1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * quatech_daqp_cs.c
4 * Quatech DAQP PCMCIA data capture cards COMEDI client driver
5 * Copyright (C) 2000, 2003 Brent Baccala <baccala@freesoft.org>
6 * The DAQP interface code in this file is released into the public domain.
7 *
8 * COMEDI - Linux Control and Measurement Device Interface
9 * Copyright (C) 1998 David A. Schleef <ds@schleef.org>
10 * https://www.comedi.org/
11 *
12 * Documentation for the DAQP PCMCIA cards can be found on Quatech's site:
13 * ftp://ftp.quatech.com/Manuals/daqp-208.pdf
14 *
15 * This manual is for both the DAQP-208 and the DAQP-308.
16 *
17 * What works:
18 * - A/D conversion
19 * - 8 channels
20 * - 4 gain ranges
21 * - ground ref or differential
22 * - single-shot and timed both supported
23 * - D/A conversion, single-shot
24 * - digital I/O
25 *
26 * What doesn't:
27 * - any kind of triggering - external or D/A channel 1
28 * - the card's optional expansion board
29 * - the card's timer (for anything other than A/D conversion)
30 * - D/A update modes other than immediate (i.e, timed)
31 * - fancier timing modes
32 * - setting card's FIFO buffer thresholds to anything but default
33 */
34
35 /*
36 * Driver: quatech_daqp_cs
37 * Description: Quatech DAQP PCMCIA data capture cards
38 * Devices: [Quatech] DAQP-208 (daqp), DAQP-308
39 * Author: Brent Baccala <baccala@freesoft.org>
40 * Status: works
41 */
42
43 #include <linux/module.h>
44 #include <linux/comedi/comedi_pcmcia.h>
45
46 /*
47 * Register I/O map
48 *
49 * The D/A and timer registers can be accessed with 16-bit or 8-bit I/O
50 * instructions. All other registers can only use 8-bit instructions.
51 *
52 * The FIFO and scanlist registers require two 8-bit instructions to
53 * access the 16-bit data. Data is transferred LSB then MSB.
54 */
55 #define DAQP_AI_FIFO_REG 0x00
56
57 #define DAQP_SCANLIST_REG 0x01
58 #define DAQP_SCANLIST_DIFFERENTIAL BIT(14)
59 #define DAQP_SCANLIST_GAIN(x) (((x) & 0x3) << 12)
60 #define DAQP_SCANLIST_CHANNEL(x) (((x) & 0xf) << 8)
61 #define DAQP_SCANLIST_START BIT(7)
62 #define DAQP_SCANLIST_EXT_GAIN(x) (((x) & 0x3) << 4)
63 #define DAQP_SCANLIST_EXT_CHANNEL(x) (((x) & 0xf) << 0)
64
65 #define DAQP_CTRL_REG 0x02
66 #define DAQP_CTRL_PACER_CLK(x) (((x) & 0x3) << 6)
67 #define DAQP_CTRL_PACER_CLK_EXT DAQP_CTRL_PACER_CLK(0)
68 #define DAQP_CTRL_PACER_CLK_5MHZ DAQP_CTRL_PACER_CLK(1)
69 #define DAQP_CTRL_PACER_CLK_1MHZ DAQP_CTRL_PACER_CLK(2)
70 #define DAQP_CTRL_PACER_CLK_100KHZ DAQP_CTRL_PACER_CLK(3)
71 #define DAQP_CTRL_EXPANSION BIT(5)
72 #define DAQP_CTRL_EOS_INT_ENA BIT(4)
73 #define DAQP_CTRL_FIFO_INT_ENA BIT(3)
74 #define DAQP_CTRL_TRIG_MODE BIT(2) /* 0=one-shot; 1=continuous */
75 #define DAQP_CTRL_TRIG_SRC BIT(1) /* 0=internal; 1=external */
76 #define DAQP_CTRL_TRIG_EDGE BIT(0) /* 0=rising; 1=falling */
77
78 #define DAQP_STATUS_REG 0x02
79 #define DAQP_STATUS_IDLE BIT(7)
80 #define DAQP_STATUS_RUNNING BIT(6)
81 #define DAQP_STATUS_DATA_LOST BIT(5)
82 #define DAQP_STATUS_END_OF_SCAN BIT(4)
83 #define DAQP_STATUS_FIFO_THRESHOLD BIT(3)
