1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3 */
4
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19
20 #include "cqhci.h"
21 #include "cqhci-crypto.h"
22
23 #define DCMD_SLOT 31
24 #define NUM_SLOTS 32
25
26 struct cqhci_slot {
27 struct mmc_request *mrq;
28 unsigned int flags;
29 #define CQHCI_EXTERNAL_TIMEOUT BIT(0)
30 #define CQHCI_COMPLETED BIT(1)
31 #define CQHCI_HOST_CRC BIT(2)
32 #define CQHCI_HOST_TIMEOUT BIT(3)
33 #define CQHCI_HOST_OTHER BIT(4)
34 };
35
get_desc(struct cqhci_host * cq_host,u8 tag)36 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
37 {
38 return cq_host->desc_base + (tag * cq_host->slot_sz);
39 }
40
get_link_desc(struct cqhci_host * cq_host,u8 tag)41 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
42 {
43 u8 *desc = get_desc(cq_host, tag);
44
45 return desc + cq_host->task_desc_len;
46 }
47
get_trans_desc_offset(struct cqhci_host * cq_host,u8 tag)48 static inline size_t get_trans_desc_offset(struct cqhci_host *cq_host, u8 tag)
49 {
50 return cq_host->trans_desc_len * cq_host->mmc->max_segs * tag;
51 }
52
get_trans_desc_dma(struct cqhci_host * cq_host,u8 tag)53 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
54 {
55 size_t offset = get_trans_desc_offset(cq_host, tag);
56
57 return cq_host->trans_desc_dma_base + offset;
58 }
59
get_trans_desc(struct cqhci_host * cq_host,u8 tag)60 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
61 {
62 size_t offset = get_trans_desc_offset(cq_host, tag);
63
64 return cq_host->trans_desc_base + offset;
65 }
66
setup_trans_desc(struct cqhci_host * cq_host,u8 tag)67 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
68 {
69 u8 *link_temp;
70 dma_addr_t trans_temp;
71
72 link_temp = get_link_desc(cq_host, tag);
73 trans_temp = get_trans_desc_dma(cq_host, tag);
74
75 memset(link_temp, 0, cq_host->link_desc_len);
76 if (cq_host->link_desc_len > 8)
77 *(link_temp + 8) = 0;
78
79 if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
80 *link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
81 return;
82 }
83
84 *link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
85
86 if (cq_host->dma64) {
87 __le64 *data_addr = (__le64 __force *)(link_temp + 4);
88
89 data_addr[0] = cpu_to_le64(trans_temp);
90 } else {
91 __le32 *data_addr = (__le32 __force *)(link_temp + 4);
92
93 data_addr[0] = cpu_to_le32(trans_temp);
94 }
95 }
96
cqhci_set_irqs(struct cqhci_host * cq_host,u32 set)97 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
98 {
99 cqhci_writel(cq_host, set, CQHCI_ISTE);
100 cqhci_writel(cq_host, set, CQHCI_ISGE);
101 }
102
103 #define DRV_NAME "cqhci"
104
105 #define CQHCI_DUMP(f, x...) \
106 pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
107
cqhci_dumpregs(struct cqhci_host * cq_host)108 static void cqhci_dumpregs(struct cqhci_host *cq_host)
109 {
110 struct mmc_host *mmc = cq_host->mmc;
111
112 CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
113
114 CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n",
115 cqhci_readl(cq_host, CQHCI_CAP),
116 cqhci_readl(cq_host, CQHCI_VER));
117 CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n",
118 cqhci_readl(cq_host, CQHCI_CFG),
119 cqhci_readl(cq_host, CQHCI_CTL));
120 CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n",
121 cqhci_readl(cq_host, CQHCI_IS),
122 cqhci_readl(cq_host, CQHCI_ISTE));
123 CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n",
124 cqhci_readl(cq_host, CQHCI_ISGE),
125 cqhci_readl(cq_host, CQHCI_IC));
126 CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n",
127 cqhci_readl(cq_host, CQHCI_TDLBA),
128 cqhci_readl(cq_host, CQHCI_TDLBAU));
129 CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n",
130 cqhci_readl(cq_host, CQHCI_TDBR),
131 cqhci_readl(cq_host, CQHCI_TCN));
132 CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
133 cqhci_readl(cq_host, CQHCI_DQS),
134 cqhci_readl(cq_host, CQHCI_DPT));
135 CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n",
136 cqhci_readl(cq_host, CQHCI_TCLR),
137 cqhci_readl(cq_host, CQHCI_SSC1));
138 CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n",
139 cqhci_readl(cq_host, CQHCI_SSC2),
140 cqhci_readl(cq_host, CQHCI_CRDCT));
141 CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n",
142 cqhci_readl(cq_host, CQHCI_RMEM),
143 cqhci_readl(cq_host, CQHCI_TERRI));
144 CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n",
145 cqhci_readl(cq_host, CQHCI_CRI),
146 cqhci_readl(cq_host, CQHCI_CRA));
147
148 if (cq_host->ops->dumpregs)
149 cq_host->ops->dumpregs(mmc);
150 else
151 CQHCI_DUMP(": ===========================================\n");
152 }
153
154 /*
155 * The allocated descriptor table for task, link & transfer descriptors
156 * looks like:
157 * |----------|
158 * |task desc | |->|----------|
159 * |----------| | |trans desc|
160 * |link desc-|->| |----------|
161 * |----------| .
