xref: /openbmc/linux/drivers/net/ethernet/fealnx.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1  /*
2  	Written 1998-2000 by Donald Becker.
3  
4  	This software may be used and distributed according to the terms of
5  	the GNU General Public License (GPL), incorporated herein by reference.
6  	Drivers based on or derived from this code fall under the GPL and must
7  	retain the authorship, copyright and license notice.  This file is not
8  	a complete program and may only be used when the entire operating
9  	system is licensed under the GPL.
10  
11  	The author may be reached as becker@scyld.com, or C/O
12  	Scyld Computing Corporation
13  	410 Severn Ave., Suite 210
14  	Annapolis MD 21403
15  
16  	Support information and updates available at
17  	http://www.scyld.com/network/pci-skeleton.html
18  
19  	Linux kernel updates:
20  
21  	Version 2.51, Nov 17, 2001 (jgarzik):
22  	- Add ethtool support
23  	- Replace some MII-related magic numbers with constants
24  
25  */
26  
27  #define DRV_NAME	"fealnx"
28  
29  static int debug;		/* 1-> print debug message */
30  static int max_interrupt_work = 20;
31  
32  /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
33  static int multicast_filter_limit = 32;
34  
35  /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
36  /* Setting to > 1518 effectively disables this feature.          */
37  static int rx_copybreak;
38  
39  /* Used to pass the media type, etc.                            */
40  /* Both 'options[]' and 'full_duplex[]' should exist for driver */
41  /* interoperability.                                            */
42  /* The media type is usually passed in 'options[]'.             */
43  #define MAX_UNITS 8		/* More are supported, limit only on options */
44  static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
45  static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
46  
47  /* Operational parameters that are set at compile time.                 */
48  /* Keep the ring sizes a power of two for compile efficiency.           */
49  /* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
50  /* Making the Tx ring too large decreases the effectiveness of channel  */
51  /* bonding and packet priority.                                         */
52  /* There are no ill effects from too-large receive rings.               */
53  // 88-12-9 modify,
54  // #define TX_RING_SIZE    16
55  // #define RX_RING_SIZE    32
56  #define TX_RING_SIZE    6
57  #define RX_RING_SIZE    12
58  #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
59  #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
60  
61  /* Operational parameters that usually are not changed. */
62  /* Time in jiffies before concluding the transmitter is hung. */
63  #define TX_TIMEOUT      (2*HZ)
64  
65  #define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
66  
67  
68  /* Include files, designed to support most kernel versions 2.0.0 and later. */
69  #include <linux/module.h>
70  #include <linux/kernel.h>
71  #include <linux/string.h>
72  #include <linux/timer.h>
73  #include <linux/errno.h>
74  #include <linux/ioport.h>
75  #include <linux/interrupt.h>
76  #include <linux/pci.h>
77  #include <linux/netdevice.h>
78  #include <linux/etherdevice.h>
79  #include <linux/skbuff.h>
80  #include <linux/init.h>
81  #include <linux/mii.h>
82  #include <linux/ethtool.h>
83  #include <linux/crc32.h>
84  #include <linux/delay.h>
85  #include <linux/bitops.h>
86  
87  #include <asm/processor.h>	/* Processor type for cache alignment. */
88  #include <asm/io.h>
89  #include <linux/uaccess.h>
90  #include <asm/byteorder.h>
91  
92  /* This driver was written to use PCI memory space, however some x86 systems
93     work only with I/O space accesses. */
94  #ifndef __alpha__
95  #define USE_IO_OPS
96  #endif
97  
98  /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
99  /* This is only in the support-all-kernels source code. */
100  
101  #define RUN_AT(x) (jiffies + (x))
102  
103  MODULE_AUTHOR("Myson or whoever");
104  MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
105  MODULE_LICENSE("GPL");
106  module_param(max_interrupt_work, int, 0);
107  module_param(debug, int, 0);
108  module_param(rx_copybreak, int, 0);
109  module_param(multicast_filter_limit, int, 0);
110  module_param_array(options, int, NULL, 0);
111  module_param_array(full_duplex, int, NULL, 0);
112  MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
113  MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
114  MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
115  MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
116  MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
117  MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
118  
119  enum {
120  	MIN_REGION_SIZE		= 136,
121  };
122  
123  /* A chip capabilities table, matching the entries in pci_tbl[] above. */
124  enum chip_capability_flags {
125  	HAS_MII_XCVR,
126  	HAS_CHIP_XCVR,
127  };
128  
129  /* 89/6/13 add, */
130  /* for different PHY */
131  enum phy_type_flags {
132  	MysonPHY = 1,
133  	AhdocPHY = 2,
134  	SeeqPHY = 3,
135  	MarvellPHY = 4,
136  	Myson981 = 5,
137  	LevelOnePHY = 6,
138  	OtherPHY = 10,
139  };
140  
141  struct chip_info {
142  	char *chip_name;
143  	int flags;
144  };
145  
146  static const struct chip_info skel_netdrv_tbl[] = {
147  	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
148  	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
149  	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
150  };
151  
152  /* Offsets to the Command and Status Registers. */
153  enum fealnx_offsets {
154  	PAR0 = 0x0,		/* physical address 0-3 */
155  	PAR1 = 0x04,		/* physical address 4-5 */
156  	MAR0 = 0x08,		/* multicast address 0-3 */
157  	MAR1 = 0x0C,		/* multicast address 4-7 */
158  	FAR0 = 0x10,		/* flow-control address 0-3 */
159  	FAR1 = 0x14,		/* flow-control address 4-5 */
160  	TCRRCR = 0x18,		/* receive & transmit configuration */
161  	BCR = 0x1C,		/* bus command */
162  	TXPDR = 0x20,		/* transmit polling demand */
163  	RXPDR = 0x24,		/* receive polling demand */
164  	RXCWP = 0x28,		/* receive current word pointer */
165  	TXLBA = 0x2C,		/* transmit list base address */
166  	RXLBA = 0x30,		/* receive list base address */
167  	ISR = 0x34,		/* interrupt status */
168  	IMR = 0x38,		/* interrupt mask */
169  	FTH = 0x3C,		/* flow control high/low threshold */
170  	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
171  	TALLY = 0x44,		/* tally counters for crc and mpa */
172  	TSR = 0x48,		/* tally counter for transmit status */
173  	BMCRSR = 0x4c,		/* basic mode control and status */
174  	PHYIDENTIFIER = 0x50,	/* phy identifier */
175  	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
176  				   partner ability */
177  	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
178  	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
179  };
180  
181  /* Bits in the interrupt status/enable registers. */
182  /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
183  enum intr_status_bits {
184  	RFCON = 0x00020000,	/* receive flow control xon packet */
185  	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
186  	LSCStatus = 0x00008000,	/* link status change */
187  	ANCStatus = 0x00004000,	/* autonegotiation completed */
188  	FBE = 0x00002000,	/* fatal bus error */
189  	FBEMask = 0x00001800,	/* mask bit12-11 */
190  	ParityErr = 0x00000000,	/* parity error */
191  	TargetErr = 0x00001000,	/* target abort */
192  	MasterErr = 0x00000800,	/* master error */
193  	TUNF = 0x00000400,	/* transmit underflow */
194  	ROVF = 0x00000200,	/* receive overflow */
195  	ETI = 0x00000100,	/* transmit early int */
196  	ERI = 0x00000080,	/* receive early int */
197  	CNTOVF = 0x00000040,	/* counter overflow */
198  	RBU = 0x00000020,	/* receive buffer unavailable */
199  	TBU = 0x00000010,	/* transmit buffer unavilable */
200  	TI = 0x00000008,	/* transmit interrupt */
201  	RI = 0x00000004,	/* receive interrupt */
202  	RxErr = 0x00000002,	/* receive error */
203  };
204  
205  /* Bits in the NetworkConfig register, W for writing, R for reading */
206  /* FIXME: some names are invented by me. Marked with (name?) */
