1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * MTK NAND Flash controller driver.
4 * Copyright (C) 2016 MediaTek Inc.
5 * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
6 * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
7 */
8
9 #include <linux/platform_device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/delay.h>
13 #include <linux/clk.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/module.h>
17 #include <linux/iopoll.h>
18 #include <linux/of.h>
19 #include <linux/mtd/nand-ecc-mtk.h>
20
21 /* NAND controller register definition */
22 #define NFI_CNFG (0x00)
23 #define CNFG_AHB BIT(0)
24 #define CNFG_READ_EN BIT(1)
25 #define CNFG_DMA_BURST_EN BIT(2)
26 #define CNFG_BYTE_RW BIT(6)
27 #define CNFG_HW_ECC_EN BIT(8)
28 #define CNFG_AUTO_FMT_EN BIT(9)
29 #define CNFG_OP_CUST (6 << 12)
30 #define NFI_PAGEFMT (0x04)
31 #define PAGEFMT_FDM_ECC_SHIFT (12)
32 #define PAGEFMT_FDM_SHIFT (8)
33 #define PAGEFMT_SEC_SEL_512 BIT(2)
34 #define PAGEFMT_512_2K (0)
35 #define PAGEFMT_2K_4K (1)
36 #define PAGEFMT_4K_8K (2)
37 #define PAGEFMT_8K_16K (3)
38 /* NFI control */
39 #define NFI_CON (0x08)
40 #define CON_FIFO_FLUSH BIT(0)
41 #define CON_NFI_RST BIT(1)
42 #define CON_BRD BIT(8) /* burst read */
43 #define CON_BWR BIT(9) /* burst write */
44 #define CON_SEC_SHIFT (12)
45 /* Timming control register */
46 #define NFI_ACCCON (0x0C)
47 #define NFI_INTR_EN (0x10)
48 #define INTR_AHB_DONE_EN BIT(6)
49 #define NFI_INTR_STA (0x14)
50 #define NFI_CMD (0x20)
51 #define NFI_ADDRNOB (0x30)
52 #define NFI_COLADDR (0x34)
53 #define NFI_ROWADDR (0x38)
54 #define NFI_STRDATA (0x40)
55 #define STAR_EN (1)
56 #define STAR_DE (0)
57 #define NFI_CNRNB (0x44)
58 #define NFI_DATAW (0x50)
59 #define NFI_DATAR (0x54)
60 #define NFI_PIO_DIRDY (0x58)
61 #define PIO_DI_RDY (0x01)
62 #define NFI_STA (0x60)
63 #define STA_CMD BIT(0)
64 #define STA_ADDR BIT(1)
65 #define STA_BUSY BIT(8)
66 #define STA_EMP_PAGE BIT(12)
67 #define NFI_FSM_CUSTDATA (0xe << 16)
68 #define NFI_FSM_MASK (0xf << 16)
69 #define NFI_ADDRCNTR (0x70)
70 #define CNTR_MASK GENMASK(16, 12)
71 #define ADDRCNTR_SEC_SHIFT (12)
72 #define ADDRCNTR_SEC(val) \
73 (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
74 #define NFI_STRADDR (0x80)
75 #define NFI_BYTELEN (0x84)
76 #define NFI_CSEL (0x90)
77 #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
78 #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
79 #define NFI_FDM_MAX_SIZE (8)
80 #define NFI_FDM_MIN_SIZE (1)
81 #define NFI_DEBUG_CON1 (0x220)
82 #define STROBE_MASK GENMASK(4, 3)
83 #define STROBE_SHIFT (3)
84 #define MAX_STROBE_DLY (3)
85 #define NFI_MASTER_STA (0x224)
86 #define MASTER_STA_MASK (0x0FFF)
87 #define NFI_EMPTY_THRESH (0x23C)
88
89 #define MTK_NAME "mtk-nand"
90 #define KB(x) ((x) * 1024UL)
91 #define MB(x) (KB(x) * 1024UL)
92
93 #define MTK_TIMEOUT (500000)
94 #define MTK_RESET_TIMEOUT (1000000)
95 #define MTK_NAND_MAX_NSELS (2)
96 #define MTK_NFC_MIN_SPARE (16)
97 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
98 ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
99 (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
100
101 struct mtk_nfc_caps {
102 const u8 *spare_size;
103 u8 num_spare_size;
104 u8 pageformat_spare_shift;
105 u8 nfi_clk_div;
106 u8 max_sector;
107 u32 max_sector_size;
108 };
109
110 struct mtk_nfc_bad_mark_ctl {
111 void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
112 u32 sec;
113 u32 pos;
114 };
115
116 /*
117 * FDM: region used to store free OOB data
118 */
119 struct mtk_nfc_fdm {
120 u32 reg_size;
121 u32 ecc_size;
122 };
123
124 struct mtk_nfc_nand_chip {
125 struct list_head node;
126 struct nand_chip nand;
127
128 struct mtk_nfc_bad_mark_ctl bad_mark;
129 struct mtk_nfc_fdm fdm;
130 u32 spare_per_sector;
131
132 int nsels;
133 u8 sels[];
134 /* nothing after this field */
135 };
136
137 struct mtk_nfc_clk {
138 struct clk *nfi_clk;
139 struct clk *pad_clk;
140 };
141
142 struct mtk_nfc {
143 struct nand_controller controller;
144 struct mtk_ecc_config ecc_cfg;
145 struct mtk_nfc_clk clk;
146 struct mtk_ecc *ecc;
147
148 struct device *dev;
149 const struct mtk_nfc_caps *caps;
150 void __iomem *regs;
151
152 struct completion done;
153 struct list_head chips;
154
155 u8 *buffer;
156
157 unsigned long assigned_cs;
158 };
159
160 /*
161 * supported spare size of each IP.
162 * order should be the same with the spare size bitfiled defination of
163 * register NFI_PAGEFMT.