162 * . .
163 * no. of slots max-segs
164 * . |----------|
165 * |----------|
166 * The idea here is to create the [task+trans] table and mark & point the
167 * link desc to the transfer desc table on a per slot basis.
168 */
cqhci_host_alloc_tdl(struct cqhci_host * cq_host)169 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
170 {
171 int i = 0;
172
173 /* task descriptor can be 64/128 bit irrespective of arch */
174 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
175 cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
176 CQHCI_TASK_DESC_SZ, CQHCI_CFG);
177 cq_host->task_desc_len = 16;
178 } else {
179 cq_host->task_desc_len = 8;
180 }
181
182 /*
183 * 96 bits length of transfer desc instead of 128 bits which means
184 * ADMA would expect next valid descriptor at the 96th bit
185 * or 128th bit
186 */
187 if (cq_host->dma64) {
188 if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
189 cq_host->trans_desc_len = 12;
190 else
191 cq_host->trans_desc_len = 16;
192 cq_host->link_desc_len = 16;
193 } else {
194 cq_host->trans_desc_len = 8;
195 cq_host->link_desc_len = 8;
196 }
197
198 /* total size of a slot: 1 task & 1 transfer (link) */
199 cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
200
201 cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
202
203 cq_host->data_size = get_trans_desc_offset(cq_host, cq_host->mmc->cqe_qdepth);
204
205 pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
206 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
207 cq_host->slot_sz);
208
209 /*
210 * allocate a dma-mapped chunk of memory for the descriptors
211 * allocate a dma-mapped chunk of memory for link descriptors
212 * setup each link-desc memory offset per slot-number to
213 * the descriptor table.
214 */
215 cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
216 cq_host->desc_size,
217 &cq_host->desc_dma_base,
218 GFP_KERNEL);
219 if (!cq_host->desc_base)
220 return -ENOMEM;
221
222 cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
223 cq_host->data_size,
224 &cq_host->trans_desc_dma_base,
225 GFP_KERNEL);
226 if (!cq_host->trans_desc_base) {
227 dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
228 cq_host->desc_base,
229 cq_host->desc_dma_base);
230 cq_host->desc_base = NULL;
231 cq_host->desc_dma_base = 0;
232 return -ENOMEM;
233 }
234
235 pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
236 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
237 (unsigned long long)cq_host->desc_dma_base,
238 (unsigned long long)cq_host->trans_desc_dma_base);
239
240 for (; i < (cq_host->num_slots); i++)
241 setup_trans_desc(cq_host, i);
242
243 return 0;
244 }
245
__cqhci_enable(struct cqhci_host * cq_host)246 static void __cqhci_enable(struct cqhci_host *cq_host)
247 {
248 struct mmc_host *mmc = cq_host->mmc;
249 u32 cqcfg;
250
251 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
252
253 /* Configuration must not be changed while enabled */
254 if (cqcfg & CQHCI_ENABLE) {
255 cqcfg &= ~CQHCI_ENABLE;
256 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
257 }
258
259 cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
260
261 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
262 cqcfg |= CQHCI_DCMD;
263
264 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
265 cqcfg |= CQHCI_TASK_DESC_SZ;
266
267 if (mmc->caps2 & MMC_CAP2_CRYPTO)
268 cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
269
270 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
271
272 cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
273 CQHCI_TDLBA);
274 cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
275 CQHCI_TDLBAU);
276
277 cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
278
279 cqhci_set_irqs(cq_host, 0);
280
281 cqcfg |= CQHCI_ENABLE;
282
283 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
284
285 if (cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT)
286 cqhci_writel(cq_host, 0, CQHCI_CTL);
287
288 mmc->cqe_on = true;
289
290 if (cq_host->ops->enable)
291 cq_host->ops->enable(mmc);
292
293 /* Ensure all writes are done before interrupts are enabled */
294 wmb();
295
296 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
297
298 cq_host->activated = true;
299 }
300
__cqhci_disable(struct cqhci_host * cq_host)301 static void __cqhci_disable(struct cqhci_host *cq_host)
302 {
303 u32 cqcfg;
304
305 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
306 cqcfg &= ~CQHCI_ENABLE;
307 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
