1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33
smp_execute_task_sg(struct domain_device * dev,struct scatterlist * req,struct scatterlist * resp)34 static int smp_execute_task_sg(struct domain_device *dev,
35 struct scatterlist *req, struct scatterlist *resp)
36 {
37 int res, retry;
38 struct sas_task *task = NULL;
39 struct sas_internal *i =
40 to_sas_internal(dev->port->ha->shost->transportt);
41 struct sas_ha_struct *ha = dev->port->ha;
42
43 pm_runtime_get_sync(ha->dev);
44 mutex_lock(&dev->ex_dev.cmd_mutex);
45 for (retry = 0; retry < 3; retry++) {
46 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47 res = -ECOMM;
48 break;
49 }
50
51 task = sas_alloc_slow_task(GFP_KERNEL);
52 if (!task) {
53 res = -ENOMEM;
54 break;
55 }
56 task->dev = dev;
57 task->task_proto = dev->tproto;
58 task->smp_task.smp_req = *req;
59 task->smp_task.smp_resp = *resp;
60
61 task->task_done = sas_task_internal_done;
62
63 task->slow_task->timer.function = sas_task_internal_timedout;
64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 add_timer(&task->slow_task->timer);
66
67 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69 if (res) {
70 del_timer_sync(&task->slow_task->timer);
71 pr_notice("executing SMP task failed:%d\n", res);
72 break;
73 }
74
75 wait_for_completion(&task->slow_task->completion);
76 res = -ECOMM;
77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 pr_notice("smp task timed out or aborted\n");
79 i->dft->lldd_abort_task(task);
80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 pr_notice("SMP task aborted and not done\n");
82 break;
83 }
84 }
85 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 task->task_status.stat == SAS_SAM_STAT_GOOD) {
87 res = 0;
88 break;
89 }
90 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 task->task_status.stat == SAS_DATA_UNDERRUN) {
92 /* no error, but return the number of bytes of
93 * underrun */
94 res = task->task_status.residual;
95 break;
96 }
97 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 task->task_status.stat == SAS_DATA_OVERRUN) {
99 res = -EMSGSIZE;
100 break;
101 }
102 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 task->task_status.stat == SAS_DEVICE_UNKNOWN)
104 break;
105 else {
106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107 __func__,
108 SAS_ADDR(dev->sas_addr),
109 task->task_status.resp,
110 task->task_status.stat);
111 sas_free_task(task);
112 task = NULL;
113 }
114 }
115 mutex_unlock(&dev->ex_dev.cmd_mutex);
116 pm_runtime_put_sync(ha->dev);
117
118 BUG_ON(retry == 3 && task != NULL);
119 sas_free_task(task);
120 return res;
121 }
122
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 void *resp, int resp_size)
125 {
126 struct scatterlist req_sg;
127 struct scatterlist resp_sg;
128
129 sg_init_one(&req_sg, req, req_size);
130 sg_init_one(&resp_sg, resp, resp_size);
131 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133
134 /* ---------- Allocations ---------- */
135
alloc_smp_req(int size)136 static inline void *alloc_smp_req(int size)
137 {
138 u8 *p = kzalloc(ALIGN(size, ARCH_DMA_MINALIGN), GFP_KERNEL);
139 if (p)
140 p[0] = SMP_REQUEST;
141 return p;
142 }
143
alloc_smp_resp(int size)144 static inline void *alloc_smp_resp(int size)
145 {
146 return kzalloc(size, GFP_KERNEL);
147 }
148
sas_route_char(struct domain_device * dev,struct ex_phy * phy)149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151 switch (phy->routing_attr) {
152 case TABLE_ROUTING:
153 if (dev->ex_dev.t2t_supp)
154 return 'U';
155 else
156 return 'T';
157 case DIRECT_ROUTING:
158 return 'D';
159 case SUBTRACTIVE_ROUTING:
160 return 'S';
161 default:
162 return '?';
163 }
164 }
165
to_dev_type(struct discover_resp * dr)166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168 /* This is detecting a failure to transmit initial dev to host
169 * FIS as described in section J.5 of sas-2 r16
170 */
171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 return SAS_SATA_PENDING;
174 else
175 return dr->attached_dev_type;
176 }
177
sas_set_ex_phy(struct domain_device * dev,int phy_id,struct smp_disc_resp * disc_resp)178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179 struct smp_disc_resp *disc_resp)
180 {
181 enum sas_device_type dev_type;
182 enum sas_linkrate linkrate;
183 u8 sas_addr[SAS_ADDR_SIZE];
184 struct discover_resp *dr = &disc_resp->disc;
185 struct sas_ha_struct *ha = dev->port->ha;
186 struct expander_device *ex = &dev->ex_dev;
187 struct ex_phy *phy = &ex->ex_phy[phy_id];
188 struct sas_rphy *rphy = dev->rphy;
189 bool new_phy = !phy->phy;
190 char *type;
191
192 if (new_phy) {
193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194 return;
195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197 /* FIXME: error_handling */
198 BUG_ON(!phy->phy);
199 }
200
201 switch (disc_resp->result) {
202 case SMP_RESP_PHY_VACANT:
203 phy->phy_state = PHY_VACANT;
204 break;
205 default:
206 phy->phy_state = PHY_NOT_PRESENT;
207 break;
208 case SMP_RESP_FUNC_ACC:
209 phy->phy_state = PHY_EMPTY; /* do not know yet */
210 break;
211 }
212
213 /* check if anything important changed to squelch debug */
214 dev_type = phy->attached_dev_type;
215 linkrate = phy->linkrate;
216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218 /* Handle vacant phy - rest of dr data is not valid so skip it */
219 if (phy->phy_state == PHY_VACANT) {
220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 phy->attached_dev_type = SAS_PHY_UNUSED;
222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 phy->phy_id = phy_id;
224 goto skip;
225 } else
226 goto out;
227 }
228
229 phy->attached_dev_type = to_dev_type(dr);
230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231 goto out;
232 phy->phy_id = phy_id;
233 phy->linkrate = dr->linkrate;
234 phy->attached_sata_host = dr->attached_sata_host;
235 phy->attached_sata_dev = dr->attached_sata_dev;
236 phy->attached_sata_ps = dr->attached_sata_ps;
237 phy->attached_iproto = dr->iproto << 1;
238 phy->attached_tproto = dr->tproto << 1;
239 /* help some expanders that fail to zero sas_address in the 'no
240 * device' case
241 */
242 if (phy->attached_dev_type == SAS_PHY_UNUSED)
243 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
244 else
245 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
246 phy->attached_phy_id = dr->attached_phy_id;
247 phy->phy_change_count = dr->change_count;
248 phy->routing_attr = dr->routing_attr;
249 phy->virtual = dr->virtual;
250 phy->last_da_index = -1;
251
252 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
253 phy->phy->identify.device_type = dr->attached_dev_type;
254 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
255 phy->phy->identify.target_port_protocols = phy->attached_tproto;
256 if (!phy->attached_tproto && dr->attached_sata_dev)
257 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
258 phy->phy->identify.phy_identifier = phy_id;
259 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
260 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
261 phy->phy->minimum_linkrate = dr->pmin_linkrate;
262 phy->phy->maximum_linkrate = dr->pmax_linkrate;
263 phy->phy->negotiated_linkrate = phy->linkrate;
264 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
265
266 skip:
267 if (new_phy)
268 if (sas_phy_add(phy->phy)) {
269 sas_phy_free(phy->phy);
270 return;
271 }
272
273 out:
274 switch (phy->attached_dev_type) {
275 case SAS_SATA_PENDING:
276 type = "stp pending";
277 break;
278 case SAS_PHY_UNUSED:
279 type = "no device";
280 break;
281 case SAS_END_DEVICE:
282 if (phy->attached_iproto) {
283 if (phy->attached_tproto)
284 type = "host+target";
285 else
286 type = "host";
287 } else {
288 if (dr->attached_sata_dev)
289 type = "stp";
290 else
291 type = "ssp";
