1 /*
2 * FCC driver for Motorola MPC82xx (PQ2).
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/phy.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/gfp.h>
37 #include <linux/pgtable.h>
38
39 #include <asm/immap_cpm2.h>
40 #include <asm/cpm2.h>
41
42 #include <asm/irq.h>
43 #include <linux/uaccess.h>
44
45 #include "fs_enet.h"
46
47 /*************************************************/
48
49 /* FCC access macros */
50
51 /* write, read, set bits, clear bits */
52 #define W32(_p, _m, _v) out_be32(&(_p)->_m, (_v))
53 #define R32(_p, _m) in_be32(&(_p)->_m)
54 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
55 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
56
57 #define W16(_p, _m, _v) out_be16(&(_p)->_m, (_v))
58 #define R16(_p, _m) in_be16(&(_p)->_m)
59 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
60 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
61
62 #define W8(_p, _m, _v) out_8(&(_p)->_m, (_v))
63 #define R8(_p, _m) in_8(&(_p)->_m)
64 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
65 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
66
67 /*************************************************/
68
69 #define FCC_MAX_MULTICAST_ADDRS 64
70
71 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
72 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
73 #define mk_mii_end 0
74
75 #define MAX_CR_CMD_LOOPS 10000
76
fcc_cr_cmd(struct fs_enet_private * fep,u32 op)77 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
78 {
79 const struct fs_platform_info *fpi = fep->fpi;
80
81 return cpm_command(fpi->cp_command, op);
82 }
83
do_pd_setup(struct fs_enet_private * fep)84 static int do_pd_setup(struct fs_enet_private *fep)
85 {
86 struct platform_device *ofdev = to_platform_device(fep->dev);
87 struct fs_platform_info *fpi = fep->fpi;
88 int ret = -EINVAL;
89
90 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
91 if (!fep->interrupt)
92 goto out;
93
94 fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
95 if (!fep->fcc.fccp)
96 goto out;
97
98 fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
99 if (!fep->fcc.ep)
100 goto out_fccp;
101
102 fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
103 if (!fep->fcc.fcccp)
104 goto out_ep;
105
106 fep->fcc.mem = (void __iomem *)cpm2_immr;
107 fpi->dpram_offset = cpm_muram_alloc(128, 32);
108 if (IS_ERR_VALUE(fpi->dpram_offset)) {
109 ret = fpi->dpram_offset;
110 goto out_fcccp;
111 }
112
113 return 0;
114
115 out_fcccp:
116 iounmap(fep->fcc.fcccp);
117 out_ep:
118 iounmap(fep->fcc.ep);
119 out_fccp:
120 iounmap(fep->fcc.fccp);
121 out:
122 return ret;
123 }
124
125 #define FCC_NAPI_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB)
126 #define FCC_EVENT (FCC_ENET_RXF | FCC_ENET_TXB)
127 #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE)
128
setup_data(struct net_device * dev)129 static int setup_data(struct net_device *dev)
130 {
131 struct fs_enet_private *fep = netdev_priv(dev);
132
133 if (do_pd_setup(fep) != 0)
134 return -EINVAL;
135
136 fep->ev_napi = FCC_NAPI_EVENT_MSK;
137 fep->ev = FCC_EVENT;
138 fep->ev_err = FCC_ERR_EVENT_MSK;
139
140 return 0;
141 }
142
allocate_bd(struct net_device * dev)143 static int allocate_bd(struct net_device *dev)
144 {
145 struct fs_enet_private *fep = netdev_priv(dev);
146 const struct fs_platform_info *fpi = fep->fpi;
147
148 fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
149 (fpi->tx_ring + fpi->rx_ring) *
150 sizeof(cbd_t), &fep->ring_mem_addr,
151 GFP_KERNEL);
152 if (fep->ring_base == NULL)
153 return -ENOMEM;
154
155 return 0;
156 }
157
free_bd(struct net_device * dev)158 static void free_bd(struct net_device *dev)
159 {
160 struct fs_enet_private *fep = netdev_priv(dev);
161 const struct fs_platform_info *fpi = fep->fpi;
162
163 if (fep->ring_base)
164 dma_free_coherent(fep->dev,
165 (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