207  /* If you have docs and know bit names, please fix 'em */
208  enum rx_mode_bits {
209  	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
210  	CR_W_FD		= 0x00100000,	/* full duplex */
211  	CR_W_PS10	= 0x00080000,	/* 10 mbit */
212  	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
213  	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
214       /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
215  	CR_W_RXMODEMASK	= 0x000000e0,
216  	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
217  	CR_W_AB		= 0x00000040,	/* accept broadcast */
218  	CR_W_AM		= 0x00000020,	/* accept mutlicast */
219  	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
220  	CR_W_ALP	= 0x00000004,	/* receive long pkt */
221  	CR_W_SEP	= 0x00000002,	/* receive error pkt */
222  	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
223  
224  	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
225  	CR_R_FD		= 0x00100000,	/* full duplex detected */
226  	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
227  	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
228  };
229  
230  /* The Tulip Rx and Tx buffer descriptors. */
231  struct fealnx_desc {
232  	s32 status;
233  	s32 control;
234  	u32 buffer;
235  	u32 next_desc;
236  	struct fealnx_desc *next_desc_logical;
237  	struct sk_buff *skbuff;
238  	u32 reserved1;
239  	u32 reserved2;
240  };
241  
242  /* Bits in network_desc.status */
243  enum rx_desc_status_bits {
244  	RXOWN = 0x80000000,	/* own bit */
245  	FLNGMASK = 0x0fff0000,	/* frame length */
246  	FLNGShift = 16,
247  	MARSTATUS = 0x00004000,	/* multicast address received */
248  	BARSTATUS = 0x00002000,	/* broadcast address received */
249  	PHYSTATUS = 0x00001000,	/* physical address received */
250  	RXFSD = 0x00000800,	/* first descriptor */
251  	RXLSD = 0x00000400,	/* last descriptor */
252  	ErrorSummary = 0x80,	/* error summary */
253  	RUNTPKT = 0x40,		/* runt packet received */
254  	LONGPKT = 0x20,		/* long packet received */
255  	FAE = 0x10,		/* frame align error */
256  	CRC = 0x08,		/* crc error */
257  	RXER = 0x04,		/* receive error */
258  };
259  
260  enum rx_desc_control_bits {
261  	RXIC = 0x00800000,	/* interrupt control */
262  	RBSShift = 0,
263  };
264  
265  enum tx_desc_status_bits {
266  	TXOWN = 0x80000000,	/* own bit */
267  	JABTO = 0x00004000,	/* jabber timeout */
268  	CSL = 0x00002000,	/* carrier sense lost */
269  	LC = 0x00001000,	/* late collision */
270  	EC = 0x00000800,	/* excessive collision */
271  	UDF = 0x00000400,	/* fifo underflow */
272  	DFR = 0x00000200,	/* deferred */
273  	HF = 0x00000100,	/* heartbeat fail */
274  	NCRMask = 0x000000ff,	/* collision retry count */
275  	NCRShift = 0,
276  };
277  
278  enum tx_desc_control_bits {
279  	TXIC = 0x80000000,	/* interrupt control */
280  	ETIControl = 0x40000000,	/* early transmit interrupt */
281  	TXLD = 0x20000000,	/* last descriptor */
282  	TXFD = 0x10000000,	/* first descriptor */
283  	CRCEnable = 0x08000000,	/* crc control */
284  	PADEnable = 0x04000000,	/* padding control */
285  	RetryTxLC = 0x02000000,	/* retry late collision */
286  	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
287  	PKTSShift = 11,
288  	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
289  	TBSShift = 0,
290  };
291  
292  /* BootROM/EEPROM/MII Management Register */
293  #define MASK_MIIR_MII_READ       0x00000000
294  #define MASK_MIIR_MII_WRITE      0x00000008
295  #define MASK_MIIR_MII_MDO        0x00000004
296  #define MASK_MIIR_MII_MDI        0x00000002
297  #define MASK_MIIR_MII_MDC        0x00000001
298  
299  /* ST+OP+PHYAD+REGAD+TA */
300  #define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
301  #define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
302  
303  /* ------------------------------------------------------------------------- */
304  /*      Constants for Myson PHY                                              */
305  /* ------------------------------------------------------------------------- */
306  #define MysonPHYID      0xd0000302
307  /* 89-7-27 add, (begin) */
308  #define MysonPHYID0     0x0302
309  #define StatusRegister  18
310  #define SPEED100        0x0400	// bit10
311  #define FULLMODE        0x0800	// bit11
312  /* 89-7-27 add, (end) */
313  
314  /* ------------------------------------------------------------------------- */
315  /*      Constants for Seeq 80225 PHY                                         */
316  /* ------------------------------------------------------------------------- */
317  #define SeeqPHYID0      0x0016
318  
319  #define MIIRegister18   18
320  #define SPD_DET_100     0x80
321  #define DPLX_DET_FULL   0x40
322  
323  /* ------------------------------------------------------------------------- */
324  /*      Constants for Ahdoc 101 PHY                                          */
325  /* ------------------------------------------------------------------------- */
326  #define AhdocPHYID0     0x0022
327  
328  #define DiagnosticReg   18
329  #define DPLX_FULL       0x0800
330  #define Speed_100       0x0400
331  
332  /* 89/6/13 add, */
333  /* -------------------------------------------------------------------------- */
334  /*      Constants                                                             */
335  /* -------------------------------------------------------------------------- */
336  #define MarvellPHYID0           0x0141
337  #define LevelOnePHYID0		0x0013
338  
339  #define MII1000BaseTControlReg  9
340  #define MII1000BaseTStatusReg   10
341  #define SpecificReg		17
342  
343  /* for 1000BaseT Control Register */
344  #define PHYAbletoPerform1000FullDuplex  0x0200
345  #define PHYAbletoPerform1000HalfDuplex  0x0100
346  #define PHY1000AbilityMask              0x300
347  
348  // for phy specific status register, marvell phy.
349  #define SpeedMask       0x0c000
350  #define Speed_1000M     0x08000
351  #define Speed_100M      0x4000
352  #define Speed_10M       0
353  #define Full_Duplex     0x2000
354  
355  // 89/12/29 add, for phy specific status register, levelone phy, (begin)
356  #define LXT1000_100M    0x08000
357  #define LXT1000_1000M   0x0c000
358  #define LXT1000_Full    0x200
359  // 89/12/29 add, for phy specific status register, levelone phy, (end)
360  
361  /* for 3-in-1 case, BMCRSR register */
362  #define LinkIsUp2	0x00040000
363  
364  /* for PHY */
365  #define LinkIsUp        0x0004
366  
367  
368  struct netdev_private {
369  	/* Descriptor rings first for alignment. */
370  	struct fealnx_desc *rx_ring;
371  	struct fealnx_desc *tx_ring;
372  
373  	dma_addr_t rx_ring_dma;
374  	dma_addr_t tx_ring_dma;
375  
376  	spinlock_t lock;
377  
378  	/* Media monitoring timer. */
379  	struct timer_list timer;
380  
381  	/* Reset timer */
382  	struct timer_list reset_timer;
383  	int reset_timer_armed;
384  	unsigned long crvalue_sv;
385  	unsigned long imrvalue_sv;
386  
387  	/* Frequently used values: keep some adjacent for cache effect. */
388  	int flags;
389  	struct pci_dev *pci_dev;
390  	unsigned long crvalue;
391  	unsigned long bcrvalue;
392  	unsigned long imrvalue;
393  	struct fealnx_desc *cur_rx;
394  	struct fealnx_desc *lack_rxbuf;
395  	int really_rx_count;
396  	struct fealnx_desc *cur_tx;
397  	struct fealnx_desc *cur_tx_copy;
398  	int really_tx_count;
399  	int free_tx_count;
400  	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
401  
402  	/* These values are keep track of the transceiver/media in use. */
403  	unsigned int linkok;
404  	unsigned int line_speed;
405  	unsigned int duplexmode;
406  	unsigned int default_port:4;	/* Last dev->if_port value. */
407  	unsigned int PHYType;
408  
409  	/* MII transceiver section. */
410  	int mii_cnt;		/* MII device addresses. */
411  	unsigned char phys[2];	/* MII device addresses. */
412  	struct mii_if_info mii;
413  	void __iomem *mem;
414  };
415  
416  
417  static int mdio_read(struct net_device *dev, int phy_id, int location);
418  static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
419  static int netdev_open(struct net_device *dev);
420  static void getlinktype(struct net_device *dev);
421  static void getlinkstatus(struct net_device *dev);