292 }
293 break;
294 case SAS_EDGE_EXPANDER_DEVICE:
295 case SAS_FANOUT_EXPANDER_DEVICE:
296 type = "smp";
297 break;
298 default:
299 type = "unknown";
300 }
301
302 /* this routine is polled by libata error recovery so filter
303 * unimportant messages
304 */
305 if (new_phy || phy->attached_dev_type != dev_type ||
306 phy->linkrate != linkrate ||
307 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
308 /* pass */;
309 else
310 return;
311
312 /* if the attached device type changed and ata_eh is active,
313 * make sure we run revalidation when eh completes (see:
314 * sas_enable_revalidation)
315 */
316 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
317 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
318
319 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
320 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
321 SAS_ADDR(dev->sas_addr), phy->phy_id,
322 sas_route_char(dev, phy), phy->linkrate,
323 SAS_ADDR(phy->attached_sas_addr), type);
324 }
325
326 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)327 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
328 {
329 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
330 struct domain_device *dev;
331 struct sas_rphy *rphy;
332
333 if (!ex_phy->port)
334 return NULL;
335
336 rphy = ex_phy->port->rphy;
337 if (!rphy)
338 return NULL;
339
340 dev = sas_find_dev_by_rphy(rphy);
341
342 if (dev && dev_is_sata(dev))
343 return dev;
344
345 return NULL;
346 }
347
348 #define DISCOVER_REQ_SIZE 16
349 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
350
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,struct smp_disc_resp * disc_resp,int single)351 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
352 struct smp_disc_resp *disc_resp,
353 int single)
354 {
355 struct discover_resp *dr = &disc_resp->disc;
356 int res;
357
358 disc_req[9] = single;
359
360 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
361 disc_resp, DISCOVER_RESP_SIZE);
362 if (res)
363 return res;
364 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
365 pr_notice("Found loopback topology, just ignore it!\n");
366 return 0;
367 }
368 sas_set_ex_phy(dev, single, disc_resp);
369 return 0;
370 }
371
sas_ex_phy_discover(struct domain_device * dev,int single)372 int sas_ex_phy_discover(struct domain_device *dev, int single)
373 {
374 struct expander_device *ex = &dev->ex_dev;
375 int res = 0;
376 u8 *disc_req;
377 struct smp_disc_resp *disc_resp;
378
379 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
380 if (!disc_req)
381 return -ENOMEM;
382
383 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
384 if (!disc_resp) {
385 kfree(disc_req);
386 return -ENOMEM;
387 }
388
389 disc_req[1] = SMP_DISCOVER;
390
391 if (0 <= single && single < ex->num_phys) {
392 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
393 } else {
394 int i;
395
396 for (i = 0; i < ex->num_phys; i++) {
397 res = sas_ex_phy_discover_helper(dev, disc_req,
398 disc_resp, i);
399 if (res)
400 goto out_err;
401 }
402 }
403 out_err:
404 kfree(disc_resp);
405 kfree(disc_req);
406 return res;
407 }
408
sas_expander_discover(struct domain_device * dev)409 static int sas_expander_discover(struct domain_device *dev)
410 {
411 struct expander_device *ex = &dev->ex_dev;
412 int res;
413
414 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
415 if (!ex->ex_phy)
416 return -ENOMEM;
417
418 res = sas_ex_phy_discover(dev, -1);
419 if (res)
420 goto out_err;
421
422 return 0;
423 out_err:
424 kfree(ex->ex_phy);
425 ex->ex_phy = NULL;
426 return res;
427 }
428
429 #define MAX_EXPANDER_PHYS 128
430
431 #define RG_REQ_SIZE 8
432 #define RG_RESP_SIZE sizeof(struct smp_rg_resp)
433
sas_ex_general(struct domain_device * dev)434 static int sas_ex_general(struct domain_device *dev)
435 {
436 u8 *rg_req;
437 struct smp_rg_resp *rg_resp;
438 struct report_general_resp *rg;
439 int res;
440 int i;
441
442 rg_req = alloc_smp_req(RG_REQ_SIZE);
443 if (!rg_req)
444 return -ENOMEM;
445
446 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
447 if (!rg_resp) {
448 kfree(rg_req);
449 return -ENOMEM;
450 }
451
452 rg_req[1] = SMP_REPORT_GENERAL;
453
454 for (i = 0; i < 5; i++) {
455 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
456 RG_RESP_SIZE);
457
458 if (res) {
459 pr_notice("RG to ex %016llx failed:0x%x\n",
460 SAS_ADDR(dev->sas_addr), res);
461 goto out;
462 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
463 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
464 SAS_ADDR(dev->sas_addr), rg_resp->result);
465 res = rg_resp->result;
466 goto out;
467 }
468
469 rg = &rg_resp->rg;
470 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
471 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
472 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
473 dev->ex_dev.t2t_supp = rg->t2t_supp;
474 dev->ex_dev.conf_route_table = rg->conf_route_table;
475 dev->ex_dev.configuring = rg->configuring;
476 memcpy(dev->ex_dev.enclosure_logical_id,
477 rg->enclosure_logical_id, 8);
478
479 if (dev->ex_dev.configuring) {
480 pr_debug("RG: ex %016llx self-configuring...\n",
481 SAS_ADDR(dev->sas_addr));
482 schedule_timeout_interruptible(5*HZ);
483 } else
484 break;
485 }
486 out:
487 kfree(rg_req);
488 kfree(rg_resp);
489 return res;
490 }
491
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)492 static void ex_assign_manuf_info(struct domain_device *dev, void
493 *_mi_resp)
494 {
495 u8 *mi_resp = _mi_resp;
496 struct sas_rphy *rphy = dev->rphy;
497 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
498
499 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
500 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
501 memcpy(edev->product_rev, mi_resp + 36,
502 SAS_EXPANDER_PRODUCT_REV_LEN);
503
504 if (mi_resp[8] & 1) {
505 memcpy(edev->component_vendor_id, mi_resp + 40,
506 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
507 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
508 edev->component_revision_id = mi_resp[50];
509 }
510 }
511
512 #define MI_REQ_SIZE 8
513 #define MI_RESP_SIZE 64
514
sas_ex_manuf_info(struct domain_device * dev)515 static int sas_ex_manuf_info(struct domain_device *dev)
516 {
517 u8 *mi_req;
518 u8 *mi_resp;
519 int res;
520
521 mi_req = alloc_smp_req(MI_REQ_SIZE);
522 if (!mi_req)
523 return -ENOMEM;
524
525 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
526 if (!mi_resp) {
527 kfree(mi_req);
528 return -ENOMEM;
529 }
530
531 mi_req[1] = SMP_REPORT_MANUF_INFO;
532
533 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
534 if (res) {
535 pr_notice("MI: ex %016llx failed:0x%x\n",
536 SAS_ADDR(dev->sas_addr), res);
537 goto out;
538 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
539 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
540 SAS_ADDR(dev->sas_addr), mi_resp[2]);
541 goto out;
542 }
543
544 ex_assign_manuf_info(dev, mi_resp);
545 out:
546 kfree(mi_req);
547 kfree(mi_resp);
548 return res;
549 }
550
551 #define PC_REQ_SIZE 44
552 #define PC_RESP_SIZE 8
553
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)554 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
555 enum phy_func phy_func,
556 struct sas_phy_linkrates *rates)
557 {
558 u8 *pc_req;
559 u8 *pc_resp;
560 int res;
561
562 pc_req = alloc_smp_req(PC_REQ_SIZE);
563 if (!pc_req)
564 return -ENOMEM;
565
566 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
567 if (!pc_resp) {
568 kfree(pc_req);
569 return -ENOMEM;
570 }
571
572 pc_req[1] = SMP_PHY_CONTROL;
573 pc_req[9] = phy_id;
574 pc_req[10] = phy_func;
575 if (rates) {
576 pc_req[32] = rates->minimum_linkrate << 4;
577 pc_req[33] = rates->maximum_linkrate << 4;
578 }
579
580 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
581 if (res) {