164 */
165 static const u8 spare_size_mt2701[] = {
166 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64
167 };
168
169 static const u8 spare_size_mt2712[] = {
170 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
171 74
172 };
173
174 static const u8 spare_size_mt7622[] = {
175 16, 26, 27, 28
176 };
177
to_mtk_nand(struct nand_chip * nand)178 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
179 {
180 return container_of(nand, struct mtk_nfc_nand_chip, nand);
181 }
182
data_ptr(struct nand_chip * chip,const u8 * p,int i)183 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
184 {
185 return (u8 *)p + i * chip->ecc.size;
186 }
187
oob_ptr(struct nand_chip * chip,int i)188 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
189 {
190 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
191 u8 *poi;
192
193 /* map the sector's FDM data to free oob:
194 * the beginning of the oob area stores the FDM data of bad mark sectors
195 */
196
197 if (i < mtk_nand->bad_mark.sec)
198 poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
199 else if (i == mtk_nand->bad_mark.sec)
200 poi = chip->oob_poi;
201 else
202 poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
203
204 return poi;
205 }
206
mtk_data_len(struct nand_chip * chip)207 static inline int mtk_data_len(struct nand_chip *chip)
208 {
209 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
210
211 return chip->ecc.size + mtk_nand->spare_per_sector;
212 }
213
mtk_data_ptr(struct nand_chip * chip,int i)214 static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
215 {
216 struct mtk_nfc *nfc = nand_get_controller_data(chip);
217
218 return nfc->buffer + i * mtk_data_len(chip);
219 }
220
mtk_oob_ptr(struct nand_chip * chip,int i)221 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
222 {
223 struct mtk_nfc *nfc = nand_get_controller_data(chip);
224
225 return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
226 }
227
nfi_writel(struct mtk_nfc * nfc,u32 val,u32 reg)228 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
229 {
230 writel(val, nfc->regs + reg);
231 }
232
nfi_writew(struct mtk_nfc * nfc,u16 val,u32 reg)233 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
234 {
235 writew(val, nfc->regs + reg);
236 }
237
nfi_writeb(struct mtk_nfc * nfc,u8 val,u32 reg)238 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
239 {
240 writeb(val, nfc->regs + reg);
241 }
242
nfi_readl(struct mtk_nfc * nfc,u32 reg)243 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
244 {
245 return readl_relaxed(nfc->regs + reg);
246 }
247
nfi_readw(struct mtk_nfc * nfc,u32 reg)248 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
249 {
250 return readw_relaxed(nfc->regs + reg);
251 }
252
nfi_readb(struct mtk_nfc * nfc,u32 reg)253 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
254 {
255 return readb_relaxed(nfc->regs + reg);
256 }
257
mtk_nfc_hw_reset(struct mtk_nfc * nfc)258 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
259 {
260 struct device *dev = nfc->dev;
261 u32 val;
262 int ret;
263
264 /* reset all registers and force the NFI master to terminate */
265 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
266
267 /* wait for the master to finish the last transaction */
268 ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
269 !(val & MASTER_STA_MASK), 50,
270 MTK_RESET_TIMEOUT);
271 if (ret)
272 dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
273 NFI_MASTER_STA, val);
274
275 /* ensure any status register affected by the NFI master is reset */
276 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
277 nfi_writew(nfc, STAR_DE, NFI_STRDATA);
278 }
279
mtk_nfc_send_command(struct mtk_nfc * nfc,u8 command)280 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
281 {
282 struct device *dev = nfc->dev;
283 u32 val;
284 int ret;
285
286 nfi_writel(nfc, command, NFI_CMD);
287
288 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
289 !(val & STA_CMD), 10, MTK_TIMEOUT);
290 if (ret) {
291 dev_warn(dev, "nfi core timed out entering command mode\n");
292 return -EIO;
293 }
294
295 return 0;
296 }
297
mtk_nfc_send_address(struct mtk_nfc * nfc,int addr)298 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
299 {
300 struct device *dev = nfc->dev;
301 u32 val;
302 int ret;
303
304 nfi_writel(nfc, addr, NFI_COLADDR);
305 nfi_writel(nfc, 0, NFI_ROWADDR);
306 nfi_writew(nfc, 1, NFI_ADDRNOB);
307
308 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
309 !(val & STA_ADDR), 10, MTK_TIMEOUT);
310 if (ret) {
311 dev_warn(dev, "nfi core timed out entering address mode\n");
312 return -EIO;
313 }
314
315 return 0;
316 }
317
mtk_nfc_hw_runtime_config(struct mtd_info * mtd)318 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
319 {
320 struct nand_chip *chip = mtd_to_nand(mtd);
321 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
322 struct mtk_nfc *nfc = nand_get_controller_data(chip);
323 u32 fmt, spare, i;
324
325 if (!mtd->writesize)
326 return 0;
327
328 spare = mtk_nand->spare_per_sector;
329
330 switch (mtd->writesize) {
331 case 512:
332 fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
333 break;
334 case KB(2):
335 if (chip->ecc.size == 512)
336 fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
337 else
338 fmt = PAGEFMT_512_2K;
339 break;
340 case KB(4):
341 if (chip->ecc.size == 512)
342 fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
343 else
344 fmt = PAGEFMT_2K_4K;
345 break;
346 case KB(8):
347 if (chip->ecc.size == 512)
348 fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
349 else
350 fmt = PAGEFMT_4K_8K;
351 break;
352 case KB(16):
353 fmt = PAGEFMT_8K_16K;
354 break;
355 default:
356 dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
357 return -EINVAL;
358 }
359
360 /*
361 * the hardware will double the value for this eccsize, so we need to
362 * halve it
363 */
364 if (chip->ecc.size == 1024)
365 spare >>= 1;
366
367 for (i = 0; i < nfc->caps->num_spare_size; i++) {
368 if (nfc->caps->spare_size[i] == spare)
369 break;
370 }
371
372 if (i == nfc->caps->num_spare_size) {
373 dev_err(nfc->dev, "invalid spare size %d\n", spare);
374 return -EINVAL;
375 }
376
377 fmt |= i << nfc->caps->pageformat_spare_shift;
378
379 fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
380 fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
381 nfi_writel(nfc, fmt, NFI_PAGEFMT);
382
383 nfc->ecc_cfg.strength = chip->ecc.strength;
384 nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
385
386 return 0;
387 }
388
mtk_nfc_wait_ioready(struct mtk_nfc * nfc)389 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
390 {
391 int rc;