308
309 cq_host->mmc->cqe_on = false;
310
311 cq_host->activated = false;
312 }
313
cqhci_deactivate(struct mmc_host * mmc)314 int cqhci_deactivate(struct mmc_host *mmc)
315 {
316 struct cqhci_host *cq_host = mmc->cqe_private;
317
318 if (cq_host->enabled && cq_host->activated)
319 __cqhci_disable(cq_host);
320
321 return 0;
322 }
323 EXPORT_SYMBOL(cqhci_deactivate);
324
cqhci_resume(struct mmc_host * mmc)325 int cqhci_resume(struct mmc_host *mmc)
326 {
327 /* Re-enable is done upon first request */
328 return 0;
329 }
330 EXPORT_SYMBOL(cqhci_resume);
331
cqhci_enable(struct mmc_host * mmc,struct mmc_card * card)332 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
333 {
334 struct cqhci_host *cq_host = mmc->cqe_private;
335 int err;
336
337 if (!card->ext_csd.cmdq_en)
338 return -EINVAL;
339
340 if (cq_host->enabled)
341 return 0;
342
343 cq_host->rca = card->rca;
344
345 err = cqhci_host_alloc_tdl(cq_host);
346 if (err) {
347 pr_err("%s: Failed to enable CQE, error %d\n",
348 mmc_hostname(mmc), err);
349 return err;
350 }
351
352 __cqhci_enable(cq_host);
353
354 cq_host->enabled = true;
355
356 #ifdef DEBUG
357 cqhci_dumpregs(cq_host);
358 #endif
359 return 0;
360 }
361
362 /* CQHCI is idle and should halt immediately, so set a small timeout */
363 #define CQHCI_OFF_TIMEOUT 100
364
cqhci_read_ctl(struct cqhci_host * cq_host)365 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
366 {
367 return cqhci_readl(cq_host, CQHCI_CTL);
368 }
369
cqhci_off(struct mmc_host * mmc)370 static void cqhci_off(struct mmc_host *mmc)
371 {
372 struct cqhci_host *cq_host = mmc->cqe_private;
373 u32 reg;
374 int err;
375
376 if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
377 return;
378
379 if (cq_host->ops->disable)
380 cq_host->ops->disable(mmc, false);
381
382 cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
383
384 err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
385 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
386 if (err < 0)
387 pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
388 else
389 pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
390
391 if (cq_host->ops->post_disable)
392 cq_host->ops->post_disable(mmc);
393
394 mmc->cqe_on = false;
395 }
396
cqhci_disable(struct mmc_host * mmc)397 static void cqhci_disable(struct mmc_host *mmc)
398 {
399 struct cqhci_host *cq_host = mmc->cqe_private;
400
401 if (!cq_host->enabled)
402 return;
403
404 cqhci_off(mmc);
405
406 __cqhci_disable(cq_host);
407
408 dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
409 cq_host->trans_desc_base,
410 cq_host->trans_desc_dma_base);
411
412 dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
413 cq_host->desc_base,
414 cq_host->desc_dma_base);
415
416 cq_host->trans_desc_base = NULL;
417 cq_host->desc_base = NULL;
418
419 cq_host->enabled = false;
420 }
421
cqhci_prep_task_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)422 static void cqhci_prep_task_desc(struct mmc_request *mrq,
423 struct cqhci_host *cq_host, int tag)
424 {
425 __le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
426 u32 req_flags = mrq->data->flags;
427 u64 desc0;
428
429 desc0 = CQHCI_VALID(1) |
430 CQHCI_END(1) |
431 CQHCI_INT(1) |
432 CQHCI_ACT(0x5) |
433 CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
434 CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
435 CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
436 CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
437 CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
438 CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
439 CQHCI_BLK_COUNT(mrq->data->blocks) |
440 CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
441
442 task_desc[0] = cpu_to_le64(desc0);
443
444 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
445 u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
446
447 task_desc[1] = cpu_to_le64(desc1);
448
449 pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
450 mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
451 } else {
452 pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
453 mmc_hostname(mrq->host), mrq->tag, desc0);
454 }
455 }
456
cqhci_dma_map(struct mmc_host * host,struct mmc_request * mrq)457 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
458 {
459 int sg_count;
460 struct mmc_data *data = mrq->data;
461
462 if (!data)
463 return -EINVAL;
464
465 sg_count = dma_map_sg(mmc_dev(host), data->sg,
466 data->sg_len,
467 (data->flags & MMC_DATA_WRITE) ?