166 (void __force *)fep->ring_base, fep->ring_mem_addr);
167 }
168
cleanup_data(struct net_device * dev)169 static void cleanup_data(struct net_device *dev)
170 {
171 /* nothing */
172 }
173
set_promiscuous_mode(struct net_device * dev)174 static void set_promiscuous_mode(struct net_device *dev)
175 {
176 struct fs_enet_private *fep = netdev_priv(dev);
177 fcc_t __iomem *fccp = fep->fcc.fccp;
178
179 S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
180 }
181
set_multicast_start(struct net_device * dev)182 static void set_multicast_start(struct net_device *dev)
183 {
184 struct fs_enet_private *fep = netdev_priv(dev);
185 fcc_enet_t __iomem *ep = fep->fcc.ep;
186
187 W32(ep, fen_gaddrh, 0);
188 W32(ep, fen_gaddrl, 0);
189 }
190
set_multicast_one(struct net_device * dev,const u8 * mac)191 static void set_multicast_one(struct net_device *dev, const u8 *mac)
192 {
193 struct fs_enet_private *fep = netdev_priv(dev);
194 fcc_enet_t __iomem *ep = fep->fcc.ep;
195 u16 taddrh, taddrm, taddrl;
196
197 taddrh = ((u16)mac[5] << 8) | mac[4];
198 taddrm = ((u16)mac[3] << 8) | mac[2];
199 taddrl = ((u16)mac[1] << 8) | mac[0];
200
201 W16(ep, fen_taddrh, taddrh);
202 W16(ep, fen_taddrm, taddrm);
203 W16(ep, fen_taddrl, taddrl);
204 fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
205 }
206
set_multicast_finish(struct net_device * dev)207 static void set_multicast_finish(struct net_device *dev)
208 {
209 struct fs_enet_private *fep = netdev_priv(dev);
210 fcc_t __iomem *fccp = fep->fcc.fccp;
211 fcc_enet_t __iomem *ep = fep->fcc.ep;
212
213 /* clear promiscuous always */
214 C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
215
216 /* if all multi or too many multicasts; just enable all */
217 if ((dev->flags & IFF_ALLMULTI) != 0 ||
218 netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
219
220 W32(ep, fen_gaddrh, 0xffffffff);
221 W32(ep, fen_gaddrl, 0xffffffff);
222 }
223
224 /* read back */
225 fep->fcc.gaddrh = R32(ep, fen_gaddrh);
226 fep->fcc.gaddrl = R32(ep, fen_gaddrl);
227 }
228
set_multicast_list(struct net_device * dev)229 static void set_multicast_list(struct net_device *dev)
230 {
231 struct netdev_hw_addr *ha;
232
233 if ((dev->flags & IFF_PROMISC) == 0) {
234 set_multicast_start(dev);
235 netdev_for_each_mc_addr(ha, dev)
236 set_multicast_one(dev, ha->addr);
237 set_multicast_finish(dev);
238 } else
239 set_promiscuous_mode(dev);
240 }
241
restart(struct net_device * dev)242 static void restart(struct net_device *dev)
243 {
244 struct fs_enet_private *fep = netdev_priv(dev);
245 const struct fs_platform_info *fpi = fep->fpi;
246 fcc_t __iomem *fccp = fep->fcc.fccp;
247 fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
248 fcc_enet_t __iomem *ep = fep->fcc.ep;
249 dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
250 u16 paddrh, paddrm, paddrl;
251 const unsigned char *mac;
252 int i;
253
254 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
255
256 /* clear everything (slow & steady does it) */
257 for (i = 0; i < sizeof(*ep); i++)
258 out_8((u8 __iomem *)ep + i, 0);
259
260 /* get physical address */
261 rx_bd_base_phys = fep->ring_mem_addr;
262 tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
263
264 /* point to bds */
265 W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
266 W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
267
268 /* Set maximum bytes per receive buffer.
269 * It must be a multiple of 32.
270 */
271 W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
272
273 W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
274 W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
275
276 /* Allocate space in the reserved FCC area of DPRAM for the
277 * internal buffers. No one uses this space (yet), so we
278 * can do this. Later, we will add resource management for
279 * this area.