392 u8 val;
393
394 rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
395 val & PIO_DI_RDY, 10, MTK_TIMEOUT);
396 if (rc < 0)
397 dev_err(nfc->dev, "data not ready\n");
398 }
399
mtk_nfc_read_byte(struct nand_chip * chip)400 static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
401 {
402 struct mtk_nfc *nfc = nand_get_controller_data(chip);
403 u32 reg;
404
405 /* after each byte read, the NFI_STA reg is reset by the hardware */
406 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
407 if (reg != NFI_FSM_CUSTDATA) {
408 reg = nfi_readw(nfc, NFI_CNFG);
409 reg |= CNFG_BYTE_RW | CNFG_READ_EN;
410 nfi_writew(nfc, reg, NFI_CNFG);
411
412 /*
413 * set to max sector to allow the HW to continue reading over
414 * unaligned accesses
415 */
416 reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
417 nfi_writel(nfc, reg, NFI_CON);
418
419 /* trigger to fetch data */
420 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
421 }
422
423 mtk_nfc_wait_ioready(nfc);
424
425 return nfi_readb(nfc, NFI_DATAR);
426 }
427
mtk_nfc_read_buf(struct nand_chip * chip,u8 * buf,int len)428 static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
429 {
430 int i;
431
432 for (i = 0; i < len; i++)
433 buf[i] = mtk_nfc_read_byte(chip);
434 }
435
mtk_nfc_write_byte(struct nand_chip * chip,u8 byte)436 static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
437 {
438 struct mtk_nfc *nfc = nand_get_controller_data(chip);
439 u32 reg;
440
441 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
442
443 if (reg != NFI_FSM_CUSTDATA) {
444 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
445 nfi_writew(nfc, reg, NFI_CNFG);
446
447 reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
448 nfi_writel(nfc, reg, NFI_CON);
449
450 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
451 }
452
453 mtk_nfc_wait_ioready(nfc);
454 nfi_writeb(nfc, byte, NFI_DATAW);
455 }
456
mtk_nfc_write_buf(struct nand_chip * chip,const u8 * buf,int len)457 static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
458 {
459 int i;
460
461 for (i = 0; i < len; i++)
462 mtk_nfc_write_byte(chip, buf[i]);
463 }
464
mtk_nfc_exec_instr(struct nand_chip * chip,const struct nand_op_instr * instr)465 static int mtk_nfc_exec_instr(struct nand_chip *chip,
466 const struct nand_op_instr *instr)
467 {
468 struct mtk_nfc *nfc = nand_get_controller_data(chip);
469 unsigned int i;
470 u32 status;
471
472 switch (instr->type) {
473 case NAND_OP_CMD_INSTR:
474 mtk_nfc_send_command(nfc, instr->ctx.cmd.opcode);
475 return 0;
476 case NAND_OP_ADDR_INSTR:
477 for (i = 0; i < instr->ctx.addr.naddrs; i++)
478 mtk_nfc_send_address(nfc, instr->ctx.addr.addrs[i]);
479 return 0;
480 case NAND_OP_DATA_IN_INSTR:
481 mtk_nfc_read_buf(chip, instr->ctx.data.buf.in,
482 instr->ctx.data.len);
483 return 0;
484 case NAND_OP_DATA_OUT_INSTR:
485 mtk_nfc_write_buf(chip, instr->ctx.data.buf.out,
486 instr->ctx.data.len);
487 return 0;
488 case NAND_OP_WAITRDY_INSTR:
489 return readl_poll_timeout(nfc->regs + NFI_STA, status,
490 !(status & STA_BUSY), 20,
491 instr->ctx.waitrdy.timeout_ms * 1000);
492 default:
493 break;
494 }
495
496 return -EINVAL;
497 }
498
mtk_nfc_select_target(struct nand_chip * nand,unsigned int cs)499 static void mtk_nfc_select_target(struct nand_chip *nand, unsigned int cs)
500 {
501 struct mtk_nfc *nfc = nand_get_controller_data(nand);
502 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
503
504 mtk_nfc_hw_runtime_config(nand_to_mtd(nand));
505
506 nfi_writel(nfc, mtk_nand->sels[cs], NFI_CSEL);
507 }
508
mtk_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)509 static int mtk_nfc_exec_op(struct nand_chip *chip,
510 const struct nand_operation *op,
511 bool check_only)
512 {
513 struct mtk_nfc *nfc = nand_get_controller_data(chip);
514 unsigned int i;
515 int ret = 0;
516
517 if (check_only)
518 return 0;
519
520 mtk_nfc_hw_reset(nfc);
521 nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
522 mtk_nfc_select_target(chip, op->cs);
523
524 for (i = 0; i < op->ninstrs; i++) {
525 ret = mtk_nfc_exec_instr(chip, &op->instrs[i]);
526 if (ret)
527 break;
528 }
529
530 return ret;
531 }
532
mtk_nfc_setup_interface(struct nand_chip * chip,int csline,const struct nand_interface_config * conf)533 static int mtk_nfc_setup_interface(struct nand_chip *chip, int csline,
534 const struct nand_interface_config *conf)
535 {
536 struct mtk_nfc *nfc = nand_get_controller_data(chip);
537 const struct nand_sdr_timings *timings;
538 u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0;
539 u32 temp, tsel = 0;
540
541 timings = nand_get_sdr_timings(conf);
542 if (IS_ERR(timings))
543 return -ENOTSUPP;
544
545 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
546 return 0;
547
548 rate = clk_get_rate(nfc->clk.nfi_clk);
549 /* There is a frequency divider in some IPs */
550 rate /= nfc->caps->nfi_clk_div;
551
552 /* turn clock rate into KHZ */
553 rate /= 1000;
554
555 tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
556 tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
557 tpoecs &= 0xf;
558
559 tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
560 tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
561 tprecs &= 0x3f;
562
563 /* sdr interface has no tCR which means CE# low to RE# low */
564 tc2r = 0;
565
566 tw2r = timings->tWHR_min / 1000;
567 tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
568 tw2r = DIV_ROUND_UP(tw2r - 1, 2);
569 tw2r &= 0xf;
570
571 twh = max(timings->tREH_min, timings->tWH_min) / 1000;
572 twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
573 twh &= 0xf;
574
575 /* Calculate real WE#/RE# hold time in nanosecond */
576 temp = (twh + 1) * 1000000 / rate;
577 /* nanosecond to picosecond */
578 temp *= 1000;
579
580 /*
581 * WE# low level time should be expaned to meet WE# pulse time
582 * and WE# cycle time at the same time.
583 */
584 if (temp < timings->tWC_min)
585 twst = timings->tWC_min - temp;
586 twst = max(timings->tWP_min, twst) / 1000;
587 twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
588 twst &= 0xf;
589
590 /*
591 * RE# low level time should be expaned to meet RE# pulse time
592 * and RE# cycle time at the same time.
593 */
594 if (temp < timings->tRC_min)
595 trlt = timings->tRC_min - temp;
596 trlt = max(trlt, timings->tRP_min) / 1000;
597 trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
598 trlt &= 0xf;
599
600 /* Calculate RE# pulse time in nanosecond. */
601 temp = (trlt + 1) * 1000000 / rate;
602 /* nanosecond to picosecond */
603 temp *= 1000;
604 /*
605 * If RE# access time is bigger than RE# pulse time,
606 * delay sampling data timing.