84 #define DAQP_STATUS_FIFO_FULL BIT(2)
85 #define DAQP_STATUS_FIFO_NEARFULL BIT(1)
86 #define DAQP_STATUS_FIFO_EMPTY BIT(0)
87 /* these bits clear when the status register is read */
88 #define DAQP_STATUS_EVENTS (DAQP_STATUS_DATA_LOST | \
89 DAQP_STATUS_END_OF_SCAN | \
90 DAQP_STATUS_FIFO_THRESHOLD)
91
92 #define DAQP_DI_REG 0x03
93 #define DAQP_DO_REG 0x03
94
95 #define DAQP_PACER_LOW_REG 0x04
96 #define DAQP_PACER_MID_REG 0x05
97 #define DAQP_PACER_HIGH_REG 0x06
98
99 #define DAQP_CMD_REG 0x07
100 /* the monostable bits are self-clearing after the function is complete */
101 #define DAQP_CMD_ARM BIT(7) /* monostable */
102 #define DAQP_CMD_RSTF BIT(6) /* monostable */
103 #define DAQP_CMD_RSTQ BIT(5) /* monostable */
104 #define DAQP_CMD_STOP BIT(4) /* monostable */
105 #define DAQP_CMD_LATCH BIT(3) /* monostable */
106 #define DAQP_CMD_SCANRATE(x) (((x) & 0x3) << 1)
107 #define DAQP_CMD_SCANRATE_100KHZ DAQP_CMD_SCANRATE(0)
108 #define DAQP_CMD_SCANRATE_50KHZ DAQP_CMD_SCANRATE(1)
109 #define DAQP_CMD_SCANRATE_25KHZ DAQP_CMD_SCANRATE(2)
110 #define DAQP_CMD_FIFO_DATA BIT(0)
111
112 #define DAQP_AO_REG 0x08 /* and 0x09 (16-bit) */
113
114 #define DAQP_TIMER_REG 0x0a /* and 0x0b (16-bit) */
115
116 #define DAQP_AUX_REG 0x0f
117 /* Auxiliary Control register bits (write) */
118 #define DAQP_AUX_EXT_ANALOG_TRIG BIT(7)
119 #define DAQP_AUX_PRETRIG BIT(6)
120 #define DAQP_AUX_TIMER_INT_ENA BIT(5)
121 #define DAQP_AUX_TIMER_MODE(x) (((x) & 0x3) << 3)
122 #define DAQP_AUX_TIMER_MODE_RELOAD DAQP_AUX_TIMER_MODE(0)
123 #define DAQP_AUX_TIMER_MODE_PAUSE DAQP_AUX_TIMER_MODE(1)
124 #define DAQP_AUX_TIMER_MODE_GO DAQP_AUX_TIMER_MODE(2)
125 #define DAQP_AUX_TIMER_MODE_EXT DAQP_AUX_TIMER_MODE(3)
126 #define DAQP_AUX_TIMER_CLK_SRC_EXT BIT(2)
127 #define DAQP_AUX_DA_UPDATE(x) (((x) & 0x3) << 0)
128 #define DAQP_AUX_DA_UPDATE_DIRECT DAQP_AUX_DA_UPDATE(0)
129 #define DAQP_AUX_DA_UPDATE_OVERFLOW DAQP_AUX_DA_UPDATE(1)
130 #define DAQP_AUX_DA_UPDATE_EXTERNAL DAQP_AUX_DA_UPDATE(2)
131 #define DAQP_AUX_DA_UPDATE_PACER DAQP_AUX_DA_UPDATE(3)
132 /* Auxiliary Status register bits (read) */
133 #define DAQP_AUX_RUNNING BIT(7)
134 #define DAQP_AUX_TRIGGERED BIT(6)
135 #define DAQP_AUX_DA_BUFFER BIT(5)
136 #define DAQP_AUX_TIMER_OVERFLOW BIT(4)
137 #define DAQP_AUX_CONVERSION BIT(3)
138 #define DAQP_AUX_DATA_LOST BIT(2)
139 #define DAQP_AUX_FIFO_NEARFULL BIT(1)
140 #define DAQP_AUX_FIFO_EMPTY BIT(0)
141
142 #define DAQP_FIFO_SIZE 4096
143
144 #define DAQP_MAX_TIMER_SPEED 10000 /* 100 kHz in nanoseconds */
145
146 struct daqp_private {
147 unsigned int pacer_div;
148 int stop;
149 };
150
151 static const struct comedi_lrange range_daqp_ai = {
152 4, {
153 BIP_RANGE(10),
154 BIP_RANGE(5),
155 BIP_RANGE(2.5),
156 BIP_RANGE(1.25)
157 }
158 };
159
daqp_clear_events(struct comedi_device * dev,int loops)160 static int daqp_clear_events(struct comedi_device *dev, int loops)
161 {
162 unsigned int status;
163
164 /*
165 * Reset any pending interrupts (my card has a tendency to require
166 * multiple reads on the status register to achieve this).
