xref: /openbmc/linux/arch/ia64/lib/do_csum.S (revision 498495dba268b20e8eadd7fe93c140c68b6cc9d2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *
4  * Optmized version of the standard do_csum() function
5  *
6  * Return: a 64bit quantity containing the 16bit Internet checksum
7  *
8  * Inputs:
9  *	in0: address of buffer to checksum (char *)
10  *	in1: length of the buffer (int)
11  *
12  * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
13  *	Stephane Eranian <eranian@hpl.hp.com>
14  *
15  * 02/04/22	Ken Chen <kenneth.w.chen@intel.com>
16  *		Data locality study on the checksum buffer.
17  *		More optimization cleanup - remove excessive stop bits.
18  * 02/04/08	David Mosberger <davidm@hpl.hp.com>
19  *		More cleanup and tuning.
20  * 01/04/18	Jun Nakajima <jun.nakajima@intel.com>
21  *		Clean up and optimize and the software pipeline, loading two
22  *		back-to-back 8-byte words per loop. Clean up the initialization
23  *		for the loop. Support the cases where load latency = 1 or 2.
24  *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
25  */
26 
27 #include <asm/asmmacro.h>
28 
29 //
30 // Theory of operations:
31 //	The goal is to go as quickly as possible to the point where
32 //	we can checksum 16 bytes/loop. Before reaching that point we must
33 //	take care of incorrect alignment of first byte.
34 //
35 //	The code hereafter also takes care of the "tail" part of the buffer
36 //	before entering the core loop, if any. The checksum is a sum so it
37 //	allows us to commute operations. So we do the "head" and "tail"
38 //	first to finish at full speed in the body. Once we get the head and
39 //	tail values, we feed them into the pipeline, very handy initialization.
40 //
41 //	Of course we deal with the special case where the whole buffer fits
42 //	into one 8 byte word. In this case we have only one entry in the pipeline.
43 //
44 //	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
45 //	possible load latency and also to accommodate for head and tail.
46 //
47 //	The end of the function deals with folding the checksum from 64bits
48 //	down to 16bits taking care of the carry.
49 //
50 //	This version avoids synchronization in the core loop by also using a
51 //	pipeline for the accumulation of the checksum in resultx[] (x=1,2).
52 //
53 //	 wordx[] (x=1,2)
54 //	|---|
55 //      |   | 0			: new value loaded in pipeline
56 //	|---|
57 //      |   | -			: in transit data
58 //	|---|
59 //      |   | LOAD_LATENCY	: current value to add to checksum
60 //	|---|
61 //      |   | LOAD_LATENCY+1	: previous value added to checksum
62 //      |---|			(previous iteration)
63 //
64 //	resultx[] (x=1,2)
65 //	|---|
66 //      |   | 0			: initial value
67 //	|---|
68 //      |   | LOAD_LATENCY-1	: new checksum
69 //	|---|
70 //      |   | LOAD_LATENCY	: previous value of checksum
71 //	|---|
72 //      |   | LOAD_LATENCY+1	: final checksum when out of the loop
73 //      |---|
74 //
75 //
76 //	See RFC1071 "Computing the Internet Checksum" for various techniques for
77 //	calculating the Internet checksum.
78 //
79 // NOT YET DONE:
80 //	- Maybe another algorithm which would take care of the folding at the
81 //	  end in a different manner
82 //	- Work with people more knowledgeable than me on the network stack
83 //	  to figure out if we could not split the function depending on the
84 //	  type of packet or alignment we get. Like the ip_fast_csum() routine
85 //	  where we know we have at least 20bytes worth of data to checksum.
86 //	- Do a better job of handling small packets.
87 //	- Note on prefetching: it was found that under various load, i.e. ftp read/write,
88 //	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
89 //	  on the data that buffer points to (partly because the checksum is often preceded by
90 //	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
91 //	  the data is already in the cache.
