1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  *
5  */
6 
7 #include "gem/i915_gem_internal.h"
8 
9 #include "i915_drv.h"
10 #include "i915_reg.h"
11 #include "intel_de.h"
12 #include "intel_display_types.h"
13 #include "intel_dsb.h"
14 #include "intel_dsb_regs.h"
15 
16 struct i915_vma;
17 
18 enum dsb_id {
19 	INVALID_DSB = -1,
20 	DSB1,
21 	DSB2,
22 	DSB3,
23 	MAX_DSB_PER_PIPE
24 };
25 
26 struct intel_dsb {
27 	enum dsb_id id;
28 
29 	u32 *cmd_buf;
30 	struct i915_vma *vma;
31 	struct intel_crtc *crtc;
32 
33 	/*
34 	 * maximum number of dwords the buffer will hold.
35 	 */
36 	unsigned int size;
37 
38 	/*
39 	 * free_pos will point the first free dword and
40 	 * help in calculating tail of command buffer.
41 	 */
42 	unsigned int free_pos;
43 
44 	/*
45 	 * ins_start_offset will help to store start dword of the dsb
46 	 * instuction and help in identifying the batch of auto-increment
47 	 * register.
48 	 */
49 	unsigned int ins_start_offset;
50 };
51 
52 /**
53  * DOC: DSB
54  *
55  * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
56  * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
57  * engine that can be programmed to download the DSB from memory.
58  * It allows driver to batch submit display HW programming. This helps to
59  * reduce loading time and CPU activity, thereby making the context switch
60  * faster. DSB Support added from Gen12 Intel graphics based platform.
61  *
62  * DSB's can access only the pipe, plane, and transcoder Data Island Packet
63  * registers.
64  *
65  * DSB HW can support only register writes (both indexed and direct MMIO
66  * writes). There are no registers reads possible with DSB HW engine.
67  */
68 
69 /* DSB opcodes. */
70 #define DSB_OPCODE_SHIFT		24
71 #define DSB_OPCODE_NOOP			0x0
72 #define DSB_OPCODE_MMIO_WRITE		0x1
73 #define DSB_OPCODE_WAIT_USEC		0x2
74 #define DSB_OPCODE_WAIT_LINES		0x3
75 #define DSB_OPCODE_WAIT_VBLANKS		0x4
76 #define DSB_OPCODE_WAIT_DSL_IN		0x5
77 #define DSB_OPCODE_WAIT_DSL_OUT		0x6
78 #define DSB_OPCODE_INTERRUPT		0x7
79 #define DSB_OPCODE_INDEXED_WRITE	0x9
80 #define DSB_OPCODE_POLL			0xA
81 #define DSB_BYTE_EN			0xF
82 #define DSB_BYTE_EN_SHIFT		20
83 #define DSB_REG_VALUE_MASK		0xfffff
84 
assert_dsb_has_room(struct intel_dsb * dsb)85 static bool assert_dsb_has_room(struct intel_dsb *dsb)
86 {
87 	struct intel_crtc *crtc = dsb->crtc;
88 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
89 
90 	/* each instruction is 2 dwords */
91 	return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2,
92 			 "[CRTC:%d:%s] DSB %d buffer overflow\n",
93 			 crtc->base.base.id, crtc->base.name, dsb->id);
94 }
95 
is_dsb_busy(struct drm_i915_private * i915,enum pipe pipe,enum dsb_id id)96 static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
97 			enum dsb_id id)
98 {
99 	return intel_de_read(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY;
100 }
101 
intel_dsb_emit(struct intel_dsb * dsb,u32 ldw,u32 udw)102 static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
103 {
104 	u32 *buf = dsb->cmd_buf;
105 
106 	if (!assert_dsb_has_room(dsb))
107 		return;
108 
109 	/* Every instruction should be 8 byte aligned. */
110 	dsb->free_pos = ALIGN(dsb->free_pos, 2);
111 
112 	dsb->ins_start_offset = dsb->free_pos;
113 
114 	buf[dsb->free_pos++] = ldw;
115 	buf[dsb->free_pos++] = udw;
116 }
117 
intel_dsb_prev_ins_is_write(struct intel_dsb * dsb,u32 opcode,i915_reg_t reg)118 static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
119 					u32 opcode, i915_reg_t reg)
120 {
121 	const u32 *buf = dsb->cmd_buf;
122 	u32 prev_opcode, prev_reg;
123 
124 	prev_opcode = buf[dsb->ins_start_offset + 1] >> DSB_OPCODE_SHIFT;
125 	prev_reg = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK;
126 
127 	return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
128 }
129 
intel_dsb_prev_ins_is_mmio_write(struct intel_dsb * dsb,i915_reg_t reg)130 static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg)
131 {
132 	return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_MMIO_WRITE, reg);
133 }
134 
intel_dsb_prev_ins_is_indexed_write(struct intel_dsb * dsb,i915_reg_t reg)135 static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
136 {
137 	return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_INDEXED_WRITE, reg);
138 }
139 
140 /**
141  * intel_dsb_reg_write() - Emit register wriite to the DSB context
142  * @dsb: DSB context
143  * @reg: register address.