582 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
583 SAS_ADDR(dev->sas_addr), phy_id, res);
584 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
585 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
586 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
587 res = pc_resp[2];
588 }
589 kfree(pc_resp);
590 kfree(pc_req);
591 return res;
592 }
593
sas_ex_disable_phy(struct domain_device * dev,int phy_id)594 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
595 {
596 struct expander_device *ex = &dev->ex_dev;
597 struct ex_phy *phy = &ex->ex_phy[phy_id];
598
599 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
600 phy->linkrate = SAS_PHY_DISABLED;
601 }
602
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)603 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
604 {
605 struct expander_device *ex = &dev->ex_dev;
606 int i;
607
608 for (i = 0; i < ex->num_phys; i++) {
609 struct ex_phy *phy = &ex->ex_phy[i];
610
611 if (phy->phy_state == PHY_VACANT ||
612 phy->phy_state == PHY_NOT_PRESENT)
613 continue;
614
615 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
616 sas_ex_disable_phy(dev, i);
617 }
618 }
619
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)620 static int sas_dev_present_in_domain(struct asd_sas_port *port,
621 u8 *sas_addr)
622 {
623 struct domain_device *dev;
624
625 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
626 return 1;
627 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
628 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
629 return 1;
630 }
631 return 0;
632 }
633
634 #define RPEL_REQ_SIZE 16
635 #define RPEL_RESP_SIZE 32
sas_smp_get_phy_events(struct sas_phy * phy)636 int sas_smp_get_phy_events(struct sas_phy *phy)
637 {
638 int res;
639 u8 *req;
640 u8 *resp;
641 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
642 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
643
644 req = alloc_smp_req(RPEL_REQ_SIZE);
645 if (!req)
646 return -ENOMEM;
647
648 resp = alloc_smp_resp(RPEL_RESP_SIZE);
649 if (!resp) {
650 kfree(req);
651 return -ENOMEM;
652 }
653
654 req[1] = SMP_REPORT_PHY_ERR_LOG;
655 req[9] = phy->number;
656
657 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
658 resp, RPEL_RESP_SIZE);
659
660 if (res)
661 goto out;
662
663 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
664 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
665 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
666 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
667
668 out:
669 kfree(req);
670 kfree(resp);
671 return res;
672
673 }
674
675 #ifdef CONFIG_SCSI_SAS_ATA
676
677 #define RPS_REQ_SIZE 16
678 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
679
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_rps_resp * rps_resp)680 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
681 struct smp_rps_resp *rps_resp)
682 {
683 int res;
684 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
685 u8 *resp = (u8 *)rps_resp;
686
687 if (!rps_req)
688 return -ENOMEM;
689
690 rps_req[1] = SMP_REPORT_PHY_SATA;
691 rps_req[9] = phy_id;
692
693 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
694 rps_resp, RPS_RESP_SIZE);
695
696 /* 0x34 is the FIS type for the D2H fis. There's a potential
697 * standards cockup here. sas-2 explicitly specifies the FIS
698 * should be encoded so that FIS type is in resp[24].
699 * However, some expanders endian reverse this. Undo the
700 * reversal here */
701 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
702 int i;
703
704 for (i = 0; i < 5; i++) {
705 int j = 24 + (i*4);
706 u8 a, b;
707 a = resp[j + 0];
708 b = resp[j + 1];
709 resp[j + 0] = resp[j + 3];
710 resp[j + 1] = resp[j + 2];
711 resp[j + 2] = b;
712 resp[j + 3] = a;
713 }
714 }
715
716 kfree(rps_req);
717 return res;
718 }
719 #endif
720
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)721 static void sas_ex_get_linkrate(struct domain_device *parent,
722 struct domain_device *child,
723 struct ex_phy *parent_phy)
724 {
725 struct expander_device *parent_ex = &parent->ex_dev;
726 struct sas_port *port;
727 int i;
728
729 child->pathways = 0;
730
731 port = parent_phy->port;
732
733 for (i = 0; i < parent_ex->num_phys; i++) {
734 struct ex_phy *phy = &parent_ex->ex_phy[i];
735
736 if (phy->phy_state == PHY_VACANT ||
737 phy->phy_state == PHY_NOT_PRESENT)
738 continue;
739
740 if (sas_phy_match_dev_addr(child, phy)) {
741 child->min_linkrate = min(parent->min_linkrate,
742 phy->linkrate);
743 child->max_linkrate = max(parent->max_linkrate,
744 phy->linkrate);
745 child->pathways++;
746 sas_port_add_phy(port, phy->phy);
747 }
748 }
749 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
750 child->pathways = min(child->pathways, parent->pathways);
751 }
752
sas_ex_add_dev(struct domain_device * parent,struct ex_phy * phy,struct domain_device * child,int phy_id)753 static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
754 struct domain_device *child, int phy_id)
755 {
756 struct sas_rphy *rphy;
757 int res;
758
759 child->dev_type = SAS_END_DEVICE;
760 rphy = sas_end_device_alloc(phy->port);
761 if (!rphy)
762 return -ENOMEM;
763
764 child->tproto = phy->attached_tproto;
765 sas_init_dev(child);
766
767 child->rphy = rphy;
768 get_device(&rphy->dev);
769 rphy->identify.phy_identifier = phy_id;
770 sas_fill_in_rphy(child, rphy);
771
772 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
773
774 res = sas_notify_lldd_dev_found(child);
775 if (res) {
776 pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
777 SAS_ADDR(child->sas_addr),
778 SAS_ADDR(parent->sas_addr), phy_id, res);
779 sas_rphy_free(child->rphy);
780 list_del(&child->disco_list_node);
781 return res;
782 }
783
784 return 0;
785 }
786
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)787 static struct domain_device *sas_ex_discover_end_dev(
788 struct domain_device *parent, int phy_id)
789 {
790 struct expander_device *parent_ex = &parent->ex_dev;
791 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
792 struct domain_device *child = NULL;
793 int res;
794
795 if (phy->attached_sata_host || phy->attached_sata_ps)
796 return NULL;
797
798 child = sas_alloc_device();
799 if (!child)
800 return NULL;
801
802 kref_get(&parent->kref);
803 child->parent = parent;
804 child->port = parent->port;
805 child->iproto = phy->attached_iproto;
806 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
807 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
808 if (!phy->port) {
809 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
810 if (unlikely(!phy->port))
811 goto out_err;
812 if (unlikely(sas_port_add(phy->port) != 0)) {
813 sas_port_free(phy->port);
814 goto out_err;
815 }
816 }
817 sas_ex_get_linkrate(parent, child, phy);
818 sas_device_set_phy(child, phy->port);
819
820 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
821 res = sas_ata_add_dev(parent, phy, child, phy_id);
822 } else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
823 res = sas_ex_add_dev(parent, phy, child, phy_id);
824 } else {
825 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
826 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
827 phy_id);
828 res = -ENODEV;
829 }
830
831 if (res)
832 goto out_free;
833
834 list_add_tail(&child->siblings, &parent_ex->children);
835 return child;
836
837 out_free:
838 sas_port_delete(phy->port);
839 out_err:
840 phy->port = NULL;
841 sas_put_device(child);
842 return NULL;
843 }
844
845 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)846 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
847 {
848 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
849 int i;
850
851 for (i = 0; i < parent->ex_dev.num_phys; i++) {
852 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