422  static void netdev_timer(struct timer_list *t);
423  static void reset_timer(struct timer_list *t);
424  static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue);
425  static void init_ring(struct net_device *dev);
426  static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
427  static irqreturn_t intr_handler(int irq, void *dev_instance);
428  static int netdev_rx(struct net_device *dev);
429  static void set_rx_mode(struct net_device *dev);
430  static void __set_rx_mode(struct net_device *dev);
431  static struct net_device_stats *get_stats(struct net_device *dev);
432  static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
433  static const struct ethtool_ops netdev_ethtool_ops;
434  static int netdev_close(struct net_device *dev);
435  static void reset_rx_descriptors(struct net_device *dev);
436  static void reset_tx_descriptors(struct net_device *dev);
437  
stop_nic_rx(void __iomem * ioaddr,long crvalue)438  static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
439  {
440  	int delay = 0x1000;
441  	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
442  	while (--delay) {
443  		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
444  			break;
445  	}
446  }
447  
448  
stop_nic_rxtx(void __iomem * ioaddr,long crvalue)449  static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
450  {
451  	int delay = 0x1000;
452  	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
453  	while (--delay) {
454  		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
455  					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
456  			break;
457  	}
458  }
459  
460  static const struct net_device_ops netdev_ops = {
461  	.ndo_open		= netdev_open,
462  	.ndo_stop		= netdev_close,
463  	.ndo_start_xmit		= start_tx,
464  	.ndo_get_stats 		= get_stats,
465  	.ndo_set_rx_mode	= set_rx_mode,
466  	.ndo_eth_ioctl		= mii_ioctl,
467  	.ndo_tx_timeout		= fealnx_tx_timeout,
468  	.ndo_set_mac_address 	= eth_mac_addr,
469  	.ndo_validate_addr	= eth_validate_addr,
470  };
471  
fealnx_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)472  static int fealnx_init_one(struct pci_dev *pdev,
473  			   const struct pci_device_id *ent)
474  {
475  	struct netdev_private *np;
476  	int i, option, err, irq;
477  	static int card_idx = -1;
478  	char boardname[12];
479  	void __iomem *ioaddr;
480  	unsigned long len;
481  	unsigned int chip_id = ent->driver_data;
482  	struct net_device *dev;
483  	void *ring_space;
484  	dma_addr_t ring_dma;
485  	u8 addr[ETH_ALEN];
486  #ifdef USE_IO_OPS
487  	int bar = 0;
488  #else
489  	int bar = 1;
490  #endif
491  
492  	card_idx++;
493  	sprintf(boardname, "fealnx%d", card_idx);
494  
495  	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
496  
497  	i = pci_enable_device(pdev);
498  	if (i) return i;
499  	pci_set_master(pdev);
500  
501  	len = pci_resource_len(pdev, bar);
502  	if (len < MIN_REGION_SIZE) {
503  		dev_err(&pdev->dev,
504  			   "region size %ld too small, aborting\n", len);
505  		return -ENODEV;
506  	}
507  
508  	i = pci_request_regions(pdev, boardname);
509  	if (i)
510  		return i;
511  
512  	irq = pdev->irq;
513  
514  	ioaddr = pci_iomap(pdev, bar, len);
515  	if (!ioaddr) {
516  		err = -ENOMEM;
517  		goto err_out_res;
518  	}
519  
520  	dev = alloc_etherdev(sizeof(struct netdev_private));
521  	if (!dev) {
522  		err = -ENOMEM;
523  		goto err_out_unmap;
524  	}
525  	SET_NETDEV_DEV(dev, &pdev->dev);
526  
527  	/* read ethernet id */
528  	for (i = 0; i < 6; ++i)
529  		addr[i] = ioread8(ioaddr + PAR0 + i);
530  	eth_hw_addr_set(dev, addr);
531  
532  	/* Reset the chip to erase previous misconfiguration. */
533  	iowrite32(0x00000001, ioaddr + BCR);
534  
535  	/* Make certain the descriptor lists are aligned. */
536  	np = netdev_priv(dev);
537  	np->mem = ioaddr;
538  	spin_lock_init(&np->lock);
539  	np->pci_dev = pdev;
540  	np->flags = skel_netdrv_tbl[chip_id].flags;
541  	pci_set_drvdata(pdev, dev);
542  	np->mii.dev = dev;
543  	np->mii.mdio_read = mdio_read;
544  	np->mii.mdio_write = mdio_write;
545  	np->mii.phy_id_mask = 0x1f;
546  	np->mii.reg_num_mask = 0x1f;
547  
548  	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
549  					GFP_KERNEL);
550  	if (!ring_space) {
551  		err = -ENOMEM;
552  		goto err_out_free_dev;
553  	}
554  	np->rx_ring = ring_space;
555  	np->rx_ring_dma = ring_dma;
556  
557  	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
558  					GFP_KERNEL);
559  	if (!ring_space) {
560  		err = -ENOMEM;
561  		goto err_out_free_rx;
562  	}
563  	np->tx_ring = ring_space;
564  	np->tx_ring_dma = ring_dma;
565  
566  	/* find the connected MII xcvrs */
567  	if (np->flags == HAS_MII_XCVR) {
568  		int phy, phy_idx = 0;
569  
570  		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
571  			       phy++) {
572  			int mii_status = mdio_read(dev, phy, 1);
573  
574  			if (mii_status != 0xffff && mii_status != 0x0000) {
575  				np->phys[phy_idx++] = phy;
576  				dev_info(&pdev->dev,
577  				       "MII PHY found at address %d, status "
578  				       "0x%4.4x.\n", phy, mii_status);
579  				/* get phy type */
580  				{
581  					unsigned int data;
582  
583  					data = mdio_read(dev, np->phys[0], 2);
584  					if (data == SeeqPHYID0)
585  						np->PHYType = SeeqPHY;
586  					else if (data == AhdocPHYID0)
587  						np->PHYType = AhdocPHY;
588  					else if (data == MarvellPHYID0)
589  						np->PHYType = MarvellPHY;
590  					else if (data == MysonPHYID0)
591  						np->PHYType = Myson981;
592  					else if (data == LevelOnePHYID0)
593  						np->PHYType = LevelOnePHY;
594  					else
595  						np->PHYType = OtherPHY;
596  				}
597  			}
598  		}
599  
600  		np->mii_cnt = phy_idx;
601  		if (phy_idx == 0)
602  			dev_warn(&pdev->dev,
603  				"MII PHY not found -- this device may "
604  			       "not operate correctly.\n");
605  	} else {
606  		np->phys[0] = 32;
607  /* 89/6/23 add, (begin) */
608  		/* get phy type */
609  		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
610  			np->PHYType = MysonPHY;
611  		else
612  			np->PHYType = OtherPHY;
613  	}
614  	np->mii.phy_id = np->phys[0];
615  
616  	if (dev->mem_start)
617  		option = dev->mem_start;
618  
619  	/* The lower four bits are the media type. */
620  	if (option > 0) {
621  		if (option & 0x200)
622  			np->mii.full_duplex = 1;
623  		np->default_port = option & 15;
624  	}
625  
626  	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
627  		np->mii.full_duplex = full_duplex[card_idx];
628  
629  	if (np->mii.full_duplex) {
630  		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
631  /* 89/6/13 add, (begin) */
632  //      if (np->PHYType==MarvellPHY)
633  		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
634  			unsigned int data;
635  
636  			data = mdio_read(dev, np->phys[0], 9);
637  			data = (data & 0xfcff) | 0x0200;
638  			mdio_write(dev, np->phys[0], 9, data);
639  		}
640  /* 89/6/13 add, (end) */
641  		if (np->flags == HAS_MII_XCVR)
642  			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
643  		else
644  			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
645  		np->mii.force_media = 1;
646  	}
647  
648  	dev->netdev_ops = &netdev_ops;
649  	dev->ethtool_ops = &netdev_ethtool_ops;
650  	dev->watchdog_timeo = TX_TIMEOUT;
651  
652  	err = register_netdev(dev);
653  	if (err)
654  		goto err_out_free_tx;
655  
656  	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
657  	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
658  	       dev->dev_addr, irq);
659  
660  	return 0;
661  
662  err_out_free_tx:
663  	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
664  			  np->tx_ring_dma);
665  err_out_free_rx:
666  	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
667  			  np->rx_ring_dma);
668  err_out_free_dev:
669  	free_netdev(dev);
670  err_out_unmap:
671  	pci_iounmap(pdev, ioaddr);
672  err_out_res:
673  	pci_release_regions(pdev);
674  	return err;
675  }
676  
677  
fealnx_remove_one(struct pci_dev * pdev)678  static void fealnx_remove_one(struct pci_dev *pdev)
679  {
680  	struct net_device *dev = pci_get_drvdata(pdev);
681  
682  	if (dev) {
683  		struct netdev_private *np = netdev_priv(dev);
684  