167 */
168 while (--loops) {
169 status = inb(dev->iobase + DAQP_STATUS_REG);
170 if ((status & DAQP_STATUS_EVENTS) == 0)
171 return 0;
172 }
173 dev_err(dev->class_dev, "couldn't clear events in status register\n");
174 return -EBUSY;
175 }
176
daqp_ai_cancel(struct comedi_device * dev,struct comedi_subdevice * s)177 static int daqp_ai_cancel(struct comedi_device *dev,
178 struct comedi_subdevice *s)
179 {
180 struct daqp_private *devpriv = dev->private;
181
182 if (devpriv->stop)
183 return -EIO;
184
185 /*
186 * Stop any conversions, disable interrupts, and clear
187 * the status event flags.
188 */
189 outb(DAQP_CMD_STOP, dev->iobase + DAQP_CMD_REG);
190 outb(0, dev->iobase + DAQP_CTRL_REG);
191 inb(dev->iobase + DAQP_STATUS_REG);
192
193 return 0;
194 }
195
daqp_ai_get_sample(struct comedi_device * dev,struct comedi_subdevice * s)196 static unsigned int daqp_ai_get_sample(struct comedi_device *dev,
197 struct comedi_subdevice *s)
198 {
199 unsigned int val;
200
201 /*
202 * Get a two's complement sample from the FIFO and
203 * return the munged offset binary value.
204 */
205 val = inb(dev->iobase + DAQP_AI_FIFO_REG);
206 val |= inb(dev->iobase + DAQP_AI_FIFO_REG) << 8;
207 return comedi_offset_munge(s, val);
208 }
209
daqp_interrupt(int irq,void * dev_id)210 static irqreturn_t daqp_interrupt(int irq, void *dev_id)
211 {
212 struct comedi_device *dev = dev_id;
213 struct comedi_subdevice *s = dev->read_subdev;
214 struct comedi_cmd *cmd = &s->async->cmd;
215 int loop_limit = 10000;
216 int status;
217
218 if (!dev->attached)
219 return IRQ_NONE;
220
221 status = inb(dev->iobase + DAQP_STATUS_REG);
222 if (!(status & DAQP_STATUS_EVENTS))
223 return IRQ_NONE;
224
225 while (!(status & DAQP_STATUS_FIFO_EMPTY)) {
226 unsigned short data;
227
228 if (status & DAQP_STATUS_DATA_LOST) {
229 s->async->events |= COMEDI_CB_OVERFLOW;
230 dev_warn(dev->class_dev, "data lost\n");
231 break;
232 }
233
234 data = daqp_ai_get_sample(dev, s);
235 comedi_buf_write_samples(s, &data, 1);
236
237 if (cmd->stop_src == TRIG_COUNT &&
238 s->async->scans_done >= cmd->stop_arg) {
239 s->async->events |= COMEDI_CB_EOA;
240 break;
241 }
242
243 if ((loop_limit--) <= 0)
244 break;
245
246 status = inb(dev->iobase + DAQP_STATUS_REG);
247 }
248
249 if (loop_limit <= 0) {
250 dev_warn(dev->class_dev,
251 "loop_limit reached in %s()\n", __func__);
252 s->async->events |= COMEDI_CB_ERROR;
253 }
254
255 comedi_handle_events(dev, s);
256
257 return IRQ_HANDLED;
258 }
259
daqp_ai_set_one_scanlist_entry(struct comedi_device * dev,unsigned int chanspec,int start)260 static void daqp_ai_set_one_scanlist_entry(struct comedi_device *dev,
261 unsigned int chanspec,