853
854 if (ephy == phy)
855 continue;
856
857 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
858 SAS_ADDR_SIZE) && ephy->port) {
859 sas_port_add_phy(ephy->port, phy->phy);
860 phy->port = ephy->port;
861 phy->phy_state = PHY_DEVICE_DISCOVERED;
862 return true;
863 }
864 }
865
866 return false;
867 }
868
sas_ex_discover_expander(struct domain_device * parent,int phy_id)869 static struct domain_device *sas_ex_discover_expander(
870 struct domain_device *parent, int phy_id)
871 {
872 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
873 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
874 struct domain_device *child = NULL;
875 struct sas_rphy *rphy;
876 struct sas_expander_device *edev;
877 struct asd_sas_port *port;
878 int res;
879
880 if (phy->routing_attr == DIRECT_ROUTING) {
881 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
882 SAS_ADDR(parent->sas_addr), phy_id,
883 SAS_ADDR(phy->attached_sas_addr),
884 phy->attached_phy_id);
885 return NULL;
886 }
887 child = sas_alloc_device();
888 if (!child)
889 return NULL;
890
891 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
892 /* FIXME: better error handling */
893 BUG_ON(sas_port_add(phy->port) != 0);
894
895
896 switch (phy->attached_dev_type) {
897 case SAS_EDGE_EXPANDER_DEVICE:
898 rphy = sas_expander_alloc(phy->port,
899 SAS_EDGE_EXPANDER_DEVICE);
900 break;
901 case SAS_FANOUT_EXPANDER_DEVICE:
902 rphy = sas_expander_alloc(phy->port,
903 SAS_FANOUT_EXPANDER_DEVICE);
904 break;
905 default:
906 rphy = NULL; /* shut gcc up */
907 BUG();
908 }
909 port = parent->port;
910 child->rphy = rphy;
911 get_device(&rphy->dev);
912 edev = rphy_to_expander_device(rphy);
913 child->dev_type = phy->attached_dev_type;
914 kref_get(&parent->kref);
915 child->parent = parent;
916 child->port = port;
917 child->iproto = phy->attached_iproto;
918 child->tproto = phy->attached_tproto;
919 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
920 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
921 sas_ex_get_linkrate(parent, child, phy);
922 edev->level = parent_ex->level + 1;
923 parent->port->disc.max_level = max(parent->port->disc.max_level,
924 edev->level);
925 sas_init_dev(child);
926 sas_fill_in_rphy(child, rphy);
927 sas_rphy_add(rphy);
928
929 spin_lock_irq(&parent->port->dev_list_lock);
930 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
931 spin_unlock_irq(&parent->port->dev_list_lock);
932
933 res = sas_discover_expander(child);
934 if (res) {
935 sas_rphy_delete(rphy);
936 spin_lock_irq(&parent->port->dev_list_lock);
937 list_del(&child->dev_list_node);
938 spin_unlock_irq(&parent->port->dev_list_lock);
939 sas_put_device(child);
940 sas_port_delete(phy->port);
941 phy->port = NULL;
942 return NULL;
943 }
944 list_add_tail(&child->siblings, &parent->ex_dev.children);
945 return child;
946 }
947
sas_ex_discover_dev(struct domain_device * dev,int phy_id)948 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
949 {
950 struct expander_device *ex = &dev->ex_dev;
951 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
952 struct domain_device *child = NULL;
953 int res = 0;
954
955 /* Phy state */
956 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
957 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
958 res = sas_ex_phy_discover(dev, phy_id);
959 if (res)
960 return res;
961 }
962
963 /* Parent and domain coherency */
964 if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
965 sas_add_parent_port(dev, phy_id);
966 return 0;
967 }
968 if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
969 sas_add_parent_port(dev, phy_id);
970 if (ex_phy->routing_attr == TABLE_ROUTING)
971 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
972 return 0;
973 }
974
975 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
976 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
977
978 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
979 if (ex_phy->routing_attr == DIRECT_ROUTING) {
980 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
981 sas_configure_routing(dev, ex_phy->attached_sas_addr);
982 }
983 return 0;
984 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
985 return 0;
986
987 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
988 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
989 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
990 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
991 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
992 ex_phy->attached_dev_type,
993 SAS_ADDR(dev->sas_addr),
994 phy_id);
995 return 0;
996 }
997
998 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
999 if (res) {
1000 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1001 SAS_ADDR(ex_phy->attached_sas_addr), res);
1002 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1003 return res;
1004 }
1005
1006 if (sas_ex_join_wide_port(dev, phy_id)) {
1007 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1008 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1009 return res;
1010 }
1011
1012 switch (ex_phy->attached_dev_type) {
1013 case SAS_END_DEVICE:
1014 case SAS_SATA_PENDING:
1015 child = sas_ex_discover_end_dev(dev, phy_id);
1016 break;
1017 case SAS_FANOUT_EXPANDER_DEVICE:
1018 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1019 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1020 SAS_ADDR(ex_phy->attached_sas_addr),
1021 ex_phy->attached_phy_id,
1022 SAS_ADDR(dev->sas_addr),
1023 phy_id);
1024 sas_ex_disable_phy(dev, phy_id);
1025 return res;
1026 } else
1027 memcpy(dev->port->disc.fanout_sas_addr,
1028 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1029 fallthrough;
1030 case SAS_EDGE_EXPANDER_DEVICE:
1031 child = sas_ex_discover_expander(dev, phy_id);
1032 break;
1033 default:
1034 break;
1035 }
1036
1037 if (!child)
1038 pr_notice("ex %016llx phy%02d failed to discover\n",
1039 SAS_ADDR(dev->sas_addr), phy_id);
1040 return res;
1041 }
1042
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1043 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1044 {
1045 struct expander_device *ex = &dev->ex_dev;
1046 int i;
1047
1048 for (i = 0; i < ex->num_phys; i++) {
1049 struct ex_phy *phy = &ex->ex_phy[i];
1050
1051 if (phy->phy_state == PHY_VACANT ||
1052 phy->phy_state == PHY_NOT_PRESENT)
1053 continue;
1054
1055 if (dev_is_expander(phy->attached_dev_type) &&
1056 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1057
1058 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1059
1060 return 1;
1061 }
1062 }
1063 return 0;
1064 }
1065
sas_check_level_subtractive_boundary(struct domain_device * dev)1066 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1067 {
1068 struct expander_device *ex = &dev->ex_dev;
1069 struct domain_device *child;
1070 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1071
1072 list_for_each_entry(child, &ex->children, siblings) {
1073 if (!dev_is_expander(child->dev_type))
1074 continue;
1075 if (sub_addr[0] == 0) {
1076 sas_find_sub_addr(child, sub_addr);
1077 continue;
1078 } else {
1079 u8 s2[SAS_ADDR_SIZE];
1080
1081 if (sas_find_sub_addr(child, s2) &&
1082 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1083
1084 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1085 SAS_ADDR(dev->sas_addr),
1086 SAS_ADDR(child->sas_addr),
1087 SAS_ADDR(s2),
1088 SAS_ADDR(sub_addr));
1089
1090 sas_ex_disable_port(child, s2);
1091 }
1092 }
1093 }
1094 return 0;
1095 }
1096 /**
1097 * sas_ex_discover_devices - discover devices attached to this expander
1098 * @dev: pointer to the expander domain device
1099 * @single: if you want to do a single phy, else set to -1;
1100 *
1101 * Configure this expander for use with its devices and register the
1102 * devices of this expander.