92 //
93 
94 #define saved_pfs	r11
95 #define hmask		r16
96 #define tmask		r17
97 #define first1		r18
98 #define firstval	r19
99 #define firstoff	r20
100 #define last		r21
101 #define lastval		r22
102 #define lastoff		r23
103 #define saved_lc	r24
104 #define saved_pr	r25
105 #define tmp1		r26
106 #define tmp2		r27
107 #define tmp3		r28
108 #define carry1		r29
109 #define carry2		r30
110 #define first2		r31
111 
112 #define buf		in0
113 #define len		in1
114 
115 #define LOAD_LATENCY	2	// XXX fix me
116 
117 #if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
118 # error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
119 #endif
120 
121 #define PIPE_DEPTH			(LOAD_LATENCY+2)
122 #define ELD	p[LOAD_LATENCY]		// end of load
123 #define ELD_1	p[LOAD_LATENCY+1]	// and next stage
124 
125 // unsigned long do_csum(unsigned char *buf,long len)
126 
127 GLOBAL_ENTRY(do_csum)
128 	.prologue
129 	.save ar.pfs, saved_pfs
130 	alloc saved_pfs=ar.pfs,2,16,0,16
131 	.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
132 	.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
133 	mov ret0=r0		// in case we have zero length
134 	cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len)
135 	;;
136 	add tmp1=buf,len	// last byte's address
137 	.save pr, saved_pr
138 	mov saved_pr=pr		// preserve predicates (rotation)
139 (p6)	br.ret.spnt.many rp	// return if zero or negative length
140 
141 	mov hmask=-1		// initialize head mask
142 	tbit.nz p15,p0=buf,0	// is buf an odd address?
143 	and first1=-8,buf	// 8-byte align down address of first1 element
144 
145 	and firstoff=7,buf	// how many bytes off for first1 element
146 	mov tmask=-1		// initialize tail mask
147 
148 	;;
149 	adds tmp2=-1,tmp1	// last-1
150 	and lastoff=7,tmp1	// how many bytes off for last element
151 	;;
152 	sub tmp1=8,lastoff	// complement to lastoff
153 	and last=-8,tmp2	// address of word containing last byte
154 	;;
155 	sub tmp3=last,first1	// tmp3=distance from first1 to last
156 	.save ar.lc, saved_lc
157 	mov saved_lc=ar.lc	// save lc
158 	cmp.eq p8,p9=last,first1	// everything fits in one word ?
159 
160 	ld8 firstval=[first1],8	// load, ahead of time, "first1" word
161 	and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0
162 	shl tmp2=firstoff,3	// number of bits
163 	;;
164 (p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed
165 	shl tmp1=tmp1,3		// number of bits
166 (p9)	adds tmp3=-8,tmp3	// effectively loaded
167 	;;
168 (p8)	mov lastval=r0		// we don't need lastval if first1==last
169 	shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[
170 	shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff]
171 	;;
172 	.body
173 #define count tmp3
174 
175 (p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only
176 (p9)	and word2[0]=lastval,tmask	// mask last it as appropriate
177 	shr.u count=count,3	// how many 8-byte?
178 	;;
179 	// If count is odd, finish this 8-byte word so that we can
180 	// load two back-to-back 8-byte words per loop thereafter.
181 	and word1[0]=firstval,hmask	// and mask it as appropriate
182 	tbit.nz p10,p11=count,0		// if (count is odd)
183 	;;
184 (p8)	mov result1[0]=word1[0]
185 (p9)	add result1[0]=word1[0],word2[0]
186 	;;
187 	cmp.ltu p6,p0=result1[0],word1[0]	// check the carry
188 	cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte
189 	;;
190 (p6)	adds result1[0]=1,result1[0]
191 (p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word)
192 (p11)	br.cond.dptk .do_csum16		// if (count is even)
193 
194 	// Here count is odd.
195 	ld8 word1[1]=[first1],8		// load an 8-byte word
196 	cmp.eq p9,p10=1,count		// if (count == 1)
197 	adds count=-1,count		// loaded an 8-byte word
198 	;;
199 	add result1[0]=result1[0],word1[1]
200 	;;
201 	cmp.ltu p6,p0=result1[0],word1[1]
202 	;;
203 (p6)	adds result1[0]=1,result1[0]
204 (p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit
205 	// Fall through to calculate the checksum, feeding result1[0] as
206 	// the initial value in result1[0].