262 int start)
263 {
264 unsigned int chan = CR_CHAN(chanspec);
265 unsigned int range = CR_RANGE(chanspec);
266 unsigned int aref = CR_AREF(chanspec);
267 unsigned int val;
268
269 val = DAQP_SCANLIST_CHANNEL(chan) | DAQP_SCANLIST_GAIN(range);
270
271 if (aref == AREF_DIFF)
272 val |= DAQP_SCANLIST_DIFFERENTIAL;
273
274 if (start)
275 val |= DAQP_SCANLIST_START;
276
277 outb(val & 0xff, dev->iobase + DAQP_SCANLIST_REG);
278 outb((val >> 8) & 0xff, dev->iobase + DAQP_SCANLIST_REG);
279 }
280
daqp_ai_eos(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)281 static int daqp_ai_eos(struct comedi_device *dev,
282 struct comedi_subdevice *s,
283 struct comedi_insn *insn,
284 unsigned long context)
285 {
286 unsigned int status;
287
288 status = inb(dev->iobase + DAQP_AUX_REG);
289 if (status & DAQP_AUX_CONVERSION)
290 return 0;
291 return -EBUSY;
292 }
293
daqp_ai_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)294 static int daqp_ai_insn_read(struct comedi_device *dev,
295 struct comedi_subdevice *s,
296 struct comedi_insn *insn,
297 unsigned int *data)
298 {
299 struct daqp_private *devpriv = dev->private;
300 int ret = 0;
301 int i;
302
303 if (devpriv->stop)
304 return -EIO;
305
306 outb(0, dev->iobase + DAQP_AUX_REG);
307
308 /* Reset scan list queue */
309 outb(DAQP_CMD_RSTQ, dev->iobase + DAQP_CMD_REG);
310
311 /* Program one scan list entry */
312 daqp_ai_set_one_scanlist_entry(dev, insn->chanspec, 1);
313
314 /* Reset data FIFO (see page 28 of DAQP User's Manual) */
315 outb(DAQP_CMD_RSTF, dev->iobase + DAQP_CMD_REG);
316
317 /* Set trigger - one-shot, internal, no interrupts */
318 outb(DAQP_CTRL_PACER_CLK_100KHZ, dev->iobase + DAQP_CTRL_REG);
319
320 ret = daqp_clear_events(dev, 10000);
321 if (ret)
322 return ret;
323
324 for (i = 0; i < insn->n; i++) {
325 /* Start conversion */
326 outb(DAQP_CMD_ARM | DAQP_CMD_FIFO_DATA,
327 dev->iobase + DAQP_CMD_REG);
328
329 ret = comedi_timeout(dev, s, insn, daqp_ai_eos, 0);
330 if (ret)
331 break;
332
333 /* clear the status event flags */
334 inb(dev->iobase + DAQP_STATUS_REG);
335
336 data[i] = daqp_ai_get_sample(dev, s);
337 }
338
339 /* stop any conversions and clear the status event flags */
340 outb(DAQP_CMD_STOP, dev->iobase + DAQP_CMD_REG);
341 inb(dev->iobase + DAQP_STATUS_REG);
342
343 return ret ? ret : insn->n;
344 }
345
346 /* This function converts ns nanoseconds to a counter value suitable
347 * for programming the device. We always use the DAQP's 5 MHz clock,
348 * which with its 24-bit counter, allows values up to 84 seconds.
349 * Also, the function adjusts ns so that it cooresponds to the actual
350 * time that the device will use.