607 */
608 if (temp < timings->tREA_max) {
609 tsel = timings->tREA_max / 1000;
610 tsel = DIV_ROUND_UP(tsel * rate, 1000000);
611 tsel -= (trlt + 1);
612 if (tsel > MAX_STROBE_DLY) {
613 trlt += tsel - MAX_STROBE_DLY;
614 tsel = MAX_STROBE_DLY;
615 }
616 }
617 temp = nfi_readl(nfc, NFI_DEBUG_CON1);
618 temp &= ~STROBE_MASK;
619 temp |= tsel << STROBE_SHIFT;
620 nfi_writel(nfc, temp, NFI_DEBUG_CON1);
621
622 /*
623 * ACCON: access timing control register
624 * -------------------------------------
625 * 31:28: tpoecs, minimum required time for CS post pulling down after
626 * accessing the device
627 * 27:22: tprecs, minimum required time for CS pre pulling down before
628 * accessing the device
629 * 21:16: tc2r, minimum required time from NCEB low to NREB low
630 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
631 * 11:08: twh, write enable hold time
632 * 07:04: twst, write wait states
633 * 03:00: trlt, read wait states
634 */
635 trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
636 nfi_writel(nfc, trlt, NFI_ACCCON);
637
638 return 0;
639 }
640
mtk_nfc_sector_encode(struct nand_chip * chip,u8 * data)641 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
642 {
643 struct mtk_nfc *nfc = nand_get_controller_data(chip);
644 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
645 int size = chip->ecc.size + mtk_nand->fdm.reg_size;
646
647 nfc->ecc_cfg.mode = ECC_DMA_MODE;
648 nfc->ecc_cfg.op = ECC_ENCODE;
649
650 return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
651 }
652
mtk_nfc_no_bad_mark_swap(struct mtd_info * a,u8 * b,int c)653 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
654 {
655 /* nop */
656 }
657
mtk_nfc_bad_mark_swap(struct mtd_info * mtd,u8 * buf,int raw)658 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
659 {
660 struct nand_chip *chip = mtd_to_nand(mtd);
661 struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
662 u32 bad_pos = nand->bad_mark.pos;
663
664 if (raw)
665 bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
666 else
667 bad_pos += nand->bad_mark.sec * chip->ecc.size;
668
669 swap(chip->oob_poi[0], buf[bad_pos]);
670 }
671
mtk_nfc_format_subpage(struct mtd_info * mtd,u32 offset,u32 len,const u8 * buf)672 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
673 u32 len, const u8 *buf)
674 {
675 struct nand_chip *chip = mtd_to_nand(mtd);
676 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
677 struct mtk_nfc *nfc = nand_get_controller_data(chip);
678 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
679 u32 start, end;
680 int i, ret;
681
682 start = offset / chip->ecc.size;
683 end = DIV_ROUND_UP(offset + len, chip->ecc.size);
684
685 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
686 for (i = 0; i < chip->ecc.steps; i++) {
687 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
688 chip->ecc.size);
689
690 if (start > i || i >= end)
691 continue;
692
693 if (i == mtk_nand->bad_mark.sec)
694 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
695
696 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
697
698 /* program the CRC back to the OOB */
699 ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
700 if (ret < 0)
701 return ret;
702 }
703
704 return 0;
705 }
706
mtk_nfc_format_page(struct mtd_info * mtd,const u8 * buf)707 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
708 {
709 struct nand_chip *chip = mtd_to_nand(mtd);
710 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
711 struct mtk_nfc *nfc = nand_get_controller_data(chip);
712 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
713 u32 i;
714
715 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
716 for (i = 0; i < chip->ecc.steps; i++) {
717 if (buf)
718 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
719 chip->ecc.size);
720
721 if (i == mtk_nand->bad_mark.sec)
722 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
723
724 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
725 }
726 }
727
mtk_nfc_read_fdm(struct nand_chip * chip,u32 start,u32 sectors)728 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
729 u32 sectors)
730 {
731 struct mtk_nfc *nfc = nand_get_controller_data(chip);
732 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
733 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
734 u32 vall, valm;
735 u8 *oobptr;
736 int i, j;
737
738 for (i = 0; i < sectors; i++) {
739 oobptr = oob_ptr(chip, start + i);
740 vall = nfi_readl(nfc, NFI_FDML(i));
741 valm = nfi_readl(nfc, NFI_FDMM(i));
742
743 for (j = 0; j < fdm->reg_size; j++)
744 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
745 }
746 }
747
mtk_nfc_write_fdm(struct nand_chip * chip)748 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
749 {
750 struct mtk_nfc *nfc = nand_get_controller_data(chip);
751 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
752 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
753 u32 vall, valm;
754 u8 *oobptr;
755 int i, j;
756
757 for (i = 0; i < chip->ecc.steps; i++) {
758 oobptr = oob_ptr(chip, i);
759 vall = 0;
760 valm = 0;
761 for (j = 0; j < 8; j++) {
762 if (j < 4)
763 vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
764 << (j * 8);
765 else
766 valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
767 << ((j - 4) * 8);
768 }
769 nfi_writel(nfc, vall, NFI_FDML(i));
770 nfi_writel(nfc, valm, NFI_FDMM(i));
771 }
772 }
773
mtk_nfc_do_write_page(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int page,int len)774 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
775 const u8 *buf, int page, int len)
776 {
777 struct mtk_nfc *nfc = nand_get_controller_data(chip);
778 struct device *dev = nfc->dev;
779 dma_addr_t addr;
780 u32 reg;
781 int ret;
782
783 addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
784 ret = dma_mapping_error(nfc->dev, addr);
785 if (ret) {
786 dev_err(nfc->dev, "dma mapping error\n");
787 return -EINVAL;
788 }
789
790 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
791 nfi_writew(nfc, reg, NFI_CNFG);
792
793 nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
794 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
795 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
796
797 init_completion(&nfc->done);
798
799 reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
800 nfi_writel(nfc, reg, NFI_CON);
801 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
802
803 ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
804 if (!ret) {
805 dev_err(dev, "program ahb done timeout\n");
806 nfi_writew(nfc, 0, NFI_INTR_EN);
807 ret = -ETIMEDOUT;
808 goto timeout;
809 }
810
811 ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
812 ADDRCNTR_SEC(reg) >= chip->ecc.steps,
813 10, MTK_TIMEOUT);
814 if (ret)
815 dev_err(dev, "hwecc write timeout\n");
816
817 timeout:
818
819 dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
820 nfi_writel(nfc, 0, NFI_CON);
821
822 return ret;
823 }
824
mtk_nfc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int page,int raw)825 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
826 const u8 *buf, int page, int raw)
827 {
828 struct mtk_nfc *nfc = nand_get_controller_data(chip);