685  		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
686  				  np->tx_ring_dma);
687  		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
688  				  np->rx_ring_dma);
689  		unregister_netdev(dev);
690  		pci_iounmap(pdev, np->mem);
691  		free_netdev(dev);
692  		pci_release_regions(pdev);
693  	} else
694  		printk(KERN_ERR "fealnx: remove for unknown device\n");
695  }
696  
697  
m80x_send_cmd_to_phy(void __iomem * miiport,int opcode,int phyad,int regad)698  static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
699  {
700  	ulong miir;
701  	int i;
702  	unsigned int mask, data;
703  
704  	/* enable MII output */
705  	miir = (ulong) ioread32(miiport);
706  	miir &= 0xfffffff0;
707  
708  	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
709  
710  	/* send 32 1's preamble */
711  	for (i = 0; i < 32; i++) {
712  		/* low MDC; MDO is already high (miir) */
713  		miir &= ~MASK_MIIR_MII_MDC;
714  		iowrite32(miir, miiport);
715  
716  		/* high MDC */
717  		miir |= MASK_MIIR_MII_MDC;
718  		iowrite32(miir, miiport);
719  	}
720  
721  	/* calculate ST+OP+PHYAD+REGAD+TA */
722  	data = opcode | (phyad << 7) | (regad << 2);
723  
724  	/* sent out */
725  	mask = 0x8000;
726  	while (mask) {
727  		/* low MDC, prepare MDO */
728  		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
729  		if (mask & data)
730  			miir |= MASK_MIIR_MII_MDO;
731  
732  		iowrite32(miir, miiport);
733  		/* high MDC */
734  		miir |= MASK_MIIR_MII_MDC;
735  		iowrite32(miir, miiport);
736  		udelay(30);
737  
738  		/* next */
739  		mask >>= 1;
740  		if (mask == 0x2 && opcode == OP_READ)
741  			miir &= ~MASK_MIIR_MII_WRITE;
742  	}
743  	return miir;
744  }
745  
746  
mdio_read(struct net_device * dev,int phyad,int regad)747  static int mdio_read(struct net_device *dev, int phyad, int regad)
748  {
749  	struct netdev_private *np = netdev_priv(dev);
750  	void __iomem *miiport = np->mem + MANAGEMENT;
751  	ulong miir;
752  	unsigned int mask, data;
753  
754  	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
755  
756  	/* read data */
757  	mask = 0x8000;
758  	data = 0;
759  	while (mask) {
760  		/* low MDC */
761  		miir &= ~MASK_MIIR_MII_MDC;
762  		iowrite32(miir, miiport);
763  
764  		/* read MDI */
765  		miir = ioread32(miiport);
766  		if (miir & MASK_MIIR_MII_MDI)
767  			data |= mask;
768  
769  		/* high MDC, and wait */
770  		miir |= MASK_MIIR_MII_MDC;
771  		iowrite32(miir, miiport);
772  		udelay(30);
773  
774  		/* next */
775  		mask >>= 1;
776  	}
777  
778  	/* low MDC */
779  	miir &= ~MASK_MIIR_MII_MDC;
780  	iowrite32(miir, miiport);
781  
782  	return data & 0xffff;
783  }
784  
785  
mdio_write(struct net_device * dev,int phyad,int regad,int data)786  static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
787  {
788  	struct netdev_private *np = netdev_priv(dev);
789  	void __iomem *miiport = np->mem + MANAGEMENT;
790  	ulong miir;
791  	unsigned int mask;
792  
793  	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
794  
795  	/* write data */
796  	mask = 0x8000;
797  	while (mask) {
798  		/* low MDC, prepare MDO */
799  		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
800  		if (mask & data)
801  			miir |= MASK_MIIR_MII_MDO;
802  		iowrite32(miir, miiport);
803  
804  		/* high MDC */
805  		miir |= MASK_MIIR_MII_MDC;
806  		iowrite32(miir, miiport);
807  
808  		/* next */
809  		mask >>= 1;
810  	}
811  
812  	/* low MDC */
813  	miir &= ~MASK_MIIR_MII_MDC;
814  	iowrite32(miir, miiport);
815  }
816  
817  
netdev_open(struct net_device * dev)818  static int netdev_open(struct net_device *dev)
819  {
820  	struct netdev_private *np = netdev_priv(dev);
821  	void __iomem *ioaddr = np->mem;
822  	const int irq = np->pci_dev->irq;
823  	int rc, i;
824  
825  	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
826  
827  	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
828  	if (rc)
829  		return -EAGAIN;
830  
831  	for (i = 0; i < 3; i++)
832  		iowrite16(((const unsigned short *)dev->dev_addr)[i],
833  				ioaddr + PAR0 + i*2);
834  
835  	init_ring(dev);
836  
837  	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
838  	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
839  
840  	/* Initialize other registers. */
841  	/* Configure the PCI bus bursts and FIFO thresholds.
842  	   486: Set 8 longword burst.
843  	   586: no burst limit.
844  	   Burst length 5:3
845  	   0 0 0   1
846  	   0 0 1   4
847  	   0 1 0   8
848  	   0 1 1   16
849  	   1 0 0   32
850  	   1 0 1   64
851  	   1 1 0   128
852  	   1 1 1   256
853  	   Wait the specified 50 PCI cycles after a reset by initializing
854  	   Tx and Rx queues and the address filter list.
855  	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
856  
857  	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
858  #ifdef __BIG_ENDIAN
859  	np->bcrvalue |= 0x04;	/* big-endian */
860  #endif
861  
862  #if defined(__i386__) && !defined(MODULE) && !defined(CONFIG_UML)
863  	if (boot_cpu_data.x86 <= 4)
864  		np->crvalue = 0xa00;
865  	else
866  #endif
867  		np->crvalue = 0xe00;	/* rx 128 burst length */
868  
869  
870  // 89/12/29 add,
871  // 90/1/16 modify,
872  //   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
873  	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
874  	if (np->pci_dev->device == 0x891) {
875  		np->bcrvalue |= 0x200;	/* set PROG bit */
876  		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
877  		np->imrvalue |= ETI;
878  	}
879  	iowrite32(np->bcrvalue, ioaddr + BCR);
880  
881  	if (dev->if_port == 0)
882  		dev->if_port = np->default_port;
883  
884  	iowrite32(0, ioaddr + RXPDR);
885  // 89/9/1 modify,
886  //   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
887  	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
888  	np->mii.full_duplex = np->mii.force_media;
889  	getlinkstatus(dev);
890  	if (np->linkok)
891  		getlinktype(dev);
892  	__set_rx_mode(dev);
893  
894  	netif_start_queue(dev);
895  
896  	/* Clear and Enable interrupts by setting the interrupt mask. */
897  	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
898  	iowrite32(np->imrvalue, ioaddr + IMR);
899  
900  	if (debug)
901  		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
902  
903  	/* Set the timer to check for link beat. */
904  	timer_setup(&np->timer, netdev_timer, 0);
905  	np->timer.expires = RUN_AT(3 * HZ);
906  
907  	/* timer handler */
908  	add_timer(&np->timer);
909  
910  	timer_setup(&np->reset_timer, reset_timer, 0);
911  	np->reset_timer_armed = 0;
912  	return rc;
913  }
914  
915  
getlinkstatus(struct net_device * dev)916  static void getlinkstatus(struct net_device *dev)
917  /* function: Routine will read MII Status Register to get link status.       */
918  /* input   : dev... pointer to the adapter block.                            */
919  /* output  : none.                                                           */
920  {
921  	struct netdev_private *np = netdev_priv(dev);
922  	unsigned int i, DelayTime = 0x1000;
923  
924  	np->linkok = 0;
925  
926  	if (np->PHYType == MysonPHY) {
927  		for (i = 0; i < DelayTime; ++i) {
928  			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
929  				np->linkok = 1;
930  				return;
931  			}
932  			udelay(100);
933  		}
934  	} else {
935  		for (i = 0; i < DelayTime; ++i) {
936  			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
937  				np->linkok = 1;
938  				return;
939  			}
940  			udelay(100);
941  		}
942  	}
943  }
944  
945  
getlinktype(struct net_device * dev)946  static void getlinktype(struct net_device *dev)
947  {
948  	struct netdev_private *np = netdev_priv(dev);
949  
950  	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
951  		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
952  			np->duplexmode = 2;	/* full duplex */
953  		else
954  			np->duplexmode = 1;	/* half duplex */
955  		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
956  			np->line_speed = 1;	/* 10M */
957  		else
958  			np->line_speed = 2;	/* 100M */
959  	} else {
960  		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
961  			unsigned int data;
962  
963  			data = mdio_read(dev, np->phys[0], MIIRegister18);