351 */
352
daqp_ns_to_timer(unsigned int * ns,unsigned int flags)353 static int daqp_ns_to_timer(unsigned int *ns, unsigned int flags)
354 {
355 int timer;
356
357 timer = *ns / 200;
358 *ns = timer * 200;
359
360 return timer;
361 }
362
daqp_set_pacer(struct comedi_device * dev,unsigned int val)363 static void daqp_set_pacer(struct comedi_device *dev, unsigned int val)
364 {
365 outb(val & 0xff, dev->iobase + DAQP_PACER_LOW_REG);
366 outb((val >> 8) & 0xff, dev->iobase + DAQP_PACER_MID_REG);
367 outb((val >> 16) & 0xff, dev->iobase + DAQP_PACER_HIGH_REG);
368 }
369
daqp_ai_cmdtest(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_cmd * cmd)370 static int daqp_ai_cmdtest(struct comedi_device *dev,
371 struct comedi_subdevice *s,
372 struct comedi_cmd *cmd)
373 {
374 struct daqp_private *devpriv = dev->private;
375 int err = 0;
376 unsigned int arg;
377
378 /* Step 1 : check if triggers are trivially valid */
379
380 err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW);
381 err |= comedi_check_trigger_src(&cmd->scan_begin_src,
382 TRIG_TIMER | TRIG_FOLLOW);
383 err |= comedi_check_trigger_src(&cmd->convert_src,
384 TRIG_TIMER | TRIG_NOW);
385 err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
386 err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
387
388 if (err)
389 return 1;
390
391 /* Step 2a : make sure trigger sources are unique */
392
393 err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
394 err |= comedi_check_trigger_is_unique(cmd->convert_src);
395 err |= comedi_check_trigger_is_unique(cmd->stop_src);
396
397 /* Step 2b : and mutually compatible */
398
399 /* the async command requires a pacer */
400 if (cmd->scan_begin_src != TRIG_TIMER && cmd->convert_src != TRIG_TIMER)
401 err |= -EINVAL;
402
403 if (err)
404 return 2;
405
406 /* Step 3: check if arguments are trivially valid */
407
408 err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
409
410 err |= comedi_check_trigger_arg_min(&cmd->chanlist_len, 1);
411 err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
412 cmd->chanlist_len);
413
414 if (cmd->scan_begin_src == TRIG_TIMER)
415 err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
416 DAQP_MAX_TIMER_SPEED);
417
418 if (cmd->convert_src == TRIG_TIMER) {
419 err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
420 DAQP_MAX_TIMER_SPEED);
421
422 if (cmd->scan_begin_src == TRIG_TIMER) {
423 /*
424 * If both scan_begin and convert are both timer
425 * values, the only way that can make sense is if
426 * the scan time is the number of conversions times
427 * the convert time.
428 */
429 arg = cmd->convert_arg * cmd->scan_end_arg;
430 err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg,
431 arg);
432 }
433 }
434
435 if (cmd->stop_src == TRIG_COUNT)
436 err |= comedi_check_trigger_arg_max(&cmd->stop_arg, 0x00ffffff);
437 else /* TRIG_NONE */
438 err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
439
440 if (err)
441 return 3;
442
443 /* step 4: fix up any arguments */
444
445 if (cmd->convert_src == TRIG_TIMER) {
446 arg = cmd->convert_arg;
447 devpriv->pacer_div = daqp_ns_to_timer(&arg, cmd->flags);
448 err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
449 } else if (cmd->scan_begin_src == TRIG_TIMER) {
450 arg = cmd->scan_begin_arg;
451 devpriv->pacer_div = daqp_ns_to_timer(&arg, cmd->flags);
452 err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
453 }
454
455 if (err)
456 return 4;
457
458 return 0;
459 }
460
daqp_ai_cmd(struct comedi_device * dev,struct comedi_subdevice * s)461 static int daqp_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
462 {
463 struct daqp_private *devpriv = dev->private;
464 struct comedi_cmd *cmd = &s->async->cmd;
465 int scanlist_start_on_every_entry;
466 int threshold;
467 int ret;
468 int i;
469
470 if (devpriv->stop)
471 return -EIO;
472
473 outb(0, dev->iobase + DAQP_AUX_REG);
474
475 /* Reset scan list queue */
476 outb(DAQP_CMD_RSTQ, dev->iobase + DAQP_CMD_REG);
477
478 /* Program pacer clock
479 *
480 * There's two modes we can operate in. If convert_src is
481 * TRIG_TIMER, then convert_arg specifies the time between
482 * each conversion, so we program the pacer clock to that
483 * frequency and set the SCANLIST_START bit on every scanlist
484 * entry. Otherwise, convert_src is TRIG_NOW, which means
485 * we want the fastest possible conversions, scan_begin_src
486 * is TRIG_TIMER, and scan_begin_arg specifies the time between
487 * each scan, so we program the pacer clock to this frequency
488 * and only set the SCANLIST_START bit on the first entry.
489 */
490 daqp_set_pacer(dev, devpriv->pacer_div);
491
492 if (cmd->convert_src == TRIG_TIMER)
493 scanlist_start_on_every_entry = 1;
494 else
495 scanlist_start_on_every_entry = 0;
496
497 /* Program scan list */
498 for (i = 0; i < cmd->chanlist_len; i++) {
499 int start = (i == 0 || scanlist_start_on_every_entry);
500
501 daqp_ai_set_one_scanlist_entry(dev, cmd->chanlist[i], start);
502 }
503
504 /* Now it's time to program the FIFO threshold, basically the
505 * number of samples the card will buffer before it interrupts
506 * the CPU.