829 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
830 size_t len;
831 const u8 *bufpoi;
832 u32 reg;
833 int ret;
834
835 mtk_nfc_select_target(chip, chip->cur_cs);
836 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
837
838 if (!raw) {
839 /* OOB => FDM: from register, ECC: from HW */
840 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
841 nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
842
843 nfc->ecc_cfg.op = ECC_ENCODE;
844 nfc->ecc_cfg.mode = ECC_NFI_MODE;
845 ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
846 if (ret) {
847 /* clear NFI config */
848 reg = nfi_readw(nfc, NFI_CNFG);
849 reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
850 nfi_writew(nfc, reg, NFI_CNFG);
851
852 return ret;
853 }
854
855 memcpy(nfc->buffer, buf, mtd->writesize);
856 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
857 bufpoi = nfc->buffer;
858
859 /* write OOB into the FDM registers (OOB area in MTK NAND) */
860 mtk_nfc_write_fdm(chip);
861 } else {
862 bufpoi = buf;
863 }
864
865 len = mtd->writesize + (raw ? mtd->oobsize : 0);
866 ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
867
868 if (!raw)
869 mtk_ecc_disable(nfc->ecc);
870
871 if (ret)
872 return ret;
873
874 return nand_prog_page_end_op(chip);
875 }
876
mtk_nfc_write_page_hwecc(struct nand_chip * chip,const u8 * buf,int oob_on,int page)877 static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
878 int oob_on, int page)
879 {
880 return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
881 }
882
mtk_nfc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_on,int pg)883 static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
884 int oob_on, int pg)
885 {
886 struct mtd_info *mtd = nand_to_mtd(chip);
887 struct mtk_nfc *nfc = nand_get_controller_data(chip);
888
889 mtk_nfc_format_page(mtd, buf);
890 return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
891 }
892
mtk_nfc_write_subpage_hwecc(struct nand_chip * chip,u32 offset,u32 data_len,const u8 * buf,int oob_on,int page)893 static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
894 u32 data_len, const u8 *buf,
895 int oob_on, int page)
896 {
897 struct mtd_info *mtd = nand_to_mtd(chip);
898 struct mtk_nfc *nfc = nand_get_controller_data(chip);
899 int ret;
900
901 ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
902 if (ret < 0)
903 return ret;
904
905 /* use the data in the private buffer (now with FDM and CRC) */
906 return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
907 }
908
mtk_nfc_write_oob_std(struct nand_chip * chip,int page)909 static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
910 {
911 return mtk_nfc_write_page_raw(chip, NULL, 1, page);
912 }
913
mtk_nfc_update_ecc_stats(struct mtd_info * mtd,u8 * buf,u32 start,u32 sectors)914 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start,
915 u32 sectors)
916 {
917 struct nand_chip *chip = mtd_to_nand(mtd);
918 struct mtk_nfc *nfc = nand_get_controller_data(chip);
919 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
920 struct mtk_ecc_stats stats;
921 u32 reg_size = mtk_nand->fdm.reg_size;
922 int rc, i;
923
924 rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
925 if (rc) {
926 memset(buf, 0xff, sectors * chip->ecc.size);
927 for (i = 0; i < sectors; i++)
928 memset(oob_ptr(chip, start + i), 0xff, reg_size);
929 return 0;
930 }
931
932 mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
933 mtd->ecc_stats.corrected += stats.corrected;
934 mtd->ecc_stats.failed += stats.failed;
935
936 return stats.bitflips;
937 }
938
mtk_nfc_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,u32 data_offs,u32 readlen,u8 * bufpoi,int page,int raw)939 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
940 u32 data_offs, u32 readlen,
941 u8 *bufpoi, int page, int raw)
942 {
943 struct mtk_nfc *nfc = nand_get_controller_data(chip);
944 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
945 u32 spare = mtk_nand->spare_per_sector;
946 u32 column, sectors, start, end, reg;
947 dma_addr_t addr;
948 int bitflips = 0;
949 size_t len;
950 u8 *buf;
951 int rc;
952
953 mtk_nfc_select_target(chip, chip->cur_cs);
954 start = data_offs / chip->ecc.size;
955 end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
956
957 sectors = end - start;
958 column = start * (chip->ecc.size + spare);
959
960 len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
961 buf = bufpoi + start * chip->ecc.size;
962
963 nand_read_page_op(chip, page, column, NULL, 0);
964
965 addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
966 rc = dma_mapping_error(nfc->dev, addr);
967 if (rc) {
968 dev_err(nfc->dev, "dma mapping error\n");
969
970 return -EINVAL;
971 }
972
973 reg = nfi_readw(nfc, NFI_CNFG);
974 reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
975 if (!raw) {
976 reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
977 nfi_writew(nfc, reg, NFI_CNFG);
978
979 nfc->ecc_cfg.mode = ECC_NFI_MODE;
980 nfc->ecc_cfg.sectors = sectors;
981 nfc->ecc_cfg.op = ECC_DECODE;
982 rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
983 if (rc) {
984 dev_err(nfc->dev, "ecc enable\n");
985 /* clear NFI_CNFG */
986 reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
987 CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
988 nfi_writew(nfc, reg, NFI_CNFG);
989 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
990
991 return rc;
992 }
993 } else {
994 nfi_writew(nfc, reg, NFI_CNFG);
995 }
996
997 nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
998 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
999 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
1000
1001 init_completion(&nfc->done);
1002 reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
1003 nfi_writel(nfc, reg, NFI_CON);
1004 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
1005
1006 rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
1007 if (!rc)
1008 dev_warn(nfc->dev, "read ahb/dma done timeout\n");
1009
1010 rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
1011 ADDRCNTR_SEC(reg) >= sectors, 10,
1012 MTK_TIMEOUT);
1013 if (rc < 0) {
1014 dev_err(nfc->dev, "subpage done timeout\n");
1015 bitflips = -EIO;
1016 } else if (!raw) {
1017 rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
1018 bitflips = rc < 0 ? -ETIMEDOUT :
1019 mtk_nfc_update_ecc_stats(mtd, buf, start, sectors);
1020 mtk_nfc_read_fdm(chip, start, sectors);
1021 }
1022
1023 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
1024
1025 if (raw)
1026 goto done;
1027
1028 mtk_ecc_disable(nfc->ecc);
1029
1030 if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
1031 mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
1032 done:
1033 nfi_writel(nfc, 0, NFI_CON);
1034
1035 return bitflips;
1036 }
1037
mtk_nfc_read_subpage_hwecc(struct nand_chip * chip,u32 off,u32 len,u8 * p,int pg)1038 static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
1039 u32 len, u8 *p, int pg)
1040 {
1041 return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
1042 0);
1043 }
1044
mtk_nfc_read_page_hwecc(struct nand_chip * chip,u8 * p,int oob_on,int pg)1045 static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
1046 int pg)
1047 {
1048 struct mtd_info *mtd = nand_to_mtd(chip);