964  			if (data & SPD_DET_100)
965  				np->line_speed = 2;	/* 100M */
966  			else
967  				np->line_speed = 1;	/* 10M */
968  			if (data & DPLX_DET_FULL)
969  				np->duplexmode = 2;	/* full duplex mode */
970  			else
971  				np->duplexmode = 1;	/* half duplex mode */
972  		} else if (np->PHYType == AhdocPHY) {
973  			unsigned int data;
974  
975  			data = mdio_read(dev, np->phys[0], DiagnosticReg);
976  			if (data & Speed_100)
977  				np->line_speed = 2;	/* 100M */
978  			else
979  				np->line_speed = 1;	/* 10M */
980  			if (data & DPLX_FULL)
981  				np->duplexmode = 2;	/* full duplex mode */
982  			else
983  				np->duplexmode = 1;	/* half duplex mode */
984  		}
985  /* 89/6/13 add, (begin) */
986  		else if (np->PHYType == MarvellPHY) {
987  			unsigned int data;
988  
989  			data = mdio_read(dev, np->phys[0], SpecificReg);
990  			if (data & Full_Duplex)
991  				np->duplexmode = 2;	/* full duplex mode */
992  			else
993  				np->duplexmode = 1;	/* half duplex mode */
994  			data &= SpeedMask;
995  			if (data == Speed_1000M)
996  				np->line_speed = 3;	/* 1000M */
997  			else if (data == Speed_100M)
998  				np->line_speed = 2;	/* 100M */
999  			else
1000  				np->line_speed = 1;	/* 10M */
1001  		}
1002  /* 89/6/13 add, (end) */
1003  /* 89/7/27 add, (begin) */
1004  		else if (np->PHYType == Myson981) {
1005  			unsigned int data;
1006  
1007  			data = mdio_read(dev, np->phys[0], StatusRegister);
1008  
1009  			if (data & SPEED100)
1010  				np->line_speed = 2;
1011  			else
1012  				np->line_speed = 1;
1013  
1014  			if (data & FULLMODE)
1015  				np->duplexmode = 2;
1016  			else
1017  				np->duplexmode = 1;
1018  		}
1019  /* 89/7/27 add, (end) */
1020  /* 89/12/29 add */
1021  		else if (np->PHYType == LevelOnePHY) {
1022  			unsigned int data;
1023  
1024  			data = mdio_read(dev, np->phys[0], SpecificReg);
1025  			if (data & LXT1000_Full)
1026  				np->duplexmode = 2;	/* full duplex mode */
1027  			else
1028  				np->duplexmode = 1;	/* half duplex mode */
1029  			data &= SpeedMask;
1030  			if (data == LXT1000_1000M)
1031  				np->line_speed = 3;	/* 1000M */
1032  			else if (data == LXT1000_100M)
1033  				np->line_speed = 2;	/* 100M */
1034  			else
1035  				np->line_speed = 1;	/* 10M */
1036  		}
1037  		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1038  		if (np->line_speed == 1)
1039  			np->crvalue |= CR_W_PS10;
1040  		else if (np->line_speed == 3)
1041  			np->crvalue |= CR_W_PS1000;
1042  		if (np->duplexmode == 2)
1043  			np->crvalue |= CR_W_FD;
1044  	}
1045  }
1046  
1047  
1048  /* Take lock before calling this */
allocate_rx_buffers(struct net_device * dev)1049  static void allocate_rx_buffers(struct net_device *dev)
1050  {
1051  	struct netdev_private *np = netdev_priv(dev);
1052  
1053  	/*  allocate skb for rx buffers */
1054  	while (np->really_rx_count != RX_RING_SIZE) {
1055  		struct sk_buff *skb;
1056  
1057  		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1058  		if (skb == NULL)
1059  			break;	/* Better luck next round. */
1060  
1061  		while (np->lack_rxbuf->skbuff)
1062  			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1063  
1064  		np->lack_rxbuf->skbuff = skb;
1065  		np->lack_rxbuf->buffer = dma_map_single(&np->pci_dev->dev,
1066  							skb->data,
1067  							np->rx_buf_sz,
1068  							DMA_FROM_DEVICE);
1069  		np->lack_rxbuf->status = RXOWN;
1070  		++np->really_rx_count;
1071  	}
1072  }
1073  
1074  
netdev_timer(struct timer_list * t)1075  static void netdev_timer(struct timer_list *t)
1076  {
1077  	struct netdev_private *np = from_timer(np, t, timer);
1078  	struct net_device *dev = np->mii.dev;
1079  	void __iomem *ioaddr = np->mem;
1080  	int old_crvalue = np->crvalue;
1081  	unsigned int old_linkok = np->linkok;
1082  	unsigned long flags;
1083  
1084  	if (debug)
1085  		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1086  		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1087  		       ioread32(ioaddr + TCRRCR));
1088  
1089  	spin_lock_irqsave(&np->lock, flags);
1090  
1091  	if (np->flags == HAS_MII_XCVR) {
1092  		getlinkstatus(dev);
1093  		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1094  			getlinktype(dev);
1095  			if (np->crvalue != old_crvalue) {
1096  				stop_nic_rxtx(ioaddr, np->crvalue);
1097  				iowrite32(np->crvalue, ioaddr + TCRRCR);
1098  			}
1099  		}
1100  	}
1101  
1102  	allocate_rx_buffers(dev);
1103  
1104  	spin_unlock_irqrestore(&np->lock, flags);
1105  
1106  	np->timer.expires = RUN_AT(10 * HZ);
1107  	add_timer(&np->timer);
1108  }
1109  
1110  
1111  /* Take lock before calling */
1112  /* Reset chip and disable rx, tx and interrupts */
reset_and_disable_rxtx(struct net_device * dev)1113  static void reset_and_disable_rxtx(struct net_device *dev)
1114  {
1115  	struct netdev_private *np = netdev_priv(dev);
1116  	void __iomem *ioaddr = np->mem;
1117  	int delay=51;
1118  
1119  	/* Reset the chip's Tx and Rx processes. */
1120  	stop_nic_rxtx(ioaddr, 0);
1121  
1122  	/* Disable interrupts by clearing the interrupt mask. */
1123  	iowrite32(0, ioaddr + IMR);
1124  
1125  	/* Reset the chip to erase previous misconfiguration. */
1126  	iowrite32(0x00000001, ioaddr + BCR);
1127  
1128  	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1129  	   We surely wait too long (address+data phase). Who cares? */
1130  	while (--delay) {
1131  		ioread32(ioaddr + BCR);
1132  		rmb();
1133  	}
1134  }
1135  
1136  
1137  /* Take lock before calling */
1138  /* Restore chip after reset */
enable_rxtx(struct net_device * dev)1139  static void enable_rxtx(struct net_device *dev)
1140  {
1141  	struct netdev_private *np = netdev_priv(dev);
1142  	void __iomem *ioaddr = np->mem;
1143  
1144  	reset_rx_descriptors(dev);
1145  
1146  	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1147  		ioaddr + TXLBA);
1148  	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1149  		ioaddr + RXLBA);
1150  
1151  	iowrite32(np->bcrvalue, ioaddr + BCR);
1152  
1153  	iowrite32(0, ioaddr + RXPDR);
1154  	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1155  
1156  	/* Clear and Enable interrupts by setting the interrupt mask. */
1157  	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1158  	iowrite32(np->imrvalue, ioaddr + IMR);
1159  
1160  	iowrite32(0, ioaddr + TXPDR);
1161  }
1162  
1163  
reset_timer(struct timer_list * t)1164  static void reset_timer(struct timer_list *t)
1165  {
1166  	struct netdev_private *np = from_timer(np, t, reset_timer);
1167  	struct net_device *dev = np->mii.dev;
1168  	unsigned long flags;
1169  
1170  	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1171  
1172  	spin_lock_irqsave(&np->lock, flags);
1173  	np->crvalue = np->crvalue_sv;
1174  	np->imrvalue = np->imrvalue_sv;
1175  
1176  	reset_and_disable_rxtx(dev);
1177  	/* works for me without this:
1178  	reset_tx_descriptors(dev); */
1179  	enable_rxtx(dev);
1180  	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1181  
1182  	np->reset_timer_armed = 0;
1183  
1184  	spin_unlock_irqrestore(&np->lock, flags);
1185  }
1186  
1187  
fealnx_tx_timeout(struct net_device * dev,unsigned int txqueue)1188  static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1189  {
1190  	struct netdev_private *np = netdev_priv(dev);
1191  	void __iomem *ioaddr = np->mem;
1192  	unsigned long flags;
1193  	int i;
1194  
1195  	printk(KERN_WARNING
1196  	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1197  	       dev->name, ioread32(ioaddr + ISR));
1198  
1199  	{
1200  		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1201  		for (i = 0; i < RX_RING_SIZE; i++)
1202  			printk(KERN_CONT " %8.8x",
1203  			       (unsigned int) np->rx_ring[i].status);
1204  		printk(KERN_CONT "\n");
1205  		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1206  		for (i = 0; i < TX_RING_SIZE; i++)
1207  			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1208  		printk(KERN_CONT "\n");
1209  	}
1210  
1211  	spin_lock_irqsave(&np->lock, flags);
1212  
1213  	reset_and_disable_rxtx(dev);
1214  	reset_tx_descriptors(dev);
1215  	enable_rxtx(dev);
1216  
1217  	spin_unlock_irqrestore(&np->lock, flags);
1218  