468 DMA_TO_DEVICE : DMA_FROM_DEVICE);
469 if (!sg_count) {
470 pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
471 return -ENOMEM;
472 }
473
474 return sg_count;
475 }
476
cqhci_set_tran_desc(u8 * desc,dma_addr_t addr,int len,bool end,bool dma64)477 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
478 bool dma64)
479 {
480 __le32 *attr = (__le32 __force *)desc;
481
482 *attr = (CQHCI_VALID(1) |
483 CQHCI_END(end ? 1 : 0) |
484 CQHCI_INT(0) |
485 CQHCI_ACT(0x4) |
486 CQHCI_DAT_LENGTH(len));
487
488 if (dma64) {
489 __le64 *dataddr = (__le64 __force *)(desc + 4);
490
491 dataddr[0] = cpu_to_le64(addr);
492 } else {
493 __le32 *dataddr = (__le32 __force *)(desc + 4);
494
495 dataddr[0] = cpu_to_le32(addr);
496 }
497 }
498
cqhci_prep_tran_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)499 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
500 struct cqhci_host *cq_host, int tag)
501 {
502 struct mmc_data *data = mrq->data;
503 int i, sg_count, len;
504 bool end = false;
505 bool dma64 = cq_host->dma64;
506 dma_addr_t addr;
507 u8 *desc;
508 struct scatterlist *sg;
509
510 sg_count = cqhci_dma_map(mrq->host, mrq);
511 if (sg_count < 0) {
512 pr_err("%s: %s: unable to map sg lists, %d\n",
513 mmc_hostname(mrq->host), __func__, sg_count);
514 return sg_count;
515 }
516
517 desc = get_trans_desc(cq_host, tag);
518
519 for_each_sg(data->sg, sg, sg_count, i) {
520 addr = sg_dma_address(sg);
521 len = sg_dma_len(sg);
522
523 if ((i+1) == sg_count)
524 end = true;
525 cqhci_set_tran_desc(desc, addr, len, end, dma64);
526 desc += cq_host->trans_desc_len;
527 }
528
529 return 0;
530 }
531
cqhci_prep_dcmd_desc(struct mmc_host * mmc,struct mmc_request * mrq)532 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
533 struct mmc_request *mrq)
534 {
535 u64 *task_desc = NULL;
536 u64 data = 0;
537 u8 resp_type;
538 u8 *desc;
539 __le64 *dataddr;
540 struct cqhci_host *cq_host = mmc->cqe_private;
541 u8 timing;
542
543 if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
544 resp_type = 0x0;
545 timing = 0x1;
546 } else {
547 if (mrq->cmd->flags & MMC_RSP_R1B) {
548 resp_type = 0x3;
549 timing = 0x0;
550 } else {
551 resp_type = 0x2;
552 timing = 0x1;
553 }
554 }
555
556 task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
557 memset(task_desc, 0, cq_host->task_desc_len);
558 data |= (CQHCI_VALID(1) |
559 CQHCI_END(1) |
560 CQHCI_INT(1) |
561 CQHCI_QBAR(1) |
562 CQHCI_ACT(0x5) |
563 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
564 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
565 if (cq_host->ops->update_dcmd_desc)
566 cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
567 *task_desc |= data;
568 desc = (u8 *)task_desc;
569 pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
570 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
571 dataddr = (__le64 __force *)(desc + 4);
572 dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
573
574 }
575
cqhci_post_req(struct mmc_host * host,struct mmc_request * mrq)576 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
577 {
578 struct mmc_data *data = mrq->data;
579
580 if (data) {
581 dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
582 (data->flags & MMC_DATA_READ) ?
583 DMA_FROM_DEVICE : DMA_TO_DEVICE);
584 }
585 }
586
cqhci_tag(struct mmc_request * mrq)587 static inline int cqhci_tag(struct mmc_request *mrq)
588 {
589 return mrq->cmd ? DCMD_SLOT : mrq->tag;
590 }
591
cqhci_request(struct mmc_host * mmc,struct mmc_request * mrq)592 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
593 {
594 int err = 0;
595 int tag = cqhci_tag(mrq);
596 struct cqhci_host *cq_host = mmc->cqe_private;
597 unsigned long flags;
598
599 if (!cq_host->enabled) {
600 pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
601 return -EINVAL;
602 }
603
604 /* First request after resume has to re-enable */
605 if (!cq_host->activated)
606 __cqhci_enable(cq_host);
607
608 if (!mmc->cqe_on) {
609 if (cq_host->ops->pre_enable)
610 cq_host->ops->pre_enable(mmc);
611
612 cqhci_writel(cq_host, 0, CQHCI_CTL);
613 mmc->cqe_on = true;
614 pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
615 if (cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT) {