1049
1050 return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
1051 }
1052
mtk_nfc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_on,int page)1053 static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
1054 int page)
1055 {
1056 struct mtd_info *mtd = nand_to_mtd(chip);
1057 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1058 struct mtk_nfc *nfc = nand_get_controller_data(chip);
1059 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1060 int i, ret;
1061
1062 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
1063 ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
1064 page, 1);
1065 if (ret < 0)
1066 return ret;
1067
1068 for (i = 0; i < chip->ecc.steps; i++) {
1069 memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1070
1071 if (i == mtk_nand->bad_mark.sec)
1072 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1073
1074 if (buf)
1075 memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1076 chip->ecc.size);
1077 }
1078
1079 return ret;
1080 }
1081
mtk_nfc_read_oob_std(struct nand_chip * chip,int page)1082 static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
1083 {
1084 return mtk_nfc_read_page_raw(chip, NULL, 1, page);
1085 }
1086
mtk_nfc_hw_init(struct mtk_nfc * nfc)1087 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1088 {
1089 /*
1090 * CNRNB: nand ready/busy register
1091 * -------------------------------
1092 * 7:4: timeout register for polling the NAND busy/ready signal
1093 * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
1094 */
1095 nfi_writew(nfc, 0xf1, NFI_CNRNB);
1096 nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1097
1098 mtk_nfc_hw_reset(nfc);
1099
1100 nfi_readl(nfc, NFI_INTR_STA);
1101 nfi_writel(nfc, 0, NFI_INTR_EN);
1102 }
1103
mtk_nfc_irq(int irq,void * id)1104 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1105 {
1106 struct mtk_nfc *nfc = id;
1107 u16 sta, ien;
1108
1109 sta = nfi_readw(nfc, NFI_INTR_STA);
1110 ien = nfi_readw(nfc, NFI_INTR_EN);
1111
1112 if (!(sta & ien))
1113 return IRQ_NONE;
1114
1115 nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1116 complete(&nfc->done);
1117
1118 return IRQ_HANDLED;
1119 }
1120
mtk_nfc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oob_region)1121 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1122 struct mtd_oob_region *oob_region)
1123 {
1124 struct nand_chip *chip = mtd_to_nand(mtd);
1125 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1126 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1127 u32 eccsteps;
1128
1129 eccsteps = mtd->writesize / chip->ecc.size;
1130
1131 if (section >= eccsteps)
1132 return -ERANGE;
1133
1134 oob_region->length = fdm->reg_size - fdm->ecc_size;
1135 oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1136
1137 return 0;
1138 }
1139
mtk_nfc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oob_region)1140 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1141 struct mtd_oob_region *oob_region)
1142 {
1143 struct nand_chip *chip = mtd_to_nand(mtd);
1144 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1145 u32 eccsteps;
1146
1147 if (section)
1148 return -ERANGE;
1149
1150 eccsteps = mtd->writesize / chip->ecc.size;
1151 oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1152 oob_region->length = mtd->oobsize - oob_region->offset;
1153
1154 return 0;
1155 }
1156
1157 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1158 .free = mtk_nfc_ooblayout_free,
1159 .ecc = mtk_nfc_ooblayout_ecc,
1160 };
1161
mtk_nfc_set_fdm(struct mtk_nfc_fdm * fdm,struct mtd_info * mtd)1162 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1163 {
1164 struct nand_chip *nand = mtd_to_nand(mtd);
1165 struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1166 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1167 u32 ecc_bytes;
1168
1169 ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1170 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1171
1172 fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1173 if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1174 fdm->reg_size = NFI_FDM_MAX_SIZE;
1175
1176 /* bad block mark storage */
1177 fdm->ecc_size = 1;
1178 }
1179
mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl * bm_ctl,struct mtd_info * mtd)1180 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1181 struct mtd_info *mtd)
1182 {
1183 struct nand_chip *nand = mtd_to_nand(mtd);
1184
1185 if (mtd->writesize == 512) {
1186 bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1187 } else {
1188 bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1189 bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1190 bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1191 }
1192 }
1193
mtk_nfc_set_spare_per_sector(u32 * sps,struct mtd_info * mtd)1194 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1195 {
1196 struct nand_chip *nand = mtd_to_nand(mtd);
1197 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1198 const u8 *spare = nfc->caps->spare_size;
1199 u32 eccsteps, i, closest_spare = 0;
1200
1201 eccsteps = mtd->writesize / nand->ecc.size;
1202 *sps = mtd->oobsize / eccsteps;
1203
1204 if (nand->ecc.size == 1024)
1205 *sps >>= 1;
1206
1207 if (*sps < MTK_NFC_MIN_SPARE)
1208 return -EINVAL;
1209
1210 for (i = 0; i < nfc->caps->num_spare_size; i++) {
1211 if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1212 closest_spare = i;
1213 if (*sps == spare[i])
1214 break;
1215 }
1216 }
1217
1218 *sps = spare[closest_spare];
1219
1220 if (nand->ecc.size == 1024)
1221 *sps <<= 1;
1222
1223 return 0;
1224 }
1225
mtk_nfc_ecc_init(struct device * dev,struct mtd_info * mtd)1226 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1227 {
1228 struct nand_chip *nand = mtd_to_nand(mtd);
1229 const struct nand_ecc_props *requirements =
1230 nanddev_get_ecc_requirements(&nand->base);
1231 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1232 u32 spare;
1233 int free, ret;
1234
1235 /* support only ecc hw mode */
1236 if (nand->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1237 dev_err(dev, "ecc.engine_type not supported\n");
1238 return -EINVAL;
1239 }
1240
1241 /* if optional dt settings not present */
1242 if (!nand->ecc.size || !nand->ecc.strength) {
1243 /* use datasheet requirements */
1244 nand->ecc.strength = requirements->strength;
1245 nand->ecc.size = requirements->step_size;
1246
1247 /*
1248 * align eccstrength and eccsize
1249 * this controller only supports 512 and 1024 sizes
1250 */
1251 if (nand->ecc.size < 1024) {
1252 if (mtd->writesize > 512 &&
1253 nfc->caps->max_sector_size > 512) {
1254 nand->ecc.size = 1024;
1255 nand->ecc.strength <<= 1;
1256 } else {
1257 nand->ecc.size = 512;
1258 }
1259 } else {
1260 nand->ecc.size = 1024;
1261 }
1262
1263 ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1264 if (ret)
1265 return ret;
1266
1267 /* calculate oob bytes except ecc parity data */
1268 free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1269 + 7) >> 3;
1270 free = spare - free;
1271
1272 /*
1273 * enhance ecc strength if oob left is bigger than max FDM size
1274 * or reduce ecc strength if oob size is not enough for ecc
1275 * parity data.