1219  	netif_trans_update(dev); /* prevent tx timeout */
1220  	dev->stats.tx_errors++;
1221  	netif_wake_queue(dev); /* or .._start_.. ?? */
1222  }
1223  
1224  
1225  /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1226  static void init_ring(struct net_device *dev)
1227  {
1228  	struct netdev_private *np = netdev_priv(dev);
1229  	int i;
1230  
1231  	/* initialize rx variables */
1232  	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1233  	np->cur_rx = &np->rx_ring[0];
1234  	np->lack_rxbuf = np->rx_ring;
1235  	np->really_rx_count = 0;
1236  
1237  	/* initial rx descriptors. */
1238  	for (i = 0; i < RX_RING_SIZE; i++) {
1239  		np->rx_ring[i].status = 0;
1240  		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1241  		np->rx_ring[i].next_desc = np->rx_ring_dma +
1242  			(i + 1)*sizeof(struct fealnx_desc);
1243  		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1244  		np->rx_ring[i].skbuff = NULL;
1245  	}
1246  
1247  	/* for the last rx descriptor */
1248  	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1249  	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1250  
1251  	/* allocate skb for rx buffers */
1252  	for (i = 0; i < RX_RING_SIZE; i++) {
1253  		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1254  
1255  		if (skb == NULL) {
1256  			np->lack_rxbuf = &np->rx_ring[i];
1257  			break;
1258  		}
1259  
1260  		++np->really_rx_count;
1261  		np->rx_ring[i].skbuff = skb;
1262  		np->rx_ring[i].buffer = dma_map_single(&np->pci_dev->dev,
1263  						       skb->data,
1264  						       np->rx_buf_sz,
1265  						       DMA_FROM_DEVICE);
1266  		np->rx_ring[i].status = RXOWN;
1267  		np->rx_ring[i].control |= RXIC;
1268  	}
1269  
1270  	/* initialize tx variables */
1271  	np->cur_tx = &np->tx_ring[0];
1272  	np->cur_tx_copy = &np->tx_ring[0];
1273  	np->really_tx_count = 0;
1274  	np->free_tx_count = TX_RING_SIZE;
1275  
1276  	for (i = 0; i < TX_RING_SIZE; i++) {
1277  		np->tx_ring[i].status = 0;
1278  		/* do we need np->tx_ring[i].control = XXX; ?? */
1279  		np->tx_ring[i].next_desc = np->tx_ring_dma +
1280  			(i + 1)*sizeof(struct fealnx_desc);
1281  		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1282  		np->tx_ring[i].skbuff = NULL;
1283  	}
1284  
1285  	/* for the last tx descriptor */
1286  	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1287  	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1288  }
1289  
1290  
start_tx(struct sk_buff * skb,struct net_device * dev)1291  static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1292  {
1293  	struct netdev_private *np = netdev_priv(dev);
1294  	unsigned long flags;
1295  
1296  	spin_lock_irqsave(&np->lock, flags);
1297  
1298  	np->cur_tx_copy->skbuff = skb;
1299  
1300  #define one_buffer
1301  #define BPT 1022
1302  #if defined(one_buffer)
1303  	np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, skb->data,
1304  						 skb->len, DMA_TO_DEVICE);
1305  	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1306  	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1307  	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1308  // 89/12/29 add,
1309  	if (np->pci_dev->device == 0x891)
1310  		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1311  	np->cur_tx_copy->status = TXOWN;
1312  	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1313  	--np->free_tx_count;
1314  #elif defined(two_buffer)
1315  	if (skb->len > BPT) {
1316  		struct fealnx_desc *next;
1317  
1318  		/* for the first descriptor */
1319  		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1320  							 skb->data, BPT,
1321  							 DMA_TO_DEVICE);
1322  		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1323  		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1324  		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1325  
1326  		/* for the last descriptor */
1327  		next = np->cur_tx_copy->next_desc_logical;
1328  		next->skbuff = skb;
1329  		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1330  		next->control |= (skb->len << PKTSShift);	/* pkt size */
1331  		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1332  // 89/12/29 add,
1333  		if (np->pci_dev->device == 0x891)
1334  			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1335  		next->buffer = dma_map_single(&ep->pci_dev->dev,
1336  					      skb->data + BPT, skb->len - BPT,
1337  					      DMA_TO_DEVICE);
1338  
1339  		next->status = TXOWN;
1340  		np->cur_tx_copy->status = TXOWN;
1341  
1342  		np->cur_tx_copy = next->next_desc_logical;
1343  		np->free_tx_count -= 2;
1344  	} else {
1345  		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1346  							 skb->data, skb->len,
1347  							 DMA_TO_DEVICE);
1348  		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1349  		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1350  		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1351  // 89/12/29 add,
1352  		if (np->pci_dev->device == 0x891)
1353  			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1354  		np->cur_tx_copy->status = TXOWN;
1355  		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1356  		--np->free_tx_count;
1357  	}
1358  #endif
1359  
1360  	if (np->free_tx_count < 2)
1361  		netif_stop_queue(dev);
1362  	++np->really_tx_count;
1363  	iowrite32(0, np->mem + TXPDR);
1364  
1365  	spin_unlock_irqrestore(&np->lock, flags);
1366  	return NETDEV_TX_OK;
1367  }
1368  
1369  
1370  /* Take lock before calling */
1371  /* Chip probably hosed tx ring. Clean up. */
reset_tx_descriptors(struct net_device * dev)1372  static void reset_tx_descriptors(struct net_device *dev)
1373  {
1374  	struct netdev_private *np = netdev_priv(dev);
1375  	struct fealnx_desc *cur;
1376  	int i;
1377  
1378  	/* initialize tx variables */
1379  	np->cur_tx = &np->tx_ring[0];
1380  	np->cur_tx_copy = &np->tx_ring[0];
1381  	np->really_tx_count = 0;
1382  	np->free_tx_count = TX_RING_SIZE;
1383  
1384  	for (i = 0; i < TX_RING_SIZE; i++) {
1385  		cur = &np->tx_ring[i];
1386  		if (cur->skbuff) {
1387  			dma_unmap_single(&np->pci_dev->dev, cur->buffer,
1388  					 cur->skbuff->len, DMA_TO_DEVICE);
1389  			dev_kfree_skb_any(cur->skbuff);
1390  			cur->skbuff = NULL;
1391  		}
1392  		cur->status = 0;
1393  		cur->control = 0;	/* needed? */
1394  		/* probably not needed. We do it for purely paranoid reasons */
1395  		cur->next_desc = np->tx_ring_dma +
1396  			(i + 1)*sizeof(struct fealnx_desc);
1397  		cur->next_desc_logical = &np->tx_ring[i + 1];
1398  	}
1399  	/* for the last tx descriptor */
1400  	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1401  	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1402  }
1403  
1404  
1405  /* Take lock and stop rx before calling this */
reset_rx_descriptors(struct net_device * dev)1406  static void reset_rx_descriptors(struct net_device *dev)
1407  {
1408  	struct netdev_private *np = netdev_priv(dev);
1409  	struct fealnx_desc *cur = np->cur_rx;
1410  	int i;
1411  
1412  	allocate_rx_buffers(dev);
1413  
1414  	for (i = 0; i < RX_RING_SIZE; i++) {
1415  		if (cur->skbuff)
1416  			cur->status = RXOWN;
1417  		cur = cur->next_desc_logical;
1418  	}
1419  
1420  	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1421  		np->mem + RXLBA);
1422  }
1423  
1424  
1425  /* The interrupt handler does all of the Rx thread work and cleans up
1426     after the Tx thread. */
intr_handler(int irq,void * dev_instance)1427  static irqreturn_t intr_handler(int irq, void *dev_instance)
1428  {
1429  	struct net_device *dev = (struct net_device *) dev_instance;
1430  	struct netdev_private *np = netdev_priv(dev);
1431  	void __iomem *ioaddr = np->mem;
1432  	long boguscnt = max_interrupt_work;
1433  	unsigned int num_tx = 0;
1434  	int handled = 0;
1435  
1436  	spin_lock(&np->lock);
1437  
1438  	iowrite32(0, ioaddr + IMR);
1439  
1440  	do {
1441  		u32 intr_status = ioread32(ioaddr + ISR);
1442  
1443  		/* Acknowledge all of the current interrupt sources ASAP. */
1444  		iowrite32(intr_status, ioaddr + ISR);
1445  
1446  		if (debug)
1447  			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1448  			       intr_status);
1449  
1450  		if (!(intr_status & np->imrvalue))
1451  			break;
1452  
1453  		handled = 1;
1454  