616 pr_err("%s: cqhci: CQE failed to exit halt state\n",
617 mmc_hostname(mmc));
618 }
619 if (cq_host->ops->enable)
620 cq_host->ops->enable(mmc);
621 }
622
623 if (mrq->data) {
624 cqhci_prep_task_desc(mrq, cq_host, tag);
625
626 err = cqhci_prep_tran_desc(mrq, cq_host, tag);
627 if (err) {
628 pr_err("%s: cqhci: failed to setup tx desc: %d\n",
629 mmc_hostname(mmc), err);
630 return err;
631 }
632 } else {
633 cqhci_prep_dcmd_desc(mmc, mrq);
634 }
635
636 spin_lock_irqsave(&cq_host->lock, flags);
637
638 if (cq_host->recovery_halt) {
639 err = -EBUSY;
640 goto out_unlock;
641 }
642
643 cq_host->slot[tag].mrq = mrq;
644 cq_host->slot[tag].flags = 0;
645
646 cq_host->qcnt += 1;
647 /* Make sure descriptors are ready before ringing the doorbell */
648 wmb();
649 cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
650 if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
651 pr_debug("%s: cqhci: doorbell not set for tag %d\n",
652 mmc_hostname(mmc), tag);
653 out_unlock:
654 spin_unlock_irqrestore(&cq_host->lock, flags);
655
656 if (err)
657 cqhci_post_req(mmc, mrq);
658
659 return err;
660 }
661
cqhci_recovery_needed(struct mmc_host * mmc,struct mmc_request * mrq,bool notify)662 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
663 bool notify)
664 {
665 struct cqhci_host *cq_host = mmc->cqe_private;
666
667 if (!cq_host->recovery_halt) {
668 cq_host->recovery_halt = true;
669 pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
670 wake_up(&cq_host->wait_queue);
671 if (notify && mrq->recovery_notifier)
672 mrq->recovery_notifier(mrq);
673 }
674 }
675
cqhci_error_flags(int error1,int error2)676 static unsigned int cqhci_error_flags(int error1, int error2)
677 {
678 int error = error1 ? error1 : error2;
679
680 switch (error) {
681 case -EILSEQ:
682 return CQHCI_HOST_CRC;
683 case -ETIMEDOUT:
684 return CQHCI_HOST_TIMEOUT;
685 default:
686 return CQHCI_HOST_OTHER;
687 }
688 }
689
cqhci_error_irq(struct mmc_host * mmc,u32 status,int cmd_error,int data_error)690 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
691 int data_error)
692 {
693 struct cqhci_host *cq_host = mmc->cqe_private;
694 struct cqhci_slot *slot;
695 u32 terri;
696 u32 tdpe;
697 int tag;
698
699 spin_lock(&cq_host->lock);
700
701 terri = cqhci_readl(cq_host, CQHCI_TERRI);
702
703 pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
704 mmc_hostname(mmc), status, cmd_error, data_error, terri);
705
706 /* Forget about errors when recovery has already been triggered */
707 if (cq_host->recovery_halt)
708 goto out_unlock;
709
710 if (!cq_host->qcnt) {
711 WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
712 mmc_hostname(mmc), status, cmd_error, data_error,
713 terri);
714 goto out_unlock;
715 }
716
717 if (CQHCI_TERRI_C_VALID(terri)) {
718 tag = CQHCI_TERRI_C_TASK(terri);
719 slot = &cq_host->slot[tag];
720 if (slot->mrq) {
721 slot->flags = cqhci_error_flags(cmd_error, data_error);
722 cqhci_recovery_needed(mmc, slot->mrq, true);
723 }
724 }
725
726 if (CQHCI_TERRI_D_VALID(terri)) {
727 tag = CQHCI_TERRI_D_TASK(terri);
728 slot = &cq_host->slot[tag];
729 if (slot->mrq) {
730 slot->flags = cqhci_error_flags(data_error, cmd_error);
731 cqhci_recovery_needed(mmc, slot->mrq, true);
732 }
733 }
734
735 /*
736 * Handle ICCE ("Invalid Crypto Configuration Error"). This should
737 * never happen, since the block layer ensures that all crypto-enabled
738 * I/O requests have a valid keyslot before they reach the driver.
739 *
740 * Note that GCE ("General Crypto Error") is different; it already got
741 * handled above by checking TERRI.
742 */
743 if (status & CQHCI_IS_ICCE) {
744 tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
745 WARN_ONCE(1,
746 "%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
747 mmc_hostname(mmc), status, tdpe);
748 while (tdpe != 0) {
749 tag = __ffs(tdpe);
750 tdpe &= ~(1 << tag);
751 slot = &cq_host->slot[tag];
752 if (!slot->mrq)
753 continue;
754 slot->flags = cqhci_error_flags(data_error, cmd_error);
755 cqhci_recovery_needed(mmc, slot->mrq, true);
756 }
757 }
758
759 if (!cq_host->recovery_halt) {
760 /*
761 * The only way to guarantee forward progress is to mark at
762 * least one task in error, so if none is indicated, pick one.