280 */
281
282 W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
283 W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
284
285 W16(ep, fen_padptr, fpi->dpram_offset + 64);
286
287 /* fill with special symbol... */
288 memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
289
290 W32(ep, fen_genfcc.fcc_rbptr, 0);
291 W32(ep, fen_genfcc.fcc_tbptr, 0);
292 W32(ep, fen_genfcc.fcc_rcrc, 0);
293 W32(ep, fen_genfcc.fcc_tcrc, 0);
294 W16(ep, fen_genfcc.fcc_res1, 0);
295 W32(ep, fen_genfcc.fcc_res2, 0);
296
297 /* no CAM */
298 W32(ep, fen_camptr, 0);
299
300 /* Set CRC preset and mask */
301 W32(ep, fen_cmask, 0xdebb20e3);
302 W32(ep, fen_cpres, 0xffffffff);
303
304 W32(ep, fen_crcec, 0); /* CRC Error counter */
305 W32(ep, fen_alec, 0); /* alignment error counter */
306 W32(ep, fen_disfc, 0); /* discard frame counter */
307 W16(ep, fen_retlim, 15); /* Retry limit threshold */
308 W16(ep, fen_pper, 0); /* Normal persistence */
309
310 /* set group address */
311 W32(ep, fen_gaddrh, fep->fcc.gaddrh);
312 W32(ep, fen_gaddrl, fep->fcc.gaddrh);
313
314 /* Clear hash filter tables */
315 W32(ep, fen_iaddrh, 0);
316 W32(ep, fen_iaddrl, 0);
317
318 /* Clear the Out-of-sequence TxBD */
319 W16(ep, fen_tfcstat, 0);
320 W16(ep, fen_tfclen, 0);
321 W32(ep, fen_tfcptr, 0);
322
323 W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
324 W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
325
326 /* set address */
327 mac = dev->dev_addr;
328 paddrh = ((u16)mac[5] << 8) | mac[4];
329 paddrm = ((u16)mac[3] << 8) | mac[2];
330 paddrl = ((u16)mac[1] << 8) | mac[0];
331
332 W16(ep, fen_paddrh, paddrh);
333 W16(ep, fen_paddrm, paddrm);
334 W16(ep, fen_paddrl, paddrl);
335
336 W16(ep, fen_taddrh, 0);
337 W16(ep, fen_taddrm, 0);
338 W16(ep, fen_taddrl, 0);
339
340 W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
341 W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
342
343 /* Clear stat counters, in case we ever enable RMON */
344 W32(ep, fen_octc, 0);
345 W32(ep, fen_colc, 0);
346 W32(ep, fen_broc, 0);
347 W32(ep, fen_mulc, 0);
348 W32(ep, fen_uspc, 0);
349 W32(ep, fen_frgc, 0);
350 W32(ep, fen_ospc, 0);
351 W32(ep, fen_jbrc, 0);
352 W32(ep, fen_p64c, 0);
353 W32(ep, fen_p65c, 0);
354 W32(ep, fen_p128c, 0);
355 W32(ep, fen_p256c, 0);
356 W32(ep, fen_p512c, 0);
357 W32(ep, fen_p1024c, 0);
358
359 W16(ep, fen_rfthr, 0); /* Suggested by manual */
360 W16(ep, fen_rfcnt, 0);
361 W16(ep, fen_cftype, 0);
362
363 fs_init_bds(dev);
364
365 /* adjust to speed (for RMII mode) */
366 if (fpi->use_rmii) {
367 if (dev->phydev->speed == 100)
368 C8(fcccp, fcc_gfemr, 0x20);
369 else
370 S8(fcccp, fcc_gfemr, 0x20);
371 }
372
373 fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
374
375 /* clear events */
376 W16(fccp, fcc_fcce, 0xffff);
377
378 /* Enable interrupts we wish to service */
379 W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
380
381 /* Set GFMR to enable Ethernet operating mode */
382 W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
383
384 /* set sync/delimiters */
385 W16(fccp, fcc_fdsr, 0xd555);
386
387 W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
388
389 if (fpi->use_rmii)
390 S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
391
392 /* adjust to duplex mode */
393 if (dev->phydev->duplex)
394 S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
395 else
396 C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
397
398 /* Restore multicast and promiscuous settings */
399 set_multicast_list(dev);
400
401 S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
402 }
403
stop(struct net_device * dev)404 static void stop(struct net_device *dev)
405 {
406 struct fs_enet_private *fep = netdev_priv(dev);
407 fcc_t __iomem *fccp = fep->fcc.fccp;
408
409 /* stop ethernet */
410 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
411
412 /* clear events */
413 W16(fccp, fcc_fcce, 0xffff);
414
415 /* clear interrupt mask */
416 W16(fccp, fcc_fccm, 0);
417
418 fs_cleanup_bds(dev);
419 }
420
napi_clear_event_fs(struct net_device * dev)421 static void napi_clear_event_fs(struct net_device *dev)
422 {
423 struct fs_enet_private *fep = netdev_priv(dev);
424 fcc_t __iomem *fccp = fep->fcc.fccp;
425
426 W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK);
427 }
428
napi_enable_fs(struct net_device * dev)429 static void napi_enable_fs(struct net_device *dev)
430 {
431 struct fs_enet_private *fep = netdev_priv(dev);
432 fcc_t __iomem *fccp = fep->fcc.fccp;
433
434 S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
435 }
436
napi_disable_fs(struct net_device * dev)437 static void napi_disable_fs(struct net_device *dev)
438 {
439 struct fs_enet_private *fep = netdev_priv(dev);
440 fcc_t __iomem *fccp = fep->fcc.fccp;
441
442 C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