1455  // 90/1/16 delete,
1456  //
1457  //      if (intr_status & FBE)
1458  //      {   /* fatal error */
1459  //          stop_nic_tx(ioaddr, 0);
1460  //          stop_nic_rx(ioaddr, 0);
1461  //          break;
1462  //      };
1463  
1464  		if (intr_status & TUNF)
1465  			iowrite32(0, ioaddr + TXPDR);
1466  
1467  		if (intr_status & CNTOVF) {
1468  			/* missed pkts */
1469  			dev->stats.rx_missed_errors +=
1470  				ioread32(ioaddr + TALLY) & 0x7fff;
1471  
1472  			/* crc error */
1473  			dev->stats.rx_crc_errors +=
1474  			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1475  		}
1476  
1477  		if (intr_status & (RI | RBU)) {
1478  			if (intr_status & RI)
1479  				netdev_rx(dev);
1480  			else {
1481  				stop_nic_rx(ioaddr, np->crvalue);
1482  				reset_rx_descriptors(dev);
1483  				iowrite32(np->crvalue, ioaddr + TCRRCR);
1484  			}
1485  		}
1486  
1487  		while (np->really_tx_count) {
1488  			long tx_status = np->cur_tx->status;
1489  			long tx_control = np->cur_tx->control;
1490  
1491  			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1492  				struct fealnx_desc *next;
1493  
1494  				next = np->cur_tx->next_desc_logical;
1495  				tx_status = next->status;
1496  				tx_control = next->control;
1497  			}
1498  
1499  			if (tx_status & TXOWN)
1500  				break;
1501  
1502  			if (!(np->crvalue & CR_W_ENH)) {
1503  				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1504  					dev->stats.tx_errors++;
1505  					if (tx_status & EC)
1506  						dev->stats.tx_aborted_errors++;
1507  					if (tx_status & CSL)
1508  						dev->stats.tx_carrier_errors++;
1509  					if (tx_status & LC)
1510  						dev->stats.tx_window_errors++;
1511  					if (tx_status & UDF)
1512  						dev->stats.tx_fifo_errors++;
1513  					if ((tx_status & HF) && np->mii.full_duplex == 0)
1514  						dev->stats.tx_heartbeat_errors++;
1515  
1516  				} else {
1517  					dev->stats.tx_bytes +=
1518  					    ((tx_control & PKTSMask) >> PKTSShift);
1519  
1520  					dev->stats.collisions +=
1521  					    ((tx_status & NCRMask) >> NCRShift);
1522  					dev->stats.tx_packets++;
1523  				}
1524  			} else {
1525  				dev->stats.tx_bytes +=
1526  				    ((tx_control & PKTSMask) >> PKTSShift);
1527  				dev->stats.tx_packets++;
1528  			}
1529  
1530  			/* Free the original skb. */
1531  			dma_unmap_single(&np->pci_dev->dev,
1532  					 np->cur_tx->buffer,
1533  					 np->cur_tx->skbuff->len,
1534  					 DMA_TO_DEVICE);
1535  			dev_consume_skb_irq(np->cur_tx->skbuff);
1536  			np->cur_tx->skbuff = NULL;
1537  			--np->really_tx_count;
1538  			if (np->cur_tx->control & TXLD) {
1539  				np->cur_tx = np->cur_tx->next_desc_logical;
1540  				++np->free_tx_count;
1541  			} else {
1542  				np->cur_tx = np->cur_tx->next_desc_logical;
1543  				np->cur_tx = np->cur_tx->next_desc_logical;
1544  				np->free_tx_count += 2;
1545  			}
1546  			num_tx++;
1547  		}		/* end of for loop */
1548  
1549  		if (num_tx && np->free_tx_count >= 2)
1550  			netif_wake_queue(dev);
1551  
1552  		/* read transmit status for enhanced mode only */
1553  		if (np->crvalue & CR_W_ENH) {
1554  			long data;
1555  
1556  			data = ioread32(ioaddr + TSR);
1557  			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1558  			dev->stats.tx_aborted_errors +=
1559  				(data & 0xff000000) >> 24;
1560  			dev->stats.tx_window_errors +=
1561  				(data & 0x00ff0000) >> 16;
1562  			dev->stats.collisions += (data & 0x0000ffff);
1563  		}
1564  
1565  		if (--boguscnt < 0) {
1566  			printk(KERN_WARNING "%s: Too much work at interrupt, "
1567  			       "status=0x%4.4x.\n", dev->name, intr_status);
1568  			if (!np->reset_timer_armed) {
1569  				np->reset_timer_armed = 1;
1570  				np->reset_timer.expires = RUN_AT(HZ/2);
1571  				add_timer(&np->reset_timer);
1572  				stop_nic_rxtx(ioaddr, 0);
1573  				netif_stop_queue(dev);
1574  				/* or netif_tx_disable(dev); ?? */
1575  				/* Prevent other paths from enabling tx,rx,intrs */
1576  				np->crvalue_sv = np->crvalue;
1577  				np->imrvalue_sv = np->imrvalue;
1578  				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1579  				np->imrvalue = 0;
1580  			}
1581  
1582  			break;
1583  		}
1584  	} while (1);
1585  
1586  	/* read the tally counters */
1587  	/* missed pkts */
1588  	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1589  
1590  	/* crc error */
1591  	dev->stats.rx_crc_errors +=
1592  		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1593  
1594  	if (debug)
1595  		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1596  		       dev->name, ioread32(ioaddr + ISR));
1597  
1598  	iowrite32(np->imrvalue, ioaddr + IMR);
1599  
1600  	spin_unlock(&np->lock);
1601  
1602  	return IRQ_RETVAL(handled);
1603  }
1604  
1605  
1606  /* This routine is logically part of the interrupt handler, but separated
1607     for clarity and better register allocation. */
netdev_rx(struct net_device * dev)1608  static int netdev_rx(struct net_device *dev)
1609  {
1610  	struct netdev_private *np = netdev_priv(dev);
1611  	void __iomem *ioaddr = np->mem;
1612  
1613  	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1614  	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1615  		s32 rx_status = np->cur_rx->status;
1616  
1617  		if (np->really_rx_count == 0)
1618  			break;
1619  
1620  		if (debug)
1621  			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1622  
1623  		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1624  		    (rx_status & ErrorSummary)) {
1625  			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1626  				if (debug)
1627  					printk(KERN_DEBUG
1628  					       "%s: Receive error, Rx status %8.8x.\n",
1629  					       dev->name, rx_status);
1630  
1631  				dev->stats.rx_errors++;	/* end of a packet. */
1632  				if (rx_status & (LONGPKT | RUNTPKT))
1633  					dev->stats.rx_length_errors++;
1634  				if (rx_status & RXER)
1635  					dev->stats.rx_frame_errors++;
1636  				if (rx_status & CRC)
1637  					dev->stats.rx_crc_errors++;
1638  			} else {
1639  				int need_to_reset = 0;
1640  				int desno = 0;
1641  
1642  				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1643  					struct fealnx_desc *cur;
1644  
1645  					/* check this packet is received completely? */
1646  					cur = np->cur_rx;
1647  					while (desno <= np->really_rx_count) {
1648  						++desno;
1649  						if ((!(cur->status & RXOWN)) &&
1650  						    (cur->status & RXLSD))
1651  							break;
1652  						/* goto next rx descriptor */
1653  						cur = cur->next_desc_logical;
1654  					}
1655  					if (desno > np->really_rx_count)
1656  						need_to_reset = 1;
1657  				} else	/* RXLSD did not find, something error */
1658  					need_to_reset = 1;
1659  
1660  				if (need_to_reset == 0) {
1661  					int i;
1662  
1663  					dev->stats.rx_length_errors++;
1664  
1665  					/* free all rx descriptors related this long pkt */
1666  					for (i = 0; i < desno; ++i) {
1667  						if (!np->cur_rx->skbuff) {
1668  							printk(KERN_DEBUG
1669  								"%s: I'm scared\n", dev->name);
1670  							break;
1671  						}
1672  						np->cur_rx->status = RXOWN;
1673  						np->cur_rx = np->cur_rx->next_desc_logical;
1674  					}
1675  					continue;
1676  				} else {        /* rx error, need to reset this chip */
1677  					stop_nic_rx(ioaddr, np->crvalue);
1678  					reset_rx_descriptors(dev);
1679  					iowrite32(np->crvalue, ioaddr + TCRRCR);
1680  				}
1681  				break;	/* exit the while loop */
1682  			}
1683  		} else {	/* this received pkt is ok */
1684  
1685  			struct sk_buff *skb;
1686  			/* Omit the four octet CRC from the length. */
1687  			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1688  
1689  #ifndef final_version
1690  			if (debug)
1691  				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1692  				       " status %x.\n", pkt_len, rx_status);
1693  #endif
1694  
1695  			/* Check if the packet is long enough to accept without copying
1696  			   to a minimally-sized skbuff. */
1697  			if (pkt_len < rx_copybreak &&
1698  			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1699  				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1700  				dma_sync_single_for_cpu(&np->pci_dev->dev,