763 */
764 for (tag = 0; tag < NUM_SLOTS; tag++) {
765 slot = &cq_host->slot[tag];
766 if (!slot->mrq)
767 continue;
768 slot->flags = cqhci_error_flags(data_error, cmd_error);
769 cqhci_recovery_needed(mmc, slot->mrq, true);
770 break;
771 }
772 }
773
774 out_unlock:
775 spin_unlock(&cq_host->lock);
776 }
777
cqhci_finish_mrq(struct mmc_host * mmc,unsigned int tag)778 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
779 {
780 struct cqhci_host *cq_host = mmc->cqe_private;
781 struct cqhci_slot *slot = &cq_host->slot[tag];
782 struct mmc_request *mrq = slot->mrq;
783 struct mmc_data *data;
784
785 if (!mrq) {
786 WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
787 mmc_hostname(mmc), tag);
788 return;
789 }
790
791 /* No completions allowed during recovery */
792 if (cq_host->recovery_halt) {
793 slot->flags |= CQHCI_COMPLETED;
794 return;
795 }
796
797 slot->mrq = NULL;
798
799 cq_host->qcnt -= 1;
800
801 data = mrq->data;
802 if (data) {
803 if (data->error)
804 data->bytes_xfered = 0;
805 else
806 data->bytes_xfered = data->blksz * data->blocks;
807 }
808
809 mmc_cqe_request_done(mmc, mrq);
810 }
811
cqhci_irq(struct mmc_host * mmc,u32 intmask,int cmd_error,int data_error)812 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
813 int data_error)
814 {
815 u32 status;
816 unsigned long tag = 0, comp_status;
817 struct cqhci_host *cq_host = mmc->cqe_private;
818
819 status = cqhci_readl(cq_host, CQHCI_IS);
820 cqhci_writel(cq_host, status, CQHCI_IS);
821
822 pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
823
824 if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
825 cmd_error || data_error) {
826 if (status & CQHCI_IS_RED)
827 mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_RED);
828 if (status & CQHCI_IS_GCE)
829 mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_GCE);
830 if (status & CQHCI_IS_ICCE)
831 mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_ICCE);
832 cqhci_error_irq(mmc, status, cmd_error, data_error);
833 }
834
835 if (status & CQHCI_IS_TCC) {
836 /* read TCN and complete the request */
837 comp_status = cqhci_readl(cq_host, CQHCI_TCN);
838 cqhci_writel(cq_host, comp_status, CQHCI_TCN);
839 pr_debug("%s: cqhci: TCN: 0x%08lx\n",
840 mmc_hostname(mmc), comp_status);
841
842 spin_lock(&cq_host->lock);
843
844 for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
845 /* complete the corresponding mrq */
846 pr_debug("%s: cqhci: completing tag %lu\n",
847 mmc_hostname(mmc), tag);
848 cqhci_finish_mrq(mmc, tag);
849 }
850
851 if (cq_host->waiting_for_idle && !cq_host->qcnt) {
852 cq_host->waiting_for_idle = false;
853 wake_up(&cq_host->wait_queue);
854 }
855
856 spin_unlock(&cq_host->lock);
857 }
858
859 if (status & CQHCI_IS_TCL)
860 wake_up(&cq_host->wait_queue);
861
862 if (status & CQHCI_IS_HAC)
863 wake_up(&cq_host->wait_queue);
864
865 return IRQ_HANDLED;
866 }
867 EXPORT_SYMBOL(cqhci_irq);
868
cqhci_is_idle(struct cqhci_host * cq_host,int * ret)869 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
870 {
871 unsigned long flags;
872 bool is_idle;
873
874 spin_lock_irqsave(&cq_host->lock, flags);
875 is_idle = !cq_host->qcnt || cq_host->recovery_halt;
876 *ret = cq_host->recovery_halt ? -EBUSY : 0;
877 cq_host->waiting_for_idle = !is_idle;
878 spin_unlock_irqrestore(&cq_host->lock, flags);
879
880 return is_idle;
881 }
882
cqhci_wait_for_idle(struct mmc_host * mmc)883 static int cqhci_wait_for_idle(struct mmc_host *mmc)
884 {
885 struct cqhci_host *cq_host = mmc->cqe_private;
886 int ret;
887
888 wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
889
890 return ret;
891 }
892
cqhci_timeout(struct mmc_host * mmc,struct mmc_request * mrq,bool * recovery_needed)893 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
894 bool *recovery_needed)
895 {
896 struct cqhci_host *cq_host = mmc->cqe_private;
897 int tag = cqhci_tag(mrq);
898 struct cqhci_slot *slot = &cq_host->slot[tag];
899 unsigned long flags;
900 bool timed_out;
901
902 spin_lock_irqsave(&cq_host->lock, flags);
903 timed_out = slot->mrq == mrq;
904 if (timed_out) {
905 slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
906 cqhci_recovery_needed(mmc, mrq, false);
907 *recovery_needed = cq_host->recovery_halt;
908 }
909 spin_unlock_irqrestore(&cq_host->lock, flags);
910
911 if (timed_out) {
912 pr_err("%s: cqhci: timeout for tag %d, qcnt %d\n",
913 mmc_hostname(mmc), tag, cq_host->qcnt);
914 cqhci_dumpregs(cq_host);
915 }
916
917 return timed_out;
918 }
919
cqhci_tasks_cleared(struct cqhci_host * cq_host)920 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
921 {
922 return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
923 }
924