1276 */
1277 if (free > NFI_FDM_MAX_SIZE) {
1278 spare -= NFI_FDM_MAX_SIZE;
1279 nand->ecc.strength = (spare << 3) /
1280 mtk_ecc_get_parity_bits(nfc->ecc);
1281 } else if (free < 0) {
1282 spare -= NFI_FDM_MIN_SIZE;
1283 nand->ecc.strength = (spare << 3) /
1284 mtk_ecc_get_parity_bits(nfc->ecc);
1285 }
1286 }
1287
1288 mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1289
1290 dev_info(dev, "eccsize %d eccstrength %d\n",
1291 nand->ecc.size, nand->ecc.strength);
1292
1293 return 0;
1294 }
1295
mtk_nfc_attach_chip(struct nand_chip * chip)1296 static int mtk_nfc_attach_chip(struct nand_chip *chip)
1297 {
1298 struct mtd_info *mtd = nand_to_mtd(chip);
1299 struct device *dev = mtd->dev.parent;
1300 struct mtk_nfc *nfc = nand_get_controller_data(chip);
1301 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1302 int len;
1303 int ret;
1304
1305 if (chip->options & NAND_BUSWIDTH_16) {
1306 dev_err(dev, "16bits buswidth not supported");
1307 return -EINVAL;
1308 }
1309
1310 /* store bbt magic in page, cause OOB is not protected */
1311 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1312 chip->bbt_options |= NAND_BBT_NO_OOB;
1313
1314 ret = mtk_nfc_ecc_init(dev, mtd);
1315 if (ret)
1316 return ret;
1317
1318 ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
1319 if (ret)
1320 return ret;
1321
1322 mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
1323 mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
1324
1325 len = mtd->writesize + mtd->oobsize;
1326 nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1327 if (!nfc->buffer)
1328 return -ENOMEM;
1329
1330 return 0;
1331 }
1332
1333 static const struct nand_controller_ops mtk_nfc_controller_ops = {
1334 .attach_chip = mtk_nfc_attach_chip,
1335 .setup_interface = mtk_nfc_setup_interface,
1336 .exec_op = mtk_nfc_exec_op,
1337 };
1338
mtk_nfc_nand_chip_init(struct device * dev,struct mtk_nfc * nfc,struct device_node * np)1339 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1340 struct device_node *np)
1341 {
1342 struct mtk_nfc_nand_chip *chip;
1343 struct nand_chip *nand;
1344 struct mtd_info *mtd;
1345 int nsels;
1346 u32 tmp;
1347 int ret;
1348 int i;
1349
1350 if (!of_get_property(np, "reg", &nsels))
1351 return -ENODEV;
1352
1353 nsels /= sizeof(u32);
1354 if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1355 dev_err(dev, "invalid reg property size %d\n", nsels);
1356 return -EINVAL;
1357 }
1358
1359 chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1360 GFP_KERNEL);
1361 if (!chip)
1362 return -ENOMEM;
1363
1364 chip->nsels = nsels;
1365 for (i = 0; i < nsels; i++) {
1366 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1367 if (ret) {
1368 dev_err(dev, "reg property failure : %d\n", ret);
1369 return ret;
1370 }
1371
1372 if (tmp >= MTK_NAND_MAX_NSELS) {
1373 dev_err(dev, "invalid CS: %u\n", tmp);
1374 return -EINVAL;
1375 }
1376
1377 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1378 dev_err(dev, "CS %u already assigned\n", tmp);
1379 return -EINVAL;
1380 }
1381
1382 chip->sels[i] = tmp;
1383 }
1384
1385 nand = &chip->nand;
1386 nand->controller = &nfc->controller;
1387
1388 nand_set_flash_node(nand, np);
1389 nand_set_controller_data(nand, nfc);
1390
1391 nand->options |= NAND_USES_DMA | NAND_SUBPAGE_READ;
1392
1393 /* set default mode in case dt entry is missing */
1394 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1395
1396 nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1397 nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1398 nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1399 nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1400 nand->ecc.write_oob = mtk_nfc_write_oob_std;
1401
1402 nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1403 nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1404 nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1405 nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1406 nand->ecc.read_oob = mtk_nfc_read_oob_std;
1407
1408 mtd = nand_to_mtd(nand);
1409 mtd->owner = THIS_MODULE;
1410 mtd->dev.parent = dev;
1411 mtd->name = MTK_NAME;
1412 mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1413
1414 mtk_nfc_hw_init(nfc);
1415
1416 ret = nand_scan(nand, nsels);
1417 if (ret)
1418 return ret;
1419
1420 ret = mtd_device_register(mtd, NULL, 0);
1421 if (ret) {
1422 dev_err(dev, "mtd parse partition error\n");
1423 nand_cleanup(nand);
1424 return ret;
1425 }
1426
1427 list_add_tail(&chip->node, &nfc->chips);
1428
1429 return 0;
1430 }
1431
mtk_nfc_nand_chips_cleanup(struct mtk_nfc * nfc)1432 static void mtk_nfc_nand_chips_cleanup(struct mtk_nfc *nfc)
1433 {
1434 struct mtk_nfc_nand_chip *mtk_chip;
1435 struct nand_chip *chip;
1436 int ret;
1437
1438 while (!list_empty(&nfc->chips)) {
1439 mtk_chip = list_first_entry(&nfc->chips,
1440 struct mtk_nfc_nand_chip, node);
1441 chip = &mtk_chip->nand;
1442 ret = mtd_device_unregister(nand_to_mtd(chip));
1443 WARN_ON(ret);
1444 nand_cleanup(chip);
1445 list_del(&mtk_chip->node);
1446 }
1447 }
1448
mtk_nfc_nand_chips_init(struct device * dev,struct mtk_nfc * nfc)1449 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1450 {
1451 struct device_node *np = dev->of_node;
1452 int ret;
1453
1454 for_each_child_of_node_scoped(np, nand_np) {