1103 */
sas_ex_discover_devices(struct domain_device * dev,int single)1104 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1105 {
1106 struct expander_device *ex = &dev->ex_dev;
1107 int i = 0, end = ex->num_phys;
1108 int res = 0;
1109
1110 if (0 <= single && single < end) {
1111 i = single;
1112 end = i+1;
1113 }
1114
1115 for ( ; i < end; i++) {
1116 struct ex_phy *ex_phy = &ex->ex_phy[i];
1117
1118 if (ex_phy->phy_state == PHY_VACANT ||
1119 ex_phy->phy_state == PHY_NOT_PRESENT ||
1120 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1121 continue;
1122
1123 switch (ex_phy->linkrate) {
1124 case SAS_PHY_DISABLED:
1125 case SAS_PHY_RESET_PROBLEM:
1126 case SAS_SATA_PORT_SELECTOR:
1127 continue;
1128 default:
1129 res = sas_ex_discover_dev(dev, i);
1130 if (res)
1131 break;
1132 continue;
1133 }
1134 }
1135
1136 if (!res)
1137 sas_check_level_subtractive_boundary(dev);
1138
1139 return res;
1140 }
1141
sas_check_ex_subtractive_boundary(struct domain_device * dev)1142 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1143 {
1144 struct expander_device *ex = &dev->ex_dev;
1145 int i;
1146 u8 *sub_sas_addr = NULL;
1147
1148 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1149 return 0;
1150
1151 for (i = 0; i < ex->num_phys; i++) {
1152 struct ex_phy *phy = &ex->ex_phy[i];
1153
1154 if (phy->phy_state == PHY_VACANT ||
1155 phy->phy_state == PHY_NOT_PRESENT)
1156 continue;
1157
1158 if (dev_is_expander(phy->attached_dev_type) &&
1159 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1160
1161 if (!sub_sas_addr)
1162 sub_sas_addr = &phy->attached_sas_addr[0];
1163 else if (SAS_ADDR(sub_sas_addr) !=
1164 SAS_ADDR(phy->attached_sas_addr)) {
1165
1166 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1167 SAS_ADDR(dev->sas_addr), i,
1168 SAS_ADDR(phy->attached_sas_addr),
1169 SAS_ADDR(sub_sas_addr));
1170 sas_ex_disable_phy(dev, i);
1171 }
1172 }
1173 }
1174 return 0;
1175 }
1176
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1177 static void sas_print_parent_topology_bug(struct domain_device *child,
1178 struct ex_phy *parent_phy,
1179 struct ex_phy *child_phy)
1180 {
1181 static const char *ex_type[] = {
1182 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1183 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1184 };
1185 struct domain_device *parent = child->parent;
1186
1187 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1188 ex_type[parent->dev_type],
1189 SAS_ADDR(parent->sas_addr),
1190 parent_phy->phy_id,
1191
1192 ex_type[child->dev_type],
1193 SAS_ADDR(child->sas_addr),
1194 child_phy->phy_id,
1195
1196 sas_route_char(parent, parent_phy),
1197 sas_route_char(child, child_phy));
1198 }
1199
sas_eeds_valid(struct domain_device * parent,struct domain_device * child)1200 static bool sas_eeds_valid(struct domain_device *parent,
1201 struct domain_device *child)
1202 {
1203 struct sas_discovery *disc = &parent->port->disc;
1204
1205 return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1206 SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1207 (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1208 SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1209 }
1210
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1211 static int sas_check_eeds(struct domain_device *child,
1212 struct ex_phy *parent_phy,
1213 struct ex_phy *child_phy)
1214 {
1215 int res = 0;
1216 struct domain_device *parent = child->parent;
1217 struct sas_discovery *disc = &parent->port->disc;
1218
1219 if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1220 res = -ENODEV;
1221 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1222 SAS_ADDR(parent->sas_addr),
1223 parent_phy->phy_id,
1224 SAS_ADDR(child->sas_addr),
1225 child_phy->phy_id,
1226 SAS_ADDR(disc->fanout_sas_addr));
1227 } else if (SAS_ADDR(disc->eeds_a) == 0) {
1228 memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1229 memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1230 } else if (!sas_eeds_valid(parent, child)) {
1231 res = -ENODEV;
1232 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1233 SAS_ADDR(parent->sas_addr),
1234 parent_phy->phy_id,
1235 SAS_ADDR(child->sas_addr),
1236 child_phy->phy_id);
1237 }
1238
1239 return res;
1240 }
1241
sas_check_edge_expander_topo(struct domain_device * child,struct ex_phy * parent_phy)1242 static int sas_check_edge_expander_topo(struct domain_device *child,
1243 struct ex_phy *parent_phy)
1244 {
1245 struct expander_device *child_ex = &child->ex_dev;
1246 struct expander_device *parent_ex = &child->parent->ex_dev;
1247 struct ex_phy *child_phy;
1248
1249 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1250
1251 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1252 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1253 child_phy->routing_attr != TABLE_ROUTING)
1254 goto error;
1255 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1256 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1257 return sas_check_eeds(child, parent_phy, child_phy);
1258 else if (child_phy->routing_attr != TABLE_ROUTING)
1259 goto error;
1260 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1261 if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1262 (child_phy->routing_attr != TABLE_ROUTING ||
1263 !child_ex->t2t_supp || !parent_ex->t2t_supp))
1264 goto error;
1265 }
1266
1267 return 0;
1268 error:
1269 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1270 return -ENODEV;
1271 }
1272
sas_check_fanout_expander_topo(struct domain_device * child,struct ex_phy * parent_phy)1273 static int sas_check_fanout_expander_topo(struct domain_device *child,
1274 struct ex_phy *parent_phy)
1275 {
1276 struct expander_device *child_ex = &child->ex_dev;
1277 struct ex_phy *child_phy;
1278
1279 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1280
1281 if (parent_phy->routing_attr == TABLE_ROUTING &&
1282 child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1283 return 0;
1284
1285 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1286
1287 return -ENODEV;
1288 }
1289
sas_check_parent_topology(struct domain_device * child)1290 static int sas_check_parent_topology(struct domain_device *child)
1291 {
1292 struct expander_device *parent_ex;
1293 int i;
1294 int res = 0;
1295
1296 if (!child->parent)
1297 return 0;
1298
1299 if (!dev_is_expander(child->parent->dev_type))
1300 return 0;
1301
1302 parent_ex = &child->parent->ex_dev;
1303
1304 for (i = 0; i < parent_ex->num_phys; i++) {
1305 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1306
1307 if (parent_phy->phy_state == PHY_VACANT ||
1308 parent_phy->phy_state == PHY_NOT_PRESENT)
1309 continue;
1310
1311 if (!sas_phy_match_dev_addr(child, parent_phy))
1312 continue;
1313
1314 switch (child->parent->dev_type) {
1315 case SAS_EDGE_EXPANDER_DEVICE:
1316 if (sas_check_edge_expander_topo(child, parent_phy))
1317 res = -ENODEV;
1318 break;
1319 case SAS_FANOUT_EXPANDER_DEVICE:
1320 if (sas_check_fanout_expander_topo(child, parent_phy))
1321 res = -ENODEV;
1322 break;
1323 default:
1324 break;
1325 }
1326 }
1327
1328 return res;
1329 }
1330
1331 #define RRI_REQ_SIZE 16
1332 #define RRI_RESP_SIZE 44
1333
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1334 static int sas_configure_present(struct domain_device *dev, int phy_id,
1335 u8 *sas_addr, int *index, int *present)
1336 {
1337 int i, res = 0;
1338 struct expander_device *ex = &dev->ex_dev;
1339 struct ex_phy *phy = &ex->ex_phy[phy_id];
1340 u8 *rri_req;
1341 u8 *rri_resp;
1342
1343 *present = 0;
1344 *index = 0;
1345
1346 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1347 if (!rri_req)
1348 return -ENOMEM;
1349
1350 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1351 if (!rri_resp) {
1352 kfree(rri_req);
1353 return -ENOMEM;
1354 }
1355
1356 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1357 rri_req[9] = phy_id;
1358
1359 for (i = 0; i < ex->max_route_indexes ; i++) {
1360 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1361 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1362 RRI_RESP_SIZE);
1363 if (res)
1364 goto out;
1365 res = rri_resp[2];
1366 if (res == SMP_RESP_NO_INDEX) {
1367 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1368 SAS_ADDR(dev->sas_addr), phy_id, i);
1369 goto out;
1370 } else if (res != SMP_RESP_FUNC_ACC) {
1371 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1372 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1373 i, res);
1374 goto out;
1375 }
1376 if (SAS_ADDR(sas_addr) != 0) {
1377 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1378 *index = i;
1379 if ((rri_resp[12] & 0x80) == 0x80)
1380 *present = 0;
1381 else
1382 *present = 1;
1383 goto out;
1384 } else if (SAS_ADDR(rri_resp+16) == 0) {
1385 *index = i;
1386 *present = 0;