cqhci_clear_all_tasks(struct mmc_host * mmc,unsigned int timeout)925 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
926 {
927 struct cqhci_host *cq_host = mmc->cqe_private;
928 bool ret;
929 u32 ctl;
930
931 cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
932
933 ctl = cqhci_readl(cq_host, CQHCI_CTL);
934 ctl |= CQHCI_CLEAR_ALL_TASKS;
935 cqhci_writel(cq_host, ctl, CQHCI_CTL);
936
937 wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
938 msecs_to_jiffies(timeout) + 1);
939
940 cqhci_set_irqs(cq_host, 0);
941
942 ret = cqhci_tasks_cleared(cq_host);
943
944 if (!ret)
945 pr_warn("%s: cqhci: Failed to clear tasks\n",
946 mmc_hostname(mmc));
947
948 return ret;
949 }
950
cqhci_halted(struct cqhci_host * cq_host)951 static bool cqhci_halted(struct cqhci_host *cq_host)
952 {
953 return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
954 }
955
cqhci_halt(struct mmc_host * mmc,unsigned int timeout)956 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
957 {
958 struct cqhci_host *cq_host = mmc->cqe_private;
959 bool ret;
960 u32 ctl;
961
962 if (cqhci_halted(cq_host))
963 return true;
964
965 cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
966
967 ctl = cqhci_readl(cq_host, CQHCI_CTL);
968 ctl |= CQHCI_HALT;
969 cqhci_writel(cq_host, ctl, CQHCI_CTL);
970
971 wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
972 msecs_to_jiffies(timeout) + 1);
973
974 cqhci_set_irqs(cq_host, 0);
975
976 ret = cqhci_halted(cq_host);
977
978 if (!ret)
979 pr_warn("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
980
981 return ret;
982 }
983
984 /*
985 * After halting we expect to be able to use the command line. We interpret the
986 * failure to halt to mean the data lines might still be in use (and the upper
987 * layers will need to send a STOP command), however failing to halt complicates
988 * the recovery, so set a timeout that would reasonably allow I/O to complete.
989 */
990 #define CQHCI_START_HALT_TIMEOUT 500
991
cqhci_recovery_start(struct mmc_host * mmc)992 static void cqhci_recovery_start(struct mmc_host *mmc)
993 {
994 struct cqhci_host *cq_host = mmc->cqe_private;
995
996 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
997
998 WARN_ON(!cq_host->recovery_halt);
999
1000 cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
1001
1002 if (cq_host->ops->disable)
1003 cq_host->ops->disable(mmc, true);
1004
1005 mmc->cqe_on = false;
1006 }
1007
cqhci_error_from_flags(unsigned int flags)1008 static int cqhci_error_from_flags(unsigned int flags)
1009 {
1010 if (!flags)
1011 return 0;
1012
1013 /* CRC errors might indicate re-tuning so prefer to report that */
1014 if (flags & CQHCI_HOST_CRC)
1015 return -EILSEQ;
1016
1017 if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
1018 return -ETIMEDOUT;
1019
1020 return -EIO;
1021 }
1022
cqhci_recover_mrq(struct cqhci_host * cq_host,unsigned int tag)1023 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
1024 {
1025 struct cqhci_slot *slot = &cq_host->slot[tag];
1026 struct mmc_request *mrq = slot->mrq;
1027 struct mmc_data *data;
1028
1029 if (!mrq)
1030 return;
1031
1032 slot->mrq = NULL;
1033
1034 cq_host->qcnt -= 1;
1035
1036 data = mrq->data;
1037 if (data) {
1038 data->bytes_xfered = 0;
1039 data->error = cqhci_error_from_flags(slot->flags);
1040 } else {
1041 mrq->cmd->error = cqhci_error_from_flags(slot->flags);
1042 }
1043
1044 mmc_cqe_request_done(cq_host->mmc, mrq);
1045 }
1046
cqhci_recover_mrqs(struct cqhci_host * cq_host)1047 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
1048 {
1049 int i;
1050
1051 for (i = 0; i < cq_host->num_slots; i++)
1052 cqhci_recover_mrq(cq_host, i);
1053 }
1054
1055 /*
1056 * By now the command and data lines should be unused so there is no reason for
1057 * CQHCI to take a long time to halt, but if it doesn't halt there could be
1058 * problems clearing tasks, so be generous.
1059 */
1060 #define CQHCI_FINISH_HALT_TIMEOUT 20
1061
1062 /* CQHCI could be expected to clear it's internal state pretty quickly */
1063 #define CQHCI_CLEAR_TIMEOUT 20
1064
cqhci_recovery_finish(struct mmc_host * mmc)1065 static void cqhci_recovery_finish(struct mmc_host *mmc)
1066 {
1067 struct cqhci_host *cq_host = mmc->cqe_private;
1068 unsigned long flags;
1069 u32 cqcfg;
1070 bool ok;
1071
1072 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1073
1074 WARN_ON(!cq_host->recovery_halt);
1075
1076 ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1077
1078 /*
1079 * The specification contradicts itself, by saying that tasks cannot be
1080 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1081 * be disabled/re-enabled, but not to disable before clearing tasks.