1455 ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1456 if (ret) {
1457 mtk_nfc_nand_chips_cleanup(nfc);
1458 return ret;
1459 }
1460 }
1461
1462 return 0;
1463 }
1464
1465 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1466 .spare_size = spare_size_mt2701,
1467 .num_spare_size = 16,
1468 .pageformat_spare_shift = 4,
1469 .nfi_clk_div = 1,
1470 .max_sector = 16,
1471 .max_sector_size = 1024,
1472 };
1473
1474 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1475 .spare_size = spare_size_mt2712,
1476 .num_spare_size = 19,
1477 .pageformat_spare_shift = 16,
1478 .nfi_clk_div = 2,
1479 .max_sector = 16,
1480 .max_sector_size = 1024,
1481 };
1482
1483 static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1484 .spare_size = spare_size_mt7622,
1485 .num_spare_size = 4,
1486 .pageformat_spare_shift = 4,
1487 .nfi_clk_div = 1,
1488 .max_sector = 8,
1489 .max_sector_size = 512,
1490 };
1491
1492 static const struct of_device_id mtk_nfc_id_table[] = {
1493 {
1494 .compatible = "mediatek,mt2701-nfc",
1495 .data = &mtk_nfc_caps_mt2701,
1496 }, {
1497 .compatible = "mediatek,mt2712-nfc",
1498 .data = &mtk_nfc_caps_mt2712,
1499 }, {
1500 .compatible = "mediatek,mt7622-nfc",
1501 .data = &mtk_nfc_caps_mt7622,
1502 },
1503 {}
1504 };
1505 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1506
mtk_nfc_probe(struct platform_device * pdev)1507 static int mtk_nfc_probe(struct platform_device *pdev)
1508 {
1509 struct device *dev = &pdev->dev;
1510 struct device_node *np = dev->of_node;
1511 struct mtk_nfc *nfc;
1512 int ret, irq;
1513
1514 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1515 if (!nfc)
1516 return -ENOMEM;
1517
1518 nand_controller_init(&nfc->controller);
1519 INIT_LIST_HEAD(&nfc->chips);
1520 nfc->controller.ops = &mtk_nfc_controller_ops;
1521
1522 /* probe defer if not ready */
1523 nfc->ecc = of_mtk_ecc_get(np);
1524 if (IS_ERR(nfc->ecc))
1525 return PTR_ERR(nfc->ecc);
1526 else if (!nfc->ecc)
1527 return -ENODEV;
1528
1529 nfc->caps = of_device_get_match_data(dev);
1530 nfc->dev = dev;
1531
1532 nfc->regs = devm_platform_ioremap_resource(pdev, 0);
1533 if (IS_ERR(nfc->regs)) {
1534 ret = PTR_ERR(nfc->regs);
1535 goto release_ecc;
1536 }
1537
1538 nfc->clk.nfi_clk = devm_clk_get_enabled(dev, "nfi_clk");
1539 if (IS_ERR(nfc->clk.nfi_clk)) {
1540 dev_err(dev, "no clk\n");
1541 ret = PTR_ERR(nfc->clk.nfi_clk);
1542 goto release_ecc;
1543 }
1544
1545 nfc->clk.pad_clk = devm_clk_get_enabled(dev, "pad_clk");
1546 if (IS_ERR(nfc->clk.pad_clk)) {
1547 dev_err(dev, "no pad clk\n");
1548 ret = PTR_ERR(nfc->clk.pad_clk);
1549 goto release_ecc;
1550 }
1551
1552 irq = platform_get_irq(pdev, 0);
1553 if (irq < 0) {
1554 ret = -EINVAL;
1555 goto release_ecc;
1556 }
1557
1558 ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1559 if (ret) {
1560 dev_err(dev, "failed to request nfi irq\n");
1561 goto release_ecc;
1562 }
1563
1564 ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1565 if (ret) {
1566 dev_err(dev, "failed to set dma mask\n");
1567 goto release_ecc;
1568 }
1569
1570 platform_set_drvdata(pdev, nfc);
1571
1572 ret = mtk_nfc_nand_chips_init(dev, nfc);
1573 if (ret) {
1574 dev_err(dev, "failed to init nand chips\n");
1575 goto release_ecc;
1576 }
1577
1578 return 0;
1579
1580 release_ecc:
1581 mtk_ecc_release(nfc->ecc);
1582
1583 return ret;
1584 }
1585
mtk_nfc_remove(struct platform_device * pdev)1586 static void mtk_nfc_remove(struct platform_device *pdev)
1587 {
1588 struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1589
1590 mtk_nfc_nand_chips_cleanup(nfc);
1591 mtk_ecc_release(nfc->ecc);
1592 }
1593
1594 #ifdef CONFIG_PM_SLEEP
mtk_nfc_suspend(struct device * dev)1595 static int mtk_nfc_suspend(struct device *dev)
1596 {
1597 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1598
1599 clk_disable_unprepare(nfc->clk.nfi_clk);
1600 clk_disable_unprepare(nfc->clk.pad_clk);
1601
1602 return 0;
1603 }
1604
mtk_nfc_resume(struct device * dev)1605 static int mtk_nfc_resume(struct device *dev)
1606 {
1607 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1608 struct mtk_nfc_nand_chip *chip;
1609 struct nand_chip *nand;
1610 int ret;
1611 u32 i;
1612
1613 udelay(200);
1614
1615 ret = clk_prepare_enable(nfc->clk.nfi_clk);
1616 if (ret) {
1617 dev_err(dev, "failed to enable nfi clk\n");
1618 return ret;
1619 }
1620
1621 ret = clk_prepare_enable(nfc->clk.pad_clk);
1622 if (ret) {
1623 dev_err(dev, "failed to enable pad clk\n");
1624 clk_disable_unprepare(nfc->clk.nfi_clk);
1625 return ret;
1626 }
1627
1628 /* reset NAND chip if VCC was powered off */
1629 list_for_each_entry(chip, &nfc->chips, node) {
1630 nand = &chip->nand;
1631 for (i = 0; i < chip->nsels; i++)
1632 nand_reset(nand, i);
1633 }
1634
1635 return 0;
1636 }
1637
1638 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1639 #endif
1640
1641 static struct platform_driver mtk_nfc_driver = {
1642 .probe = mtk_nfc_probe,
1643 .remove_new = mtk_nfc_remove,
1644 .driver = {
1645 .name = MTK_NAME,
1646 .of_match_table = mtk_nfc_id_table,
1647 #ifdef CONFIG_PM_SLEEP
1648 .pm = &mtk_nfc_pm_ops,
1649 #endif
1650 },
1651 };
1652
1653 module_platform_driver(mtk_nfc_driver);
1654
1655 MODULE_LICENSE("Dual MIT/GPL");
1656 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1657 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
1658