507 *
508 * If we don't have a stop count, then use half the size of
509 * the FIFO (the manufacturer's recommendation). Consider
510 * that the FIFO can hold 2K samples (4K bytes). With the
511 * threshold set at half the FIFO size, we have a margin of
512 * error of 1024 samples. At the chip's maximum sample rate
513 * of 100,000 Hz, the CPU would have to delay interrupt
514 * service for a full 10 milliseconds in order to lose data
515 * here (as opposed to higher up in the kernel). I've never
516 * seen it happen. However, for slow sample rates it may
517 * buffer too much data and introduce too much delay for the
518 * user application.
519 *
520 * If we have a stop count, then things get more interesting.
521 * If the stop count is less than the FIFO size (actually
522 * three-quarters of the FIFO size - see below), we just use
523 * the stop count itself as the threshold, the card interrupts
524 * us when that many samples have been taken, and we kill the
525 * acquisition at that point and are done. If the stop count
526 * is larger than that, then we divide it by 2 until it's less
527 * than three quarters of the FIFO size (we always leave the
528 * top quarter of the FIFO as protection against sluggish CPU
529 * interrupt response) and use that as the threshold. So, if
530 * the stop count is 4000 samples, we divide by two twice to
531 * get 1000 samples, use that as the threshold, take four
532 * interrupts to get our 4000 samples and are done.
533 *
534 * The algorithm could be more clever. For example, if 81000
535 * samples are requested, we could set the threshold to 1500
536 * samples and take 54 interrupts to get 81000. But 54 isn't
537 * a power of two, so this algorithm won't find that option.
538 * Instead, it'll set the threshold at 1266 and take 64
539 * interrupts to get 81024 samples, of which the last 24 will
540 * be discarded... but we won't get the last interrupt until
541 * they've been collected. To find the first option, the
542 * computer could look at the prime decomposition of the
543 * sample count (81000 = 3^4 * 5^3 * 2^3) and factor it into a
544 * threshold (1500 = 3 * 5^3 * 2^2) and an interrupt count (54
545 * = 3^3 * 2). Hmmm... a one-line while loop or prime
546 * decomposition of integers... I'll leave it the way it is.
547 *
548 * I'll also note a mini-race condition before ignoring it in
549 * the code. Let's say we're taking 4000 samples, as before.
550 * After 1000 samples, we get an interrupt. But before that
551 * interrupt is completely serviced, another sample is taken
552 * and loaded into the FIFO. Since the interrupt handler
553 * empties the FIFO before returning, it will read 1001 samples.
554 * If that happens four times, we'll end up taking 4004 samples,
555 * not 4000. The interrupt handler will discard the extra four
556 * samples (by halting the acquisition with four samples still
557 * in the FIFO), but we will have to wait for them.
558 *
559 * In short, this code works pretty well, but for either of
560 * the two reasons noted, might end up waiting for a few more
561 * samples than actually requested. Shouldn't make too much
562 * of a difference.
563 */
564
565 /* Save away the number of conversions we should perform, and
566 * compute the FIFO threshold (in bytes, not samples - that's
567 * why we multiple devpriv->count by 2 = sizeof(sample))
568 */
569
570 if (cmd->stop_src == TRIG_COUNT) {
571 unsigned long long nsamples;
572 unsigned long long nbytes;
573
574 nsamples = (unsigned long long)cmd->stop_arg *
575 cmd->scan_end_arg;
576 nbytes = nsamples * comedi_bytes_per_sample(s);
577 while (nbytes > DAQP_FIFO_SIZE * 3 / 4)
578 nbytes /= 2;
579 threshold = nbytes;
580 } else {
581 threshold = DAQP_FIFO_SIZE / 2;
582 }
583
584 /* Reset data FIFO (see page 28 of DAQP User's Manual) */
585
586 outb(DAQP_CMD_RSTF, dev->iobase + DAQP_CMD_REG);
587
588 /* Set FIFO threshold. First two bytes are near-empty
589 * threshold, which is unused; next two bytes are near-full
590 * threshold. We computed the number of bytes we want in the
591 * FIFO when the interrupt is generated, what the card wants
592 * is actually the number of available bytes left in the FIFO
593 * when the interrupt is to happen.