1082 * Have a go anyway.
1083 */
1084 if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1085 ok = false;
1086
1087 /* Disable to make sure tasks really are cleared */
1088 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1089 cqcfg &= ~CQHCI_ENABLE;
1090 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1091
1092 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1093 cqcfg |= CQHCI_ENABLE;
1094 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1095
1096 cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1097
1098 if (!ok)
1099 cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT);
1100
1101 cqhci_recover_mrqs(cq_host);
1102
1103 WARN_ON(cq_host->qcnt);
1104
1105 spin_lock_irqsave(&cq_host->lock, flags);
1106 cq_host->qcnt = 0;
1107 cq_host->recovery_halt = false;
1108 mmc->cqe_on = false;
1109 spin_unlock_irqrestore(&cq_host->lock, flags);
1110
1111 /* Ensure all writes are done before interrupts are re-enabled */
1112 wmb();
1113
1114 cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1115
1116 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1117
1118 pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1119 }
1120
1121 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1122 .cqe_enable = cqhci_enable,
1123 .cqe_disable = cqhci_disable,
1124 .cqe_request = cqhci_request,
1125 .cqe_post_req = cqhci_post_req,
1126 .cqe_off = cqhci_off,
1127 .cqe_wait_for_idle = cqhci_wait_for_idle,
1128 .cqe_timeout = cqhci_timeout,
1129 .cqe_recovery_start = cqhci_recovery_start,
1130 .cqe_recovery_finish = cqhci_recovery_finish,
1131 };
1132
cqhci_pltfm_init(struct platform_device * pdev)1133 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1134 {
1135 struct cqhci_host *cq_host;
1136 struct resource *cqhci_memres = NULL;
1137
1138 /* check and setup CMDQ interface */
1139 cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1140 "cqhci");
1141 if (!cqhci_memres) {
1142 dev_dbg(&pdev->dev, "CMDQ not supported\n");
1143 return ERR_PTR(-EINVAL);
1144 }
1145
1146 cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1147 if (!cq_host)
1148 return ERR_PTR(-ENOMEM);
1149 cq_host->mmio = devm_ioremap(&pdev->dev,
1150 cqhci_memres->start,
1151 resource_size(cqhci_memres));
1152 if (!cq_host->mmio) {
1153 dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1154 return ERR_PTR(-EBUSY);
1155 }
1156 dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1157
1158 return cq_host;
1159 }
1160 EXPORT_SYMBOL(cqhci_pltfm_init);
1161
cqhci_ver_major(struct cqhci_host * cq_host)1162 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1163 {
1164 return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1165 }
1166
cqhci_ver_minor(struct cqhci_host * cq_host)1167 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1168 {
1169 u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1170
1171 return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1172 }
1173
cqhci_init(struct cqhci_host * cq_host,struct mmc_host * mmc,bool dma64)1174 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1175 bool dma64)
1176 {
1177 int err;
1178
1179 cq_host->dma64 = dma64;
1180 cq_host->mmc = mmc;
1181 cq_host->mmc->cqe_private = cq_host;
1182
1183 cq_host->num_slots = NUM_SLOTS;
1184 cq_host->dcmd_slot = DCMD_SLOT;
1185
1186 mmc->cqe_ops = &cqhci_cqe_ops;
1187
1188 mmc->cqe_qdepth = NUM_SLOTS;
1189 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1190 mmc->cqe_qdepth -= 1;
1191
1192 cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1193 sizeof(*cq_host->slot), GFP_KERNEL);
1194 if (!cq_host->slot) {
1195 err = -ENOMEM;
1196 goto out_err;
1197 }
1198
1199 err = cqhci_crypto_init(cq_host);
1200 if (err) {
1201 pr_err("%s: CQHCI crypto initialization failed\n",
1202 mmc_hostname(mmc));
1203 goto out_err;
1204 }
1205
1206 spin_lock_init(&cq_host->lock);
1207
1208 init_completion(&cq_host->halt_comp);
1209 init_waitqueue_head(&cq_host->wait_queue);
1210
1211 pr_info("%s: CQHCI version %u.%02u\n",
1212 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1213 cqhci_ver_minor(cq_host));
1214
1215 return 0;
1216
1217 out_err:
1218 pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1219 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1220 cqhci_ver_minor(cq_host), err);
1221 return err;
1222 }
1223 EXPORT_SYMBOL(cqhci_init);
1224
1225 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1226 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1227 MODULE_LICENSE("GPL v2");
1228