1387 goto out;
1388 }
1389 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1390 phy->last_da_index < i) {
1391 phy->last_da_index = i;
1392 *index = i;
1393 *present = 0;
1394 goto out;
1395 }
1396 }
1397 res = -1;
1398 out:
1399 kfree(rri_req);
1400 kfree(rri_resp);
1401 return res;
1402 }
1403
1404 #define CRI_REQ_SIZE 44
1405 #define CRI_RESP_SIZE 8
1406
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1407 static int sas_configure_set(struct domain_device *dev, int phy_id,
1408 u8 *sas_addr, int index, int include)
1409 {
1410 int res;
1411 u8 *cri_req;
1412 u8 *cri_resp;
1413
1414 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1415 if (!cri_req)
1416 return -ENOMEM;
1417
1418 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1419 if (!cri_resp) {
1420 kfree(cri_req);
1421 return -ENOMEM;
1422 }
1423
1424 cri_req[1] = SMP_CONF_ROUTE_INFO;
1425 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1426 cri_req[9] = phy_id;
1427 if (SAS_ADDR(sas_addr) == 0 || !include)
1428 cri_req[12] |= 0x80;
1429 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1430
1431 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1432 CRI_RESP_SIZE);
1433 if (res)
1434 goto out;
1435 res = cri_resp[2];
1436 if (res == SMP_RESP_NO_INDEX) {
1437 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1438 SAS_ADDR(dev->sas_addr), phy_id, index);
1439 }
1440 out:
1441 kfree(cri_req);
1442 kfree(cri_resp);
1443 return res;
1444 }
1445
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1446 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1447 u8 *sas_addr, int include)
1448 {
1449 int index;
1450 int present;
1451 int res;
1452
1453 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1454 if (res)
1455 return res;
1456 if (include ^ present)
1457 return sas_configure_set(dev, phy_id, sas_addr, index,
1458 include);
1459
1460 return res;
1461 }
1462
1463 /**
1464 * sas_configure_parent - configure routing table of parent
1465 * @parent: parent expander
1466 * @child: child expander
1467 * @sas_addr: SAS port identifier of device directly attached to child
1468 * @include: whether or not to include @child in the expander routing table
1469 */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1470 static int sas_configure_parent(struct domain_device *parent,
1471 struct domain_device *child,
1472 u8 *sas_addr, int include)
1473 {
1474 struct expander_device *ex_parent = &parent->ex_dev;
1475 int res = 0;
1476 int i;
1477
1478 if (parent->parent) {
1479 res = sas_configure_parent(parent->parent, parent, sas_addr,
1480 include);
1481 if (res)
1482 return res;
1483 }
1484
1485 if (ex_parent->conf_route_table == 0) {
1486 pr_debug("ex %016llx has self-configuring routing table\n",
1487 SAS_ADDR(parent->sas_addr));
1488 return 0;
1489 }
1490
1491 for (i = 0; i < ex_parent->num_phys; i++) {
1492 struct ex_phy *phy = &ex_parent->ex_phy[i];
1493
1494 if ((phy->routing_attr == TABLE_ROUTING) &&
1495 sas_phy_match_dev_addr(child, phy)) {
1496 res = sas_configure_phy(parent, i, sas_addr, include);
1497 if (res)
1498 return res;
1499 }
1500 }
1501
1502 return res;
1503 }
1504
1505 /**
1506 * sas_configure_routing - configure routing
1507 * @dev: expander device
1508 * @sas_addr: port identifier of device directly attached to the expander device
1509 */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1510 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1511 {
1512 if (dev->parent)
1513 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1514 return 0;
1515 }
1516
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1517 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1518 {
1519 if (dev->parent)
1520 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1521 return 0;
1522 }
1523
1524 /**
1525 * sas_discover_expander - expander discovery
1526 * @dev: pointer to expander domain device
1527 *
1528 * See comment in sas_discover_sata().
1529 */
sas_discover_expander(struct domain_device * dev)1530 static int sas_discover_expander(struct domain_device *dev)
1531 {
1532 int res;
1533
1534 res = sas_notify_lldd_dev_found(dev);
1535 if (res)
1536 return res;
1537
1538 res = sas_ex_general(dev);
1539 if (res)
1540 goto out_err;
1541 res = sas_ex_manuf_info(dev);
1542 if (res)
1543 goto out_err;
1544
1545 res = sas_expander_discover(dev);
1546 if (res) {
1547 pr_warn("expander %016llx discovery failed(0x%x)\n",
1548 SAS_ADDR(dev->sas_addr), res);
1549 goto out_err;
1550 }
1551
1552 sas_check_ex_subtractive_boundary(dev);
1553 res = sas_check_parent_topology(dev);
1554 if (res)
1555 goto out_err;
1556 return 0;
1557 out_err:
1558 sas_notify_lldd_dev_gone(dev);
1559 return res;
1560 }
1561
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1562 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1563 {
1564 int res = 0;
1565 struct domain_device *dev;
1566
1567 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1568 if (dev_is_expander(dev->dev_type)) {
1569 struct sas_expander_device *ex =
1570 rphy_to_expander_device(dev->rphy);
1571
1572 if (level == ex->level)
1573 res = sas_ex_discover_devices(dev, -1);
1574 else if (level > 0)
1575 res = sas_ex_discover_devices(port->port_dev, -1);
1576
1577 }
1578 }
1579
1580 return res;
1581 }
1582
sas_ex_bfs_disc(struct asd_sas_port * port)1583 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1584 {
1585 int res;
1586 int level;
1587
1588 do {
1589 level = port->disc.max_level;
1590 res = sas_ex_level_discovery(port, level);
1591 mb();
1592 } while (level < port->disc.max_level);
1593
1594 return res;
1595 }
1596
sas_discover_root_expander(struct domain_device * dev)1597 int sas_discover_root_expander(struct domain_device *dev)
1598 {
1599 int res;
1600 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1601
1602 res = sas_rphy_add(dev->rphy);
1603 if (res)
1604 goto out_err;
1605
1606 ex->level = dev->port->disc.max_level; /* 0 */
1607 res = sas_discover_expander(dev);
1608 if (res)
1609 goto out_err2;
1610
1611 sas_ex_bfs_disc(dev->port);
1612
1613 return res;
1614
1615 out_err2:
1616 sas_rphy_remove(dev->rphy);
1617 out_err:
1618 return res;
1619 }
1620
1621 /* ---------- Domain revalidation ---------- */
1622
sas_get_sas_addr_and_dev_type(struct smp_disc_resp * disc_resp,u8 * sas_addr,enum sas_device_type * type)1623 static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp *disc_resp,
1624 u8 *sas_addr,
1625 enum sas_device_type *type)
1626 {
1627 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, SAS_ADDR_SIZE);
1628 *type = to_dev_type(&disc_resp->disc);
1629 if (*type == SAS_PHY_UNUSED)
1630 memset(sas_addr, 0, SAS_ADDR_SIZE);
1631 }
1632
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_disc_resp * disc_resp)1633 static int sas_get_phy_discover(struct domain_device *dev,
1634 int phy_id, struct smp_disc_resp *disc_resp)
1635 {
1636 int res;
1637 u8 *disc_req;
1638
1639 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1640 if (!disc_req)
1641 return -ENOMEM;
1642
1643 disc_req[1] = SMP_DISCOVER;
1644 disc_req[9] = phy_id;
1645
1646 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1647 disc_resp, DISCOVER_RESP_SIZE);
1648 if (res)
1649 goto out;
1650 if (disc_resp->result != SMP_RESP_FUNC_ACC)
1651 res = disc_resp->result;
1652 out:
1653 kfree(disc_req);
1654 return res;
1655 }
1656
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1657 static int sas_get_phy_change_count(struct domain_device *dev,
1658 int phy_id, int *pcc)
1659 {
1660 int res;
1661 struct smp_disc_resp *disc_resp;
1662
1663 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1664 if (!disc_resp)
1665 return -ENOMEM;
1666
1667 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1668 if (!res)
1669 *pcc = disc_resp->disc.change_count;
1670
1671 kfree(disc_resp);
1672 return res;
1673 }
1674
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1675 int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1676 u8 *sas_addr, enum sas_device_type *type)
1677 {
1678 int res;
1679 struct smp_disc_resp *disc_resp;
1680
1681 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1682 if (!disc_resp)
1683 return -ENOMEM;
1684
1685 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1686 if (res == 0)
1687 sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, type);
1688 kfree(disc_resp);
1689 return res;
1690 }
1691
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1692 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1693 int from_phy, bool update)
1694 {
1695 struct expander_device *ex = &dev->ex_dev;
1696 int res = 0;
1697 int i;
1698
1699 for (i = from_phy; i < ex->num_phys; i++) {
1700 int phy_change_count = 0;
1701
1702 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1703 switch (res) {
1704 case SMP_RESP_PHY_VACANT:
