;
433  	case FSUBD: FP_SUB_D (DR, DA, DB); break;
434  	case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
435  	/* * */
436  	case FMULS: FP_MUL_S (SR, SA, SB); break;
437  	case FSMULD: FP_CONV (D, S, 2, 1, DA, SA);
438  		     FP_CONV (D, S, 2, 1, DB, SB);
439  	case FMULD: FP_MUL_D (DR, DA, DB); break;
440  	case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA);
441  		     FP_CONV (Q, D, 4, 2, QB, DB);
442  	case FMULQ: FP_MUL_Q (QR, QA, QB); break;
443  	/* / */
444  	case FDIVS: FP_DIV_S (SR, SA, SB); break;
445  	case FDIVD: FP_DIV_D (DR, DA, DB); break;
446  	case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
447  	/* sqrt */
448  	case FSQRTS: FP_SQRT_S (SR, SB); break;
449  	case FSQRTD: FP_SQRT_D (DR, DB); break;
450  	case FSQRTQ: FP_SQRT_Q (QR, QB); break;
451  	/* mov */
452  	case FMOVS: rd->s = rs2->s; break;
453  	case FABSS: rd->s = rs2->s & 0x7fffffff; break;
454  	case FNEGS: rd->s = rs2->s ^ 0x80000000; break;
455  	/* float to int */
456  	case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
457  	case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
458  	case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
459  	/* int to float */
460  	case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
461  	case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
462  	case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
463  	/* float to float */
464  	case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break;
465  	case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break;
466  	case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break;
467  	case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break;
468  	case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break;
469  	case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break;
470  	/* comparison */
471  	case FCMPS:
472  	case FCMPES:
473  		FP_CMP_S(IR, SB, SA, 3);
474  		if (IR == 3 &&
475  		    (((insn >> 5) & 0x1ff) == FCMPES ||
476  		     FP_ISSIGNAN_S(SA) ||
477  		     FP_ISSIGNAN_S(SB)))
478  			FP_SET_EXCEPTION (FP_EX_INVALID);
479  		break;
480  	case FCMPD:
481  	case FCMPED:
482  		FP_CMP_D(IR, DB, DA, 3);
483  		if (IR == 3 &&
484  		    (((insn >> 5) & 0x1ff) == FCMPED ||
485  		     FP_ISSIGNAN_D(DA) ||
486  		     FP_ISSIGNAN_D(DB)))
487  			FP_SET_EXCEPTION (FP_EX_INVALID);
488  		break;
489  	case FCMPQ:
490  	case FCMPEQ:
491  		FP_CMP_Q(IR, QB, QA, 3);
492  		if (IR == 3 &&
493  		    (((insn >> 5) & 0x1ff) == FCMPEQ ||
494  		     FP_ISSIGNAN_Q(QA) ||
495  		     FP_ISSIGNAN_Q(QB)))
496  			FP_SET_EXCEPTION (FP_EX_INVALID);
497  	}
498  	if (!FP_INHIBIT_RESULTS) {
499  		switch ((type >> 6) & 0x7) {
500  		case 0: fsr = *pfsr;
501  			if (IR == -1) IR = 2;
502  			/* fcc is always fcc0 */
503  			fsr &= ~0xc00; fsr |= (IR << 10);
504  			*pfsr = fsr;
505  			break;
506  		case 1: rd->s = IR; break;
507  		case 5: FP_PACK_SP (rd, SR); break;
508  		case 6: FP_PACK_DP (rd, DR); break;
509  		case 7: FP_PACK_QP (rd, QR); break;
510  		}
511  	}
512  	if (_fex == 0)
513  		return 1;				/* success! */
514  	return record_exception(pfsr, _fex);
515  }
516