144  * @val: value.
145  *
146  * This function is used for writing register-value pair in command
147  * buffer of DSB.
148  */
intel_dsb_reg_write(struct intel_dsb * dsb,i915_reg_t reg,u32 val)149 void intel_dsb_reg_write(struct intel_dsb *dsb,
150 			 i915_reg_t reg, u32 val)
151 {
152 	/*
153 	 * For example the buffer will look like below for 3 dwords for auto
154 	 * increment register:
155 	 * +--------------------------------------------------------+
156 	 * | size = 3 | offset &| value1 | value2 | value3 | zero   |
157 	 * |          | opcode  |        |        |        |        |
158 	 * +--------------------------------------------------------+
159 	 * +          +         +        +        +        +        +
160 	 * 0          4         8        12       16       20       24
161 	 * Byte
162 	 *
163 	 * As every instruction is 8 byte aligned the index of dsb instruction
164 	 * will start always from even number while dealing with u32 array. If
165 	 * we are writing odd no of dwords, Zeros will be added in the end for
166 	 * padding.
167 	 */
168 	if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) &&
169 	    !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) {
170 		intel_dsb_emit(dsb, val,
171 			       (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
172 			       (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
173 			       i915_mmio_reg_offset(reg));
174 	} else {
175 		u32 *buf = dsb->cmd_buf;
176 
177 		if (!assert_dsb_has_room(dsb))
178 			return;
179 
180 		/* convert to indexed write? */
181 		if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) {
182 			u32 prev_val = buf[dsb->ins_start_offset + 0];
183 
184 			buf[dsb->ins_start_offset + 0] = 1; /* count */
185 			buf[dsb->ins_start_offset + 1] =
186 				(DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
187 				i915_mmio_reg_offset(reg);
188 			buf[dsb->ins_start_offset + 2] = prev_val;
189 
190 			dsb->free_pos++;
191 		}
192 
193 		buf[dsb->free_pos++] = val;
194 		/* Update the count */
195 		buf[dsb->ins_start_offset]++;
196 
197 		/* if number of data words is odd, then the last dword should be 0.*/
198 		if (dsb->free_pos & 0x1)
199 			buf[dsb->free_pos] = 0;
200 	}
201 }
202 
intel_dsb_align_tail(struct intel_dsb * dsb)203 static void intel_dsb_align_tail(struct intel_dsb *dsb)
204 {
205 	u32 aligned_tail, tail;
206 
207 	tail = dsb->free_pos * 4;
208 	aligned_tail = ALIGN(tail, CACHELINE_BYTES);
209 
210 	if (aligned_tail > tail)
211 		memset(&dsb->cmd_buf[dsb->free_pos], 0,
212 		       aligned_tail - tail);
213 
214 	dsb->free_pos = aligned_tail / 4;
215 }
216 
intel_dsb_finish(struct intel_dsb * dsb)217 void intel_dsb_finish(struct intel_dsb *dsb)
218 {
219 	intel_dsb_align_tail(dsb);
220 }
221 
222 /**
223  * intel_dsb_commit() - Trigger workload execution of DSB.
224  * @dsb: DSB context
225  * @wait_for_vblank: wait for vblank before executing
226  *
227  * This function is used to do actual write to hardware using DSB.