1705 case SMP_RESP_NO_PHY:
1706 continue;
1707 case SMP_RESP_FUNC_ACC:
1708 break;
1709 default:
1710 return res;
1711 }
1712
1713 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1714 if (update)
1715 ex->ex_phy[i].phy_change_count =
1716 phy_change_count;
1717 *phy_id = i;
1718 return 0;
1719 }
1720 }
1721 return 0;
1722 }
1723
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1724 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1725 {
1726 int res;
1727 u8 *rg_req;
1728 struct smp_rg_resp *rg_resp;
1729
1730 rg_req = alloc_smp_req(RG_REQ_SIZE);
1731 if (!rg_req)
1732 return -ENOMEM;
1733
1734 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1735 if (!rg_resp) {
1736 kfree(rg_req);
1737 return -ENOMEM;
1738 }
1739
1740 rg_req[1] = SMP_REPORT_GENERAL;
1741
1742 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1743 RG_RESP_SIZE);
1744 if (res)
1745 goto out;
1746 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1747 res = rg_resp->result;
1748 goto out;
1749 }
1750
1751 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1752 out:
1753 kfree(rg_resp);
1754 kfree(rg_req);
1755 return res;
1756 }
1757 /**
1758 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1759 * @dev:domain device to be detect.
1760 * @src_dev: the device which originated BROADCAST(CHANGE).
1761 *
1762 * Add self-configuration expander support. Suppose two expander cascading,
1763 * when the first level expander is self-configuring, hotplug the disks in
1764 * second level expander, BROADCAST(CHANGE) will not only be originated
1765 * in the second level expander, but also be originated in the first level
1766 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1767 * expander changed count in two level expanders will all increment at least
1768 * once, but the phy which chang count has changed is the source device which
1769 * we concerned.
1770 */
1771
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1772 static int sas_find_bcast_dev(struct domain_device *dev,
1773 struct domain_device **src_dev)
1774 {
1775 struct expander_device *ex = &dev->ex_dev;
1776 int ex_change_count = -1;
1777 int phy_id = -1;
1778 int res;
1779 struct domain_device *ch;
1780
1781 res = sas_get_ex_change_count(dev, &ex_change_count);
1782 if (res)
1783 goto out;
1784 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1785 /* Just detect if this expander phys phy change count changed,
1786 * in order to determine if this expander originate BROADCAST,
1787 * and do not update phy change count field in our structure.
1788 */
1789 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1790 if (phy_id != -1) {
1791 *src_dev = dev;
1792 ex->ex_change_count = ex_change_count;
1793 pr_info("ex %016llx phy%02d change count has changed\n",
1794 SAS_ADDR(dev->sas_addr), phy_id);
1795 return res;
1796 } else
1797 pr_info("ex %016llx phys DID NOT change\n",
1798 SAS_ADDR(dev->sas_addr));
1799 }
1800 list_for_each_entry(ch, &ex->children, siblings) {
1801 if (dev_is_expander(ch->dev_type)) {
1802 res = sas_find_bcast_dev(ch, src_dev);
1803 if (*src_dev)
1804 return res;
1805 }
1806 }
1807 out:
1808 return res;
1809 }
1810
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1811 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1812 {
1813 struct expander_device *ex = &dev->ex_dev;
1814 struct domain_device *child, *n;
1815
1816 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1817 set_bit(SAS_DEV_GONE, &child->state);
1818 if (dev_is_expander(child->dev_type))
1819 sas_unregister_ex_tree(port, child);
1820 else
1821 sas_unregister_dev(port, child);
1822 }
1823 sas_unregister_dev(port, dev);
1824 }
1825
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1826 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1827 int phy_id, bool last)
1828 {
1829 struct expander_device *ex_dev = &parent->ex_dev;
1830 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1831 struct domain_device *child, *n, *found = NULL;
1832 if (last) {
1833 list_for_each_entry_safe(child, n,
1834 &ex_dev->children, siblings) {
1835 if (sas_phy_match_dev_addr(child, phy)) {
1836 set_bit(SAS_DEV_GONE, &child->state);
1837 if (dev_is_expander(child->dev_type))
1838 sas_unregister_ex_tree(parent->port, child);
1839 else
1840 sas_unregister_dev(parent->port, child);
1841 found = child;
1842 break;
1843 }
1844 }
1845 sas_disable_routing(parent, phy->attached_sas_addr);
1846 }
1847 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1848 if (phy->port) {
1849 sas_port_delete_phy(phy->port, phy->phy);
1850 sas_device_set_phy(found, phy->port);
1851 if (phy->port->num_phys == 0)
1852 list_add_tail(&phy->port->del_list,
1853 &parent->port->sas_port_del_list);
1854 phy->port = NULL;
1855 }
1856 }
1857
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1858 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1859 const int level)
1860 {
1861 struct expander_device *ex_root = &root->ex_dev;
1862 struct domain_device *child;
1863 int res = 0;
1864
1865 list_for_each_entry(child, &ex_root->children, siblings) {
1866 if (dev_is_expander(child->dev_type)) {
1867 struct sas_expander_device *ex =
1868 rphy_to_expander_device(child->rphy);
1869
1870 if (level > ex->level)
1871 res = sas_discover_bfs_by_root_level(child,
1872 level);
1873 else if (level == ex->level)
1874 res = sas_ex_discover_devices(child, -1);
1875 }
1876 }
1877 return res;
1878 }
1879
sas_discover_bfs_by_root(struct domain_device * dev)1880 static int sas_discover_bfs_by_root(struct domain_device *dev)
1881 {
1882 int res;
1883 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1884 int level = ex->level+1;
1885
1886 res = sas_ex_discover_devices(dev, -1);
1887 if (res)
1888 goto out;
1889 do {
1890 res = sas_discover_bfs_by_root_level(dev, level);
1891 mb();
1892 level += 1;
1893 } while (level <= dev->port->disc.max_level);
1894 out:
1895 return res;
1896 }
1897
sas_discover_new(struct domain_device * dev,int phy_id)1898 static int sas_discover_new(struct domain_device *dev, int phy_id)
1899 {
1900 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1901 struct domain_device *child;
1902 int res;
1903
1904 pr_debug("ex %016llx phy%02d new device attached\n",
1905 SAS_ADDR(dev->sas_addr), phy_id);
1906 res = sas_ex_phy_discover(dev, phy_id);
1907 if (res)
1908 return res;
1909
1910 if (sas_ex_join_wide_port(dev, phy_id))
1911 return 0;
1912
1913 res = sas_ex_discover_devices(dev, phy_id);
1914 if (res)
1915 return res;
1916 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1917 if (sas_phy_match_dev_addr(child, ex_phy)) {
1918 if (dev_is_expander(child->dev_type))
1919 res = sas_discover_bfs_by_root(child);
1920 break;
1921 }
1922 }
1923 return res;
1924 }
1925
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)1926 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1927 {
1928 if (old == new)
1929 return true;
1930
1931 /* treat device directed resets as flutter, if we went
1932 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1933 */
1934 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1935 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1936 return true;
1937
1938 return false;
1939 }
1940
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last,int sibling)1941 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1942 bool last, int sibling)
1943 {
1944 struct expander_device *ex = &dev->ex_dev;
1945 struct ex_phy *phy = &ex->ex_phy[phy_id];
1946 enum sas_device_type type = SAS_PHY_UNUSED;
1947 struct smp_disc_resp *disc_resp;
1948 u8 sas_addr[SAS_ADDR_SIZE];
1949 char msg[80] = "";
1950 int res;
1951
1952 if (!last)
1953 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1954
1955 pr_debug("ex %016llx rediscovering phy%02d%s\n",
1956 SAS_ADDR(dev->sas_addr), phy_id, msg);
1957
1958 memset(sas_addr, 0, SAS_ADDR_SIZE);
1959 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1960 if (!disc_resp)
1961 return -ENOMEM;
1962
1963 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1964 switch (res) {
1965 case SMP_RESP_NO_PHY:
1966 phy->phy_state = PHY_NOT_PRESENT;
1967 sas_unregister_devs_sas_addr(dev, phy_id, last);
1968 goto out_free_resp;
1969 case SMP_RESP_PHY_VACANT:
1970 phy->phy_state = PHY_VACANT;
1971 sas_unregister_devs_sas_addr(dev, phy_id, last);
1972 goto out_free_resp;
1973 case SMP_RESP_FUNC_ACC:
1974 break;
1975 case -ECOMM:
1976 break;
1977 default:
1978 goto out_free_resp;
1979 }
1980
1981 if (res == 0)
1982 sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, &type);
1983
1984 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1985 phy->phy_state = PHY_EMPTY;
1986 sas_unregister_devs_sas_addr(dev, phy_id, last);
1987 /*
1988 * Even though the PHY is empty, for convenience we update
1989 * the PHY info, like negotiated linkrate.