207 	//
208 	// Calculate the checksum loading two 8-byte words per loop.
209 	//
210 .do_csum16:
211 	add first2=8,first1
212 	shr.u count=count,1	// we do 16 bytes per loop
213 	;;
214 	adds count=-1,count
215 	mov carry1=r0
216 	mov carry2=r0
217 	brp.loop.imp 1f,2f
218 	;;
219 	mov ar.ec=PIPE_DEPTH
220 	mov ar.lc=count	// set lc
221 	mov pr.rot=1<<16
222 	// result1[0] must be initialized in advance.
223 	mov result2[0]=r0
224 	;;
225 	.align 32
226 1:
227 (ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
228 (pC1[1])adds carry1=1,carry1
229 (ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
230 (pC2[1])adds carry2=1,carry2
231 (ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
232 (ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
233 2:
234 (p[0])	ld8 word1[0]=[first1],16
235 (p[0])	ld8 word2[0]=[first2],16
236 	br.ctop.sptk 1b
237 	;;
238 	// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
239 (pC1[1])adds carry1=1,carry1	// since we miss the last one
240 (pC2[1])adds carry2=1,carry2
241 	;;
242 	add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
243 	add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
244 	;;
245 	cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
246 	cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
247 	;;
248 (p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
249 (p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
250 	;;
251 	add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
252 	;;
253 	cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
254 	;;
255 (p6)	adds result1[0]=1,result1[0]
256 	;;
257 .do_csum_exit:
258 	//
259 	// now fold 64 into 16 bits taking care of carry
260 	// that's not very good because it has lots of sequentiality
261 	//
262 	mov tmp3=0xffff
263 	zxt4 tmp1=result1[0]
264 	shr.u tmp2=result1[0],32
265 	;;
266 	add result1[0]=tmp1,tmp2
267 	;;
268 	and tmp1=result1[0],tmp3
269 	shr.u tmp2=result1[0],16
270 	;;
271 	add result1[0]=tmp1,tmp2
272 	;;
273 	and tmp1=result1[0],tmp3
274 	shr.u tmp2=result1[0],16
275 	;;
276 	add result1[0]=tmp1,tmp2
277 	;;
278 	and tmp1=result1[0],tmp3
279 	shr.u tmp2=result1[0],16
280 	;;
281 	add ret0=tmp1,tmp2
282 	mov pr=saved_pr,0xffffffffffff0000
283 	;;
284 	// if buf was odd then swap bytes
285 	mov ar.pfs=saved_pfs		// restore ar.ec
286 (p15)	mux1 ret0=ret0,@rev		// reverse word
287 	;;
288 	mov ar.lc=saved_lc
289 (p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
290 	br.ret.sptk.many rp
291 
292 //	I (Jun Nakajima) wrote an equivalent code (see below), but it was
293 //	not much better than the original. So keep the original there so that
294 //	someone else can challenge.
295 //
296 //	shr.u word1[0]=result1[0],32
297 //	zxt4 result1[0]=result1[0]
298 //	;;
299 //	add result1[0]=result1[0],word1[0]
300 //	;;
301 //	zxt2 result2[0]=result1[0]
302 //	extr.u word1[0]=result1[0],16,16
303 //	shr.u carry1=result1[0],32
304 //	;;
305 //	add result2[0]=result2[0],word1[0]
306 //	;;
307 //	add result2[0]=result2[0],carry1
308 //	;;
309 //	extr.u ret0=result2[0],16,16
310 //	;;
311 //	add ret0=ret0,result2[0]
312 //	;;
313 //	zxt2 ret0=ret0
314 //	mov ar.pfs=saved_pfs		 // restore ar.ec
315 //	mov pr=saved_pr,0xffffffffffff0000
316 //	;;
317 //	// if buf was odd then swap bytes
318 //	mov ar.lc=saved_lc
319 //(p15)	mux1 ret0=ret0,@rev		// reverse word
320 //	;;
321 //(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
322 //	br.ret.sptk.many rp
323 
324 END(do_csum)
325