594 */
595
596 outb(0x00, dev->iobase + DAQP_AI_FIFO_REG);
597 outb(0x00, dev->iobase + DAQP_AI_FIFO_REG);
598
599 outb((DAQP_FIFO_SIZE - threshold) & 0xff,
600 dev->iobase + DAQP_AI_FIFO_REG);
601 outb((DAQP_FIFO_SIZE - threshold) >> 8, dev->iobase + DAQP_AI_FIFO_REG);
602
603 /* Set trigger - continuous, internal */
604 outb(DAQP_CTRL_TRIG_MODE | DAQP_CTRL_PACER_CLK_5MHZ |
605 DAQP_CTRL_FIFO_INT_ENA, dev->iobase + DAQP_CTRL_REG);
606
607 ret = daqp_clear_events(dev, 100);
608 if (ret)
609 return ret;
610
611 /* Start conversion */
612 outb(DAQP_CMD_ARM | DAQP_CMD_FIFO_DATA, dev->iobase + DAQP_CMD_REG);
613
614 return 0;
615 }
616
daqp_ao_empty(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)617 static int daqp_ao_empty(struct comedi_device *dev,
618 struct comedi_subdevice *s,
619 struct comedi_insn *insn,
620 unsigned long context)
621 {
622 unsigned int status;
623
624 status = inb(dev->iobase + DAQP_AUX_REG);
625 if ((status & DAQP_AUX_DA_BUFFER) == 0)
626 return 0;
627 return -EBUSY;
628 }
629
daqp_ao_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)630 static int daqp_ao_insn_write(struct comedi_device *dev,
631 struct comedi_subdevice *s,
632 struct comedi_insn *insn,
633 unsigned int *data)
634 {
635 struct daqp_private *devpriv = dev->private;
636 unsigned int chan = CR_CHAN(insn->chanspec);
637 int i;
638
639 if (devpriv->stop)
640 return -EIO;
641
642 /* Make sure D/A update mode is direct update */
643 outb(0, dev->iobase + DAQP_AUX_REG);
644
645 for (i = 0; i < insn->n; i++) {
646 unsigned int val = data[i];
647 int ret;
648
649 /* D/A transfer rate is about 8ms */
650 ret = comedi_timeout(dev, s, insn, daqp_ao_empty, 0);
651 if (ret)
652 return ret;
653
654 /* write the two's complement value to the channel */
655 outw((chan << 12) | comedi_offset_munge(s, val),
656 dev->iobase + DAQP_AO_REG);
657
658 s->readback[chan] = val;
659 }
660
661 return insn->n;
662 }
663
daqp_di_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)664 static int daqp_di_insn_bits(struct comedi_device *dev,
665 struct comedi_subdevice *s,
666 struct comedi_insn *insn,
667 unsigned int *data)
668 {
669 struct daqp_private *devpriv = dev->private;
670
671 if (devpriv->stop)
672 return -EIO;
673
674 data[0] = inb(dev->iobase + DAQP_DI_REG);
675
676 return insn->n;
677 }
678
daqp_do_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)679 static int daqp_do_insn_bits(struct comedi_device *dev,
680 struct comedi_subdevice *s,
681 struct comedi_insn *insn,
682 unsigned int *data)
683 {
684 struct daqp_private *devpriv = dev->private;
685
686 if (devpriv->stop)
687 return -EIO;
688
689 if (comedi_dio_update_state(s, data))
690 outb(s->state, dev->iobase + DAQP_DO_REG);
691
692 data[1] = s->state;
693
694 return insn->n;
695 }
696
daqp_auto_attach(struct comedi_device * dev,unsigned long context)697 static int daqp_auto_attach(struct comedi_device *dev,
698 unsigned long context)
699 {
700 struct pcmcia_device *link = comedi_to_pcmcia_dev(dev);
701 struct daqp_private *devpriv;
702 struct comedi_subdevice *s;
703 int ret;
704
705 devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
706 if (!devpriv)
707 return -ENOMEM;
708
709 link->config_flags |= CONF_AUTO_SET_IO | CONF_ENABLE_IRQ;
710 ret = comedi_pcmcia_enable(dev, NULL);
711 if (ret)
712 return ret;
713 dev->iobase = link->resource[0]->start;
714
715 link->priv = dev;
716 ret = pcmcia_request_irq(link, daqp_interrupt);
717 if (ret == 0)
718 dev->irq = link->irq;
719
720 ret = comedi_alloc_subdevices(dev, 4);
