xref: /openbmc/linux/lib/crc32.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  /*
2   * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
3   * cleaned up code to current version of sparse and added the slicing-by-8
4   * algorithm to the closely similar existing slicing-by-4 algorithm.
5   *
6   * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
7   * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
8   * Code was from the public domain, copyright abandoned.  Code was
9   * subsequently included in the kernel, thus was re-licensed under the
10   * GNU GPL v2.
11   *
12   * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
13   * Same crc32 function was used in 5 other places in the kernel.
14   * I made one version, and deleted the others.
15   * There are various incantations of crc32().  Some use a seed of 0 or ~0.
16   * Some xor at the end with ~0.  The generic crc32() function takes
17   * seed as an argument, and doesn't xor at the end.  Then individual
18   * users can do whatever they need.
19   *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
20   *   fs/jffs2 uses seed 0, doesn't xor with ~0.
21   *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
22   *
23   * This source code is licensed under the GNU General Public License,
24   * Version 2.  See the file COPYING for more details.
25   */
26  
27  /* see: Documentation/staging/crc32.rst for a description of algorithms */
28  
29  #include <linux/crc32.h>
30  #include <linux/crc32poly.h>
31  #include <linux/module.h>
32  #include <linux/types.h>
33  #include <linux/sched.h>
34  #include "crc32defs.h"
35  
36  #if CRC_LE_BITS > 8
37  # define tole(x) ((__force u32) cpu_to_le32(x))
38  #else
39  # define tole(x) (x)
40  #endif
41  
42  #if CRC_BE_BITS > 8
43  # define tobe(x) ((__force u32) cpu_to_be32(x))
44  #else
45  # define tobe(x) (x)
46  #endif
47  
48  #include "crc32table.h"
49  
50  MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
51  MODULE_DESCRIPTION("Various CRC32 calculations");
52  MODULE_LICENSE("GPL");
53  
54  #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
55  
56  /* implements slicing-by-4 or slicing-by-8 algorithm */
57  static inline u32 __pure
crc32_body(u32 crc,unsigned char const * buf,size_t len,const u32 (* tab)[256])58  crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
59  {
60  # ifdef __LITTLE_ENDIAN
61  #  define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
62  #  define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
63  		   t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
64  #  define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
65  		   t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
66  # else
67  #  define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
68  #  define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
69  		   t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
70  #  define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
71  		   t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
72  # endif
73  	const u32 *b;
74  	size_t    rem_len;
75  # ifdef CONFIG_X86
76  	size_t i;
77  # endif
78  	const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
79  # if CRC_LE_BITS != 32
80  	const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
81  # endif
82  	u32 q;
83  
84  	/* Align it */
85  	if (unlikely((long)buf & 3 && len)) {
86  		do {
87  			DO_CRC(*buf++);
88  		} while ((--len) && ((long)buf)&3);
89  	}
90  
91  # if CRC_LE_BITS == 32
92  	rem_len = len & 3;
93  	len = len >> 2;
94  # else
95  	rem_len = len & 7;
96  	len = len >> 3;
97  # endif
98  
99  	b = (const u32 *)buf;
100  # ifdef CONFIG_X86
101  	--b;
102  	for (i = 0; i < len; i++) {
103  # else
104  	for (--b; len; --len) {
105  # endif
106  		q = crc ^ *++b; /* use pre increment for speed */
107  # if CRC_LE_BITS == 32
108  		crc = DO_CRC4;
109  # else
110  		crc = DO_CRC8;
111  		q = *++b;
112  		crc ^= DO_CRC4;
113  # endif
114  	}
115  	len = rem_len;
116  	/* And the last few bytes */
117  	if (len) {
118  		u8 *p = (u8 *)(b + 1) - 1;
119  # ifdef CONFIG_X86
120  		for (i = 0; i < len; i++)
121  			DO_CRC(*++p); /* use pre increment for speed */
122  # else
123  		do {
124  			DO_CRC(*++p); /* use pre increment for speed */
125  		} while (--len);
126  # endif
127  	}
128  	return crc;
129  #undef DO_CRC
130  #undef DO_CRC4
131  #undef DO_CRC8
132  }
133  #endif
134  
135  
136  /**
137   * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
138   *			CRC32/CRC32C
139   * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for other
140   *	 uses, or the previous crc32/crc32c value if computing incrementally.
141   * @p: pointer to buffer over which CRC32/CRC32C is run
142   * @len: length of buffer @p
143   * @tab: little-endian Ethernet table
144   * @polynomial: CRC32/CRC32c LE polynomial
145   */
146  static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
147  					  size_t len, const u32 (*tab)[256],
148  					  u32 polynomial)
149  {
150  #if CRC_LE_BITS == 1
151  	int i;
152  	while (len--) {
153  		crc ^= *p++;
154  		for (i = 0; i < 8; i++)
155  			crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
156  	}
157  # elif CRC_LE_BITS == 2
158  	while (len--) {
159  		crc ^= *p++;
160  		crc = (crc >> 2) ^ tab[0][crc & 3];
161  		crc = (crc >> 2) ^ tab[0][crc & 3];
162  		crc = (crc >> 2) ^ tab[0][crc & 3];
163  		crc = (crc >> 2) ^ tab[0][crc & 3];
164  	}
165  # elif CRC_LE_BITS == 4
166  	while (len--) {
167  		crc ^= *p++;
168  		crc = (crc >> 4) ^ tab[0][crc & 15];
169  		crc = (crc >> 4) ^ tab[0][crc & 15];
170  	}
171  # elif CRC_LE_BITS == 8
172  	/* aka Sarwate algorithm */
173  	while (len--) {
174  		crc ^= *p++;
175  		crc = (crc >> 8) ^ tab[0][crc & 255];
176  	}
177  # else
178  	crc = (__force u32) __cpu_to_le32(crc);
179  	crc = crc32_body(crc, p, len, tab);
180  	crc = __le32_to_cpu((__force __le32)crc);
181  #endif
182  	return crc;
183  }
184  
185  #if CRC_LE_BITS == 1
186  u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
187  {
188  	return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
189  }
190  u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
191  {
192  	return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
193  }
194  #else
195  u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
196  {
197  	return crc32_le_generic(crc, p, len, crc32table_le, CRC32_POLY_LE);
198  }
199  u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
200  {
201  	return crc32_le_generic(crc, p, len, crc32ctable_le, CRC32C_POLY_LE);
202  }
203  #endif
204  EXPORT_SYMBOL(crc32_le);
205  EXPORT_SYMBOL(__crc32c_le);
206  
207  u32 __pure crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le);
208  u32 __pure __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le);
209  u32 __pure crc32_be_base(u32, unsigned char const *, size_t) __alias(crc32_be);
210  
211  /*
212   * This multiplies the polynomials x and y modulo the given modulus.