1990 */
1991 if (res == 0)
1992 sas_set_ex_phy(dev, phy_id, disc_resp);
1993 goto out_free_resp;
1994 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1995 dev_type_flutter(type, phy->attached_dev_type)) {
1996 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1997 char *action = "";
1998
1999 sas_ex_phy_discover(dev, phy_id);
2000
2001 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2002 action = ", needs recovery";
2003 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2004 SAS_ADDR(dev->sas_addr), phy_id, action);
2005 goto out_free_resp;
2006 }
2007
2008 /* we always have to delete the old device when we went here */
2009 pr_info("ex %016llx phy%02d replace %016llx\n",
2010 SAS_ADDR(dev->sas_addr), phy_id,
2011 SAS_ADDR(phy->attached_sas_addr));
2012 sas_unregister_devs_sas_addr(dev, phy_id, last);
2013
2014 res = sas_discover_new(dev, phy_id);
2015 out_free_resp:
2016 kfree(disc_resp);
2017 return res;
2018 }
2019
2020 /**
2021 * sas_rediscover - revalidate the domain.
2022 * @dev:domain device to be detect.
2023 * @phy_id: the phy id will be detected.
2024 *
2025 * NOTE: this process _must_ quit (return) as soon as any connection
2026 * errors are encountered. Connection recovery is done elsewhere.
2027 * Discover process only interrogates devices in order to discover the
2028 * domain.For plugging out, we un-register the device only when it is
2029 * the last phy in the port, for other phys in this port, we just delete it
2030 * from the port.For inserting, we do discovery when it is the
2031 * first phy,for other phys in this port, we add it to the port to
2032 * forming the wide-port.
2033 */
sas_rediscover(struct domain_device * dev,const int phy_id)2034 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2035 {
2036 struct expander_device *ex = &dev->ex_dev;
2037 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2038 int res = 0;
2039 int i;
2040 bool last = true; /* is this the last phy of the port */
2041
2042 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2043 SAS_ADDR(dev->sas_addr), phy_id);
2044
2045 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2046 for (i = 0; i < ex->num_phys; i++) {
2047 struct ex_phy *phy = &ex->ex_phy[i];
2048
2049 if (i == phy_id)
2050 continue;
2051 if (sas_phy_addr_match(phy, changed_phy)) {
2052 last = false;
2053 break;
2054 }
2055 }
2056 res = sas_rediscover_dev(dev, phy_id, last, i);
2057 } else
2058 res = sas_discover_new(dev, phy_id);
2059 return res;
2060 }
2061
2062 /**
2063 * sas_ex_revalidate_domain - revalidate the domain
2064 * @port_dev: port domain device.
2065 *
2066 * NOTE: this process _must_ quit (return) as soon as any connection
2067 * errors are encountered. Connection recovery is done elsewhere.
2068 * Discover process only interrogates devices in order to discover the
2069 * domain.
2070 */
sas_ex_revalidate_domain(struct domain_device * port_dev)2071 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2072 {
2073 int res;
2074 struct domain_device *dev = NULL;
2075
2076 res = sas_find_bcast_dev(port_dev, &dev);
2077 if (res == 0 && dev) {
2078 struct expander_device *ex = &dev->ex_dev;
2079 int i = 0, phy_id;
2080
2081 do {
2082 phy_id = -1;
2083 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2084 if (phy_id == -1)
2085 break;
2086 res = sas_rediscover(dev, phy_id);
2087 i = phy_id + 1;
2088 } while (i < ex->num_phys);
2089 }
2090 return res;
2091 }
2092
sas_find_attached_phy_id(struct expander_device * ex_dev,struct domain_device * dev)2093 int sas_find_attached_phy_id(struct expander_device *ex_dev,
2094 struct domain_device *dev)
2095 {
2096 struct ex_phy *phy;
2097 int phy_id;
2098
2099 for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2100 phy = &ex_dev->ex_phy[phy_id];
2101 if (sas_phy_match_dev_addr(dev, phy))
2102 return phy_id;
2103 }
2104
2105 return -ENODEV;
2106 }
2107 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2108
sas_smp_handler(struct bsg_job * job,struct Scsi_Host * shost,struct sas_rphy * rphy)2109 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2110 struct sas_rphy *rphy)
2111 {
2112 struct domain_device *dev;
2113 unsigned int rcvlen = 0;
2114 int ret = -EINVAL;
2115
2116 /* no rphy means no smp target support (ie aic94xx host) */
2117 if (!rphy)
2118 return sas_smp_host_handler(job, shost);
2119
2120 switch (rphy->identify.device_type) {
2121 case SAS_EDGE_EXPANDER_DEVICE:
2122 case SAS_FANOUT_EXPANDER_DEVICE:
2123 break;
2124 default:
2125 pr_err("%s: can we send a smp request to a device?\n",
2126 __func__);
2127 goto out;
2128 }
2129
2130 dev = sas_find_dev_by_rphy(rphy);
2131 if (!dev) {
2132 pr_err("%s: fail to find a domain_device?\n", __func__);
2133 goto out;
2134 }
2135
2136 /* do we need to support multiple segments? */
2137 if (job->request_payload.sg_cnt > 1 ||
2138 job->reply_payload.sg_cnt > 1) {
2139 pr_info("%s: multiple segments req %u, rsp %u\n",
2140 __func__, job->request_payload.payload_len,
2141 job->reply_payload.payload_len);
2142 goto out;
2143 }
2144
2145 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2146 job->reply_payload.sg_list);
2147 if (ret >= 0) {
2148 /* bsg_job_done() requires the length received */
2149 rcvlen = job->reply_payload.payload_len - ret;
2150 ret = 0;
2151 }
2152
2153 out:
2154 bsg_job_done(job, ret, rcvlen);
2155 }
2156