721 if (ret)
722 return ret;
723
724 s = &dev->subdevices[0];
725 s->type = COMEDI_SUBD_AI;
726 s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DIFF;
727 s->n_chan = 8;
728 s->maxdata = 0xffff;
729 s->range_table = &range_daqp_ai;
730 s->insn_read = daqp_ai_insn_read;
731 if (dev->irq) {
732 dev->read_subdev = s;
733 s->subdev_flags |= SDF_CMD_READ;
734 s->len_chanlist = 2048;
735 s->do_cmdtest = daqp_ai_cmdtest;
736 s->do_cmd = daqp_ai_cmd;
737 s->cancel = daqp_ai_cancel;
738 }
739
740 s = &dev->subdevices[1];
741 s->type = COMEDI_SUBD_AO;
742 s->subdev_flags = SDF_WRITABLE;
743 s->n_chan = 2;
744 s->maxdata = 0x0fff;
745 s->range_table = &range_bipolar5;
746 s->insn_write = daqp_ao_insn_write;
747
748 ret = comedi_alloc_subdev_readback(s);
749 if (ret)
750 return ret;
751
752 /*
753 * Digital Input subdevice
754 * NOTE: The digital input lines are shared:
755 *
756 * Chan Normal Mode Expansion Mode
757 * ---- ----------------- ----------------------------
758 * 0 DI0, ext. trigger Same as normal mode
759 * 1 DI1 External gain select, lo bit
760 * 2 DI2, ext. clock Same as normal mode
761 * 3 DI3 External gain select, hi bit
762 */
763 s = &dev->subdevices[2];
764 s->type = COMEDI_SUBD_DI;
765 s->subdev_flags = SDF_READABLE;
766 s->n_chan = 4;
767 s->maxdata = 1;
768 s->insn_bits = daqp_di_insn_bits;
769
770 /*
771 * Digital Output subdevice
772 * NOTE: The digital output lines share the same pins on the
773 * interface connector as the four external channel selection
774 * bits. If expansion mode is used the digital outputs do not
775 * work.
776 */
777 s = &dev->subdevices[3];
778 s->type = COMEDI_SUBD_DO;
779 s->subdev_flags = SDF_WRITABLE;
780 s->n_chan = 4;
781 s->maxdata = 1;
782 s->insn_bits = daqp_do_insn_bits;
783
784 return 0;
785 }
786
787 static struct comedi_driver driver_daqp = {
788 .driver_name = "quatech_daqp_cs",
789 .module = THIS_MODULE,
790 .auto_attach = daqp_auto_attach,
791 .detach = comedi_pcmcia_disable,
792 };
793
daqp_cs_suspend(struct pcmcia_device * link)794 static int daqp_cs_suspend(struct pcmcia_device *link)
795 {
796 struct comedi_device *dev = link->priv;
797 struct daqp_private *devpriv = dev ? dev->private : NULL;
798
799 /* Mark the device as stopped, to block IO until later */
800 if (devpriv)
801 devpriv->stop = 1;
802
803 return 0;
804 }
805
daqp_cs_resume(struct pcmcia_device * link)806 static int daqp_cs_resume(struct pcmcia_device *link)
807 {
808 struct comedi_device *dev = link->priv;
809 struct daqp_private *devpriv = dev ? dev->private : NULL;
810
811 if (devpriv)
812 devpriv->stop = 0;
813
814 return 0;
815 }
816
daqp_cs_attach(struct pcmcia_device * link)817 static int daqp_cs_attach(struct pcmcia_device *link)
818 {
819 return comedi_pcmcia_auto_config(link, &driver_daqp);
820 }
821
822 static const struct pcmcia_device_id daqp_cs_id_table[] = {
823 PCMCIA_DEVICE_MANF_CARD(0x0137, 0x0027),
824 PCMCIA_DEVICE_NULL
825 };
826 MODULE_DEVICE_TABLE(pcmcia, daqp_cs_id_table);
827
828 static struct pcmcia_driver daqp_cs_driver = {
829 .name = "quatech_daqp_cs",
830 .owner = THIS_MODULE,
831 .id_table = daqp_cs_id_table,
832 .probe = daqp_cs_attach,
833 .remove = comedi_pcmcia_auto_unconfig,
834 .suspend = daqp_cs_suspend,
835 .resume = daqp_cs_resume,
836 };
837 module_comedi_pcmcia_driver(driver_daqp, daqp_cs_driver);
838
839 MODULE_DESCRIPTION("Comedi driver for Quatech DAQP PCMCIA data capture cards");
840 MODULE_AUTHOR("Brent Baccala <baccala@freesoft.org>");
841 MODULE_LICENSE("GPL");
842