443 }
444
rx_bd_done(struct net_device * dev)445 static void rx_bd_done(struct net_device *dev)
446 {
447 /* nothing */
448 }
449
tx_kickstart(struct net_device * dev)450 static void tx_kickstart(struct net_device *dev)
451 {
452 struct fs_enet_private *fep = netdev_priv(dev);
453 fcc_t __iomem *fccp = fep->fcc.fccp;
454
455 S16(fccp, fcc_ftodr, 0x8000);
456 }
457
get_int_events(struct net_device * dev)458 static u32 get_int_events(struct net_device *dev)
459 {
460 struct fs_enet_private *fep = netdev_priv(dev);
461 fcc_t __iomem *fccp = fep->fcc.fccp;
462
463 return (u32)R16(fccp, fcc_fcce);
464 }
465
clear_int_events(struct net_device * dev,u32 int_events)466 static void clear_int_events(struct net_device *dev, u32 int_events)
467 {
468 struct fs_enet_private *fep = netdev_priv(dev);
469 fcc_t __iomem *fccp = fep->fcc.fccp;
470
471 W16(fccp, fcc_fcce, int_events & 0xffff);
472 }
473
ev_error(struct net_device * dev,u32 int_events)474 static void ev_error(struct net_device *dev, u32 int_events)
475 {
476 struct fs_enet_private *fep = netdev_priv(dev);
477
478 dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
479 }
480
get_regs(struct net_device * dev,void * p,int * sizep)481 static int get_regs(struct net_device *dev, void *p, int *sizep)
482 {
483 struct fs_enet_private *fep = netdev_priv(dev);
484
485 if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
486 return -EINVAL;
487
488 memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
489 p = (char *)p + sizeof(fcc_t);
490
491 memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
492 p = (char *)p + sizeof(fcc_enet_t);
493
494 memcpy_fromio(p, fep->fcc.fcccp, 1);
495 return 0;
496 }
497
get_regs_len(struct net_device * dev)498 static int get_regs_len(struct net_device *dev)
499 {
500 return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
501 }
502
503 /* Some transmit errors cause the transmitter to shut
504 * down. We now issue a restart transmit.
505 * Also, to workaround 8260 device erratum CPM37, we must
506 * disable and then re-enable the transmitterfollowing a
507 * Late Collision, Underrun, or Retry Limit error.
508 * In addition, tbptr may point beyond BDs beyond still marked
509 * as ready due to internal pipelining, so we need to look back
510 * through the BDs and adjust tbptr to point to the last BD
511 * marked as ready. This may result in some buffers being
512 * retransmitted.
513 */
tx_restart(struct net_device * dev)514 static void tx_restart(struct net_device *dev)
515 {
516 struct fs_enet_private *fep = netdev_priv(dev);
517 fcc_t __iomem *fccp = fep->fcc.fccp;
518 const struct fs_platform_info *fpi = fep->fpi;
519 fcc_enet_t __iomem *ep = fep->fcc.ep;
520 cbd_t __iomem *curr_tbptr;
521 cbd_t __iomem *recheck_bd;
522 cbd_t __iomem *prev_bd;
523 cbd_t __iomem *last_tx_bd;
524
525 last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
526
527 /* get the current bd held in TBPTR and scan back from this point */
528 recheck_bd = curr_tbptr = (cbd_t __iomem *)
529 ((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
530 fep->ring_base);
531
532 prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
533
534 /* Move through the bds in reverse, look for the earliest buffer
535 * that is not ready. Adjust TBPTR to the following buffer */
536 while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
537 /* Go back one buffer */
538 recheck_bd = prev_bd;
539
540 /* update the previous buffer */
541 prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
542
543 /* We should never see all bds marked as ready, check anyway */
544 if (recheck_bd == curr_tbptr)
545 break;
546 }
547 /* Now update the TBPTR and dirty flag to the current buffer */
548 W32(ep, fen_genfcc.fcc_tbptr,
549 (uint)(((void __iomem *)recheck_bd - fep->ring_base) +
550 fep->ring_mem_addr));
551 fep->dirty_tx = recheck_bd;
552
553 C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
554 udelay(10);
555 S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
556
557 fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
558 }
559
560 /*************************************************************************/
561
562 const struct fs_ops fs_fcc_ops = {
563 .setup_data = setup_data,
564 .cleanup_data = cleanup_data,
565 .set_multicast_list = set_multicast_list,
566 .restart = restart,
567 .stop = stop,
568 .napi_clear_event = napi_clear_event_fs,
569 .napi_enable = napi_enable_fs,
570 .napi_disable = napi_disable_fs,
571 .rx_bd_done = rx_bd_done,
572 .tx_kickstart = tx_kickstart,
573 .get_int_events = get_int_events,
574 .clear_int_events = clear_int_events,
575 .ev_error = ev_error,
576 .get_regs = get_regs,
577 .get_regs_len = get_regs_len,
578 .tx_restart = tx_restart,
579 .allocate_bd = allocate_bd,
580 .free_bd = free_bd,
581 };
582