228  */
intel_dsb_commit(struct intel_dsb * dsb,bool wait_for_vblank)229 void intel_dsb_commit(struct intel_dsb *dsb, bool wait_for_vblank)
230 {
231 	struct intel_crtc *crtc = dsb->crtc;
232 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
233 	enum pipe pipe = crtc->pipe;
234 	u32 tail;
235 
236 	tail = dsb->free_pos * 4;
237 	if (drm_WARN_ON(&dev_priv->drm, !IS_ALIGNED(tail, CACHELINE_BYTES)))
238 		return;
239 
240 	if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
241 		drm_err(&dev_priv->drm, "[CRTC:%d:%s] DSB %d is busy\n",
242 			crtc->base.base.id, crtc->base.name, dsb->id);
243 		return;
244 	}
245 
246 	intel_de_write(dev_priv, DSB_CTRL(pipe, dsb->id),
247 		       (wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0) |
248 		       DSB_ENABLE);
249 	intel_de_write(dev_priv, DSB_HEAD(pipe, dsb->id),
250 		       i915_ggtt_offset(dsb->vma));
251 	intel_de_write(dev_priv, DSB_TAIL(pipe, dsb->id),
252 		       i915_ggtt_offset(dsb->vma) + tail);
253 }
254 
intel_dsb_wait(struct intel_dsb * dsb)255 void intel_dsb_wait(struct intel_dsb *dsb)
256 {
257 	struct intel_crtc *crtc = dsb->crtc;
258 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
259 	enum pipe pipe = crtc->pipe;
260 
261 	if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1))
262 		drm_err(&dev_priv->drm,
263 			"[CRTC:%d:%s] DSB %d timed out waiting for idle\n",
264 			crtc->base.base.id, crtc->base.name, dsb->id);
265 
266 	/* Attempt to reset it */
267 	dsb->free_pos = 0;
268 	dsb->ins_start_offset = 0;
269 	intel_de_write(dev_priv, DSB_CTRL(pipe, dsb->id), 0);
270 }
271 
272 /**
273  * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
274  * @crtc: the CRTC
275  * @max_cmds: number of commands we need to fit into command buffer
276  *
277  * This function prepare the command buffer which is used to store dsb
278  * instructions with data.
279  *
280  * Returns:
281  * DSB context, NULL on failure
282  */
intel_dsb_prepare(struct intel_crtc * crtc,unsigned int max_cmds)283 struct intel_dsb *intel_dsb_prepare(struct intel_crtc *crtc,
284 				    unsigned int max_cmds)
285 {
286 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
287 	struct drm_i915_gem_object *obj;
288 	intel_wakeref_t wakeref;
289 	struct intel_dsb *dsb;
290 	struct i915_vma *vma;
291 	unsigned int size;
292 	u32 *buf;
293 
294 	if (!HAS_DSB(i915))
295 		return NULL;
296 
297 	dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
298 	if (!dsb)
299 		goto out;
300 
301 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
302 
303 	/* ~1 qword per instruction, full cachelines */
304 	size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
305 
306 	obj = i915_gem_object_create_internal(i915, PAGE_ALIGN(size));
307 	if (IS_ERR(obj))
308 		goto out_put_rpm;
309 
310 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
311 	if (IS_ERR(vma)) {
312 		i915_gem_object_put(obj);
313 		goto out_put_rpm;
314 	}
315 
316 	buf = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC);
317 	if (IS_ERR(buf)) {
318 		i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP);
319 		goto out_put_rpm;
320 	}
321 
322 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
323 
324 	dsb->id = DSB1;
325 	dsb->vma = vma;
326 	dsb->crtc = crtc;
327 	dsb->cmd_buf = buf;
328 	dsb->size = size / 4; /* in dwords */
329 	dsb->free_pos = 0;
330 	dsb->ins_start_offset = 0;
331 
332 	return dsb;
333 
334 out_put_rpm:
335 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
336 	kfree(dsb);
337 out:
338 	drm_info_once(&i915->drm,
339 		      "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n",
340 		      crtc->base.base.id, crtc->base.name, DSB1);
341 
342 	return NULL;
343 }
344 
345 /**
346  * intel_dsb_cleanup() - To cleanup DSB context.
347  * @dsb: DSB context
348  *
349  * This function cleanup the DSB context by unpinning and releasing
350  * the VMA object associated with it.
351  */
intel_dsb_cleanup(struct intel_dsb * dsb)352 void intel_dsb_cleanup(struct intel_dsb *dsb)
353 {
354 	i915_vma_unpin_and_release(&dsb->vma, I915_VMA_RELEASE_MAP);
355 	kfree(dsb);
356 }
357