1701  							np->cur_rx->buffer,
1702  							np->rx_buf_sz,
1703  							DMA_FROM_DEVICE);
1704  				/* Call copy + cksum if available. */
1705  
1706  #if ! defined(__alpha__)
1707  				skb_copy_to_linear_data(skb,
1708  					np->cur_rx->skbuff->data, pkt_len);
1709  				skb_put(skb, pkt_len);
1710  #else
1711  				skb_put_data(skb, np->cur_rx->skbuff->data,
1712  					     pkt_len);
1713  #endif
1714  				dma_sync_single_for_device(&np->pci_dev->dev,
1715  							   np->cur_rx->buffer,
1716  							   np->rx_buf_sz,
1717  							   DMA_FROM_DEVICE);
1718  			} else {
1719  				dma_unmap_single(&np->pci_dev->dev,
1720  						 np->cur_rx->buffer,
1721  						 np->rx_buf_sz,
1722  						 DMA_FROM_DEVICE);
1723  				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1724  				np->cur_rx->skbuff = NULL;
1725  				--np->really_rx_count;
1726  			}
1727  			skb->protocol = eth_type_trans(skb, dev);
1728  			netif_rx(skb);
1729  			dev->stats.rx_packets++;
1730  			dev->stats.rx_bytes += pkt_len;
1731  		}
1732  
1733  		np->cur_rx = np->cur_rx->next_desc_logical;
1734  	}			/* end of while loop */
1735  
1736  	/*  allocate skb for rx buffers */
1737  	allocate_rx_buffers(dev);
1738  
1739  	return 0;
1740  }
1741  
1742  
get_stats(struct net_device * dev)1743  static struct net_device_stats *get_stats(struct net_device *dev)
1744  {
1745  	struct netdev_private *np = netdev_priv(dev);
1746  	void __iomem *ioaddr = np->mem;
1747  
1748  	/* The chip only need report frame silently dropped. */
1749  	if (netif_running(dev)) {
1750  		dev->stats.rx_missed_errors +=
1751  			ioread32(ioaddr + TALLY) & 0x7fff;
1752  		dev->stats.rx_crc_errors +=
1753  			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1754  	}
1755  
1756  	return &dev->stats;
1757  }
1758  
1759  
1760  /* for dev->set_multicast_list */
set_rx_mode(struct net_device * dev)1761  static void set_rx_mode(struct net_device *dev)
1762  {
1763  	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1764  	unsigned long flags;
1765  	spin_lock_irqsave(lp, flags);
1766  	__set_rx_mode(dev);
1767  	spin_unlock_irqrestore(lp, flags);
1768  }
1769  
1770  
1771  /* Take lock before calling */
__set_rx_mode(struct net_device * dev)1772  static void __set_rx_mode(struct net_device *dev)
1773  {
1774  	struct netdev_private *np = netdev_priv(dev);
1775  	void __iomem *ioaddr = np->mem;
1776  	u32 mc_filter[2];	/* Multicast hash filter */
1777  	u32 rx_mode;
1778  
1779  	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1780  		memset(mc_filter, 0xff, sizeof(mc_filter));
1781  		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1782  	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1783  		   (dev->flags & IFF_ALLMULTI)) {
1784  		/* Too many to match, or accept all multicasts. */
1785  		memset(mc_filter, 0xff, sizeof(mc_filter));
1786  		rx_mode = CR_W_AB | CR_W_AM;
1787  	} else {
1788  		struct netdev_hw_addr *ha;
1789  
1790  		memset(mc_filter, 0, sizeof(mc_filter));
1791  		netdev_for_each_mc_addr(ha, dev) {
1792  			unsigned int bit;
1793  			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1794  			mc_filter[bit >> 5] |= (1 << bit);
1795  		}
1796  		rx_mode = CR_W_AB | CR_W_AM;
1797  	}
1798  
1799  	stop_nic_rxtx(ioaddr, np->crvalue);
1800  
1801  	iowrite32(mc_filter[0], ioaddr + MAR0);
1802  	iowrite32(mc_filter[1], ioaddr + MAR1);
1803  	np->crvalue &= ~CR_W_RXMODEMASK;
1804  	np->crvalue |= rx_mode;
1805  	iowrite32(np->crvalue, ioaddr + TCRRCR);
1806  }
1807  
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1808  static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1809  {
1810  	struct netdev_private *np = netdev_priv(dev);
1811  
1812  	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1813  	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1814  }
1815  
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1816  static int netdev_get_link_ksettings(struct net_device *dev,
1817  				     struct ethtool_link_ksettings *cmd)
1818  {
1819  	struct netdev_private *np = netdev_priv(dev);
1820  
1821  	spin_lock_irq(&np->lock);
1822  	mii_ethtool_get_link_ksettings(&np->mii, cmd);
1823  	spin_unlock_irq(&np->lock);
1824  
1825  	return 0;
1826  }
1827  
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1828  static int netdev_set_link_ksettings(struct net_device *dev,
1829  				     const struct ethtool_link_ksettings *cmd)
1830  {
1831  	struct netdev_private *np = netdev_priv(dev);
1832  	int rc;
1833  
1834  	spin_lock_irq(&np->lock);
1835  	rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1836  	spin_unlock_irq(&np->lock);
1837  
1838  	return rc;
1839  }
1840  
netdev_nway_reset(struct net_device * dev)1841  static int netdev_nway_reset(struct net_device *dev)
1842  {
1843  	struct netdev_private *np = netdev_priv(dev);
1844  	return mii_nway_restart(&np->mii);
1845  }
1846  
netdev_get_link(struct net_device * dev)1847  static u32 netdev_get_link(struct net_device *dev)
1848  {
1849  	struct netdev_private *np = netdev_priv(dev);
1850  	return mii_link_ok(&np->mii);
1851  }
1852  
netdev_get_msglevel(struct net_device * dev)1853  static u32 netdev_get_msglevel(struct net_device *dev)
1854  {
1855  	return debug;
1856  }
1857  
netdev_set_msglevel(struct net_device * dev,u32 value)1858  static void netdev_set_msglevel(struct net_device *dev, u32 value)
1859  {
1860  	debug = value;
1861  }
1862  
1863  static const struct ethtool_ops netdev_ethtool_ops = {
1864  	.get_drvinfo		= netdev_get_drvinfo,
1865  	.nway_reset		= netdev_nway_reset,
1866  	.get_link		= netdev_get_link,
1867  	.get_msglevel		= netdev_get_msglevel,
1868  	.set_msglevel		= netdev_set_msglevel,
1869  	.get_link_ksettings	= netdev_get_link_ksettings,
1870  	.set_link_ksettings	= netdev_set_link_ksettings,
1871  };
1872  
mii_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1873  static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874  {
1875  	struct netdev_private *np = netdev_priv(dev);
1876  	int rc;
1877  
1878  	if (!netif_running(dev))
1879  		return -EINVAL;
1880  
1881  	spin_lock_irq(&np->lock);
1882  	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1883  	spin_unlock_irq(&np->lock);
1884  
1885  	return rc;
1886  }
1887  
1888  
netdev_close(struct net_device * dev)1889  static int netdev_close(struct net_device *dev)
1890  {
1891  	struct netdev_private *np = netdev_priv(dev);
1892  	void __iomem *ioaddr = np->mem;
1893  	int i;
1894  
1895  	netif_stop_queue(dev);
1896  
1897  	/* Disable interrupts by clearing the interrupt mask. */
1898  	iowrite32(0x0000, ioaddr + IMR);
1899  
1900  	/* Stop the chip's Tx and Rx processes. */
1901  	stop_nic_rxtx(ioaddr, 0);
1902  
1903  	del_timer_sync(&np->timer);
1904  	del_timer_sync(&np->reset_timer);
1905  
1906  	free_irq(np->pci_dev->irq, dev);
1907  
1908  	/* Free all the skbuffs in the Rx queue. */
1909  	for (i = 0; i < RX_RING_SIZE; i++) {
1910  		struct sk_buff *skb = np->rx_ring[i].skbuff;
1911  
1912  		np->rx_ring[i].status = 0;
1913  		if (skb) {
1914  			dma_unmap_single(&np->pci_dev->dev,
1915  					 np->rx_ring[i].buffer, np->rx_buf_sz,
1916  					 DMA_FROM_DEVICE);
1917  			dev_kfree_skb(skb);
1918  			np->rx_ring[i].skbuff = NULL;
1919  		}
1920  	}
1921  
1922  	for (i = 0; i < TX_RING_SIZE; i++) {
1923  		struct sk_buff *skb = np->tx_ring[i].skbuff;
1924  
1925  		if (skb) {
1926  			dma_unmap_single(&np->pci_dev->dev,
1927  					 np->tx_ring[i].buffer, skb->len,
1928  					 DMA_TO_DEVICE);
1929  			dev_kfree_skb(skb);
1930  			np->tx_ring[i].skbuff = NULL;
1931  		}
1932  	}
1933  
1934  	return 0;
1935  }
1936  
1937  static const struct pci_device_id fealnx_pci_tbl[] = {
1938  	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1939  	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1940  	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1941  	{} /* terminate list */
1942  };
1943  MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1944  
1945  
1946  static struct pci_driver fealnx_driver = {
1947  	.name		= "fealnx",
1948  	.id_table	= fealnx_pci_tbl,
1949  	.probe		= fealnx_init_one,
1950  	.remove		= fealnx_remove_one,
1951  };
1952  
1953  module_pci_driver(fealnx_driver);
1954