213   * This follows the "little-endian" CRC convention that the lsbit
214   * represents the highest power of x, and the msbit represents x^0.
215   */
216  static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
217  {
218  	u32 product = x & 1 ? y : 0;
219  	int i;
220  
221  	for (i = 0; i < 31; i++) {
222  		product = (product >> 1) ^ (product & 1 ? modulus : 0);
223  		x >>= 1;
224  		product ^= x & 1 ? y : 0;
225  	}
226  
227  	return product;
228  }
229  
230  /**
231   * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
232   * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
233   * @len: The number of bytes. @crc is multiplied by x^(8*@len)
234   * @polynomial: The modulus used to reduce the result to 32 bits.
235   *
236   * It's possible to parallelize CRC computations by computing a CRC
237   * over separate ranges of a buffer, then summing them.
238   * This shifts the given CRC by 8*len bits (i.e. produces the same effect
239   * as appending len bytes of zero to the data), in time proportional
240   * to log(len).
241   */
242  static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
243  						   u32 polynomial)
244  {
245  	u32 power = polynomial;	/* CRC of x^32 */
246  	int i;
247  
248  	/* Shift up to 32 bits in the simple linear way */
249  	for (i = 0; i < 8 * (int)(len & 3); i++)
250  		crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
251  
252  	len >>= 2;
253  	if (!len)
254  		return crc;
255  
256  	for (;;) {
257  		/* "power" is x^(2^i), modulo the polynomial */
258  		if (len & 1)
259  			crc = gf2_multiply(crc, power, polynomial);
260  
261  		len >>= 1;
262  		if (!len)
263  			break;
264  
265  		/* Square power, advancing to x^(2^(i+1)) */
266  		power = gf2_multiply(power, power, polynomial);
267  	}
268  
269  	return crc;
270  }
271  
272  u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
273  {
274  	return crc32_generic_shift(crc, len, CRC32_POLY_LE);
275  }
276  
277  u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
278  {
279  	return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
280  }
281  EXPORT_SYMBOL(crc32_le_shift);
282  EXPORT_SYMBOL(__crc32c_le_shift);
283  
284  /**
285   * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
286   * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
287   *	other uses, or the previous crc32 value if computing incrementally.
288   * @p: pointer to buffer over which CRC32 is run
289   * @len: length of buffer @p
290   * @tab: big-endian Ethernet table
291   * @polynomial: CRC32 BE polynomial
292   */
293  static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
294  					  size_t len, const u32 (*tab)[256],
295  					  u32 polynomial)
296  {
297  #if CRC_BE_BITS == 1
298  	int i;
299  	while (len--) {
300  		crc ^= *p++ << 24;
301  		for (i = 0; i < 8; i++)
302  			crc =
303  			    (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
304  					  0);
305  	}
306  # elif CRC_BE_BITS == 2
307  	while (len--) {
308  		crc ^= *p++ << 24;
309  		crc = (crc << 2) ^ tab[0][crc >> 30];
310  		crc = (crc << 2) ^ tab[0][crc >> 30];
311  		crc = (crc << 2) ^ tab[0][crc >> 30];
312  		crc = (crc << 2) ^ tab[0][crc >> 30];
313  	}
314  # elif CRC_BE_BITS == 4
315  	while (len--) {
316  		crc ^= *p++ << 24;
317  		crc = (crc << 4) ^ tab[0][crc >> 28];
318  		crc = (crc << 4) ^ tab[0][crc >> 28];
319  	}
320  # elif CRC_BE_BITS == 8
321  	while (len--) {
322  		crc ^= *p++ << 24;
323  		crc = (crc << 8) ^ tab[0][crc >> 24];
324  	}
325  # else
326  	crc = (__force u32) __cpu_to_be32(crc);
327  	crc = crc32_body(crc, p, len, tab);
328  	crc = __be32_to_cpu((__force __be32)crc);
329  # endif
330  	return crc;
331  }
332  
333  #if CRC_BE_BITS == 1
334  u32 __pure __weak crc32_be(u32 crc, unsigned char const *p, size_t len)
335  {
336  	return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
337  }
338  #else
339  u32 __pure __weak crc32_be(u32 crc, unsigned char const *p, size_t len)
340  {
341  	return crc32_be_generic(crc, p, len, crc32table_be, CRC32_POLY_BE);
342  }
343  #endif
344  EXPORT_SYMBOL(crc32_be);
345