xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0+
2  //
3  // drivers/dma/imx-sdma.c
4  //
5  // This file contains a driver for the Freescale Smart DMA engine
6  //
7  // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8  //
9  // Based on code from Freescale:
10  //
11  // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12  
13  #include <linux/init.h>
14  #include <linux/iopoll.h>
15  #include <linux/module.h>
16  #include <linux/types.h>
17  #include <linux/bitfield.h>
18  #include <linux/bitops.h>
19  #include <linux/mm.h>
20  #include <linux/interrupt.h>
21  #include <linux/clk.h>
22  #include <linux/delay.h>
23  #include <linux/sched.h>
24  #include <linux/semaphore.h>
25  #include <linux/spinlock.h>
26  #include <linux/device.h>
27  #include <linux/dma-mapping.h>
28  #include <linux/firmware.h>
29  #include <linux/slab.h>
30  #include <linux/platform_device.h>
31  #include <linux/dmaengine.h>
32  #include <linux/of.h>
33  #include <linux/of_address.h>
34  #include <linux/of_dma.h>
35  #include <linux/workqueue.h>
36  
37  #include <asm/irq.h>
38  #include <linux/dma/imx-dma.h>
39  #include <linux/regmap.h>
40  #include <linux/mfd/syscon.h>
41  #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42  
43  #include "dmaengine.h"
44  #include "virt-dma.h"
45  
46  /* SDMA registers */
47  #define SDMA_H_C0PTR		0x000
48  #define SDMA_H_INTR		0x004
49  #define SDMA_H_STATSTOP		0x008
50  #define SDMA_H_START		0x00c
51  #define SDMA_H_EVTOVR		0x010
52  #define SDMA_H_DSPOVR		0x014
53  #define SDMA_H_HOSTOVR		0x018
54  #define SDMA_H_EVTPEND		0x01c
55  #define SDMA_H_DSPENBL		0x020
56  #define SDMA_H_RESET		0x024
57  #define SDMA_H_EVTERR		0x028
58  #define SDMA_H_INTRMSK		0x02c
59  #define SDMA_H_PSW		0x030
60  #define SDMA_H_EVTERRDBG	0x034
61  #define SDMA_H_CONFIG		0x038
62  #define SDMA_ONCE_ENB		0x040
63  #define SDMA_ONCE_DATA		0x044
64  #define SDMA_ONCE_INSTR		0x048
65  #define SDMA_ONCE_STAT		0x04c
66  #define SDMA_ONCE_CMD		0x050
67  #define SDMA_EVT_MIRROR		0x054
68  #define SDMA_ILLINSTADDR	0x058
69  #define SDMA_CHN0ADDR		0x05c
70  #define SDMA_ONCE_RTB		0x060
71  #define SDMA_XTRIG_CONF1	0x070
72  #define SDMA_XTRIG_CONF2	0x074
73  #define SDMA_CHNENBL0_IMX35	0x200
74  #define SDMA_CHNENBL0_IMX31	0x080
75  #define SDMA_CHNPRI_0		0x100
76  #define SDMA_DONE0_CONFIG	0x1000
77  
78  /*
79   * Buffer descriptor status values.
80   */
81  #define BD_DONE  0x01
82  #define BD_WRAP  0x02
83  #define BD_CONT  0x04
84  #define BD_INTR  0x08
85  #define BD_RROR  0x10
86  #define BD_LAST  0x20
87  #define BD_EXTD  0x80
88  
89  /*
90   * Data Node descriptor status values.
91   */
92  #define DND_END_OF_FRAME  0x80
93  #define DND_END_OF_XFER   0x40
94  #define DND_DONE          0x20
95  #define DND_UNUSED        0x01
96  
97  /*
98   * IPCV2 descriptor status values.
99   */
100  #define BD_IPCV2_END_OF_FRAME  0x40
101  
102  #define IPCV2_MAX_NODES        50
103  /*
104   * Error bit set in the CCB status field by the SDMA,
105   * in setbd routine, in case of a transfer error
106   */
107  #define DATA_ERROR  0x10000000
108  
109  /*
110   * Buffer descriptor commands.
111   */
112  #define C0_ADDR             0x01
113  #define C0_LOAD             0x02
114  #define C0_DUMP             0x03
115  #define C0_SETCTX           0x07
116  #define C0_GETCTX           0x03
117  #define C0_SETDM            0x01
118  #define C0_SETPM            0x04
119  #define C0_GETDM            0x02
120  #define C0_GETPM            0x08
121  /*
122   * Change endianness indicator in the BD command field
123   */
124  #define CHANGE_ENDIANNESS   0x80
125  
126  /*
127   *  p_2_p watermark_level description
128   *	Bits		Name			Description
129   *	0-7		Lower WML		Lower watermark level
130   *	8		PS			1: Pad Swallowing
131   *						0: No Pad Swallowing
132   *	9		PA			1: Pad Adding
133   *						0: No Pad Adding
134   *	10		SPDIF			If this bit is set both source
135   *						and destination are on SPBA
136   *	11		Source Bit(SP)		1: Source on SPBA
137   *						0: Source on AIPS
138   *	12		Destination Bit(DP)	1: Destination on SPBA
139   *						0: Destination on AIPS
140   *	13-15		---------		MUST BE 0
141   *	16-23		Higher WML		HWML
142   *	24-27		N			Total number of samples after
143   *						which Pad adding/Swallowing
144   *						must be done. It must be odd.
145   *	28		Lower WML Event(LWE)	SDMA events reg to check for
146   *						LWML event mask
147   *						0: LWE in EVENTS register
148   *						1: LWE in EVENTS2 register
149   *	29		Higher WML Event(HWE)	SDMA events reg to check for
150   *						HWML event mask
151   *						0: HWE in EVENTS register
152   *						1: HWE in EVENTS2 register
153   *	30		---------		MUST BE 0
154   *	31		CONT			1: Amount of samples to be
155   *						transferred is unknown and
156   *						script will keep on
157   *						transferring samples as long as
158   *						both events are detected and
159   *						script must be manually stopped
160   *						by the application
161   *						0: The amount of samples to be
162   *						transferred is equal to the
163   *						count field of mode word
164   */
165  #define SDMA_WATERMARK_LEVEL_LWML	0xFF
166  #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167  #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168  #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169  #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170  #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171  #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172  #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173  #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174  #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175  
176  #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177  				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178  				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179  
180  #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181  				 BIT(DMA_MEM_TO_DEV) | \
182  				 BIT(DMA_DEV_TO_DEV))
183  
184  #define SDMA_WATERMARK_LEVEL_N_FIFOS	GENMASK(15, 12)
185  #define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
186  #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
187  #define SDMA_WATERMARK_LEVEL_SW_DONE	BIT(23)
188  
189  #define SDMA_DONE0_CONFIG_DONE_SEL	BIT(7)
190  #define SDMA_DONE0_CONFIG_DONE_DIS	BIT(6)
191  
192  /*
193   * struct sdma_script_start_addrs - SDMA script start pointers
194   *
195   * start addresses of the different functions in the physical
196   * address space of the SDMA engine.
197   */
198  struct sdma_script_start_addrs {
199  	s32 ap_2_ap_addr;
200  	s32 ap_2_bp_addr;
201  	s32 ap_2_ap_fixed_addr;
202  	s32 bp_2_ap_addr;
203  	s32 loopback_on_dsp_side_addr;
204  	s32 mcu_interrupt_only_addr;
205  	s32 firi_2_per_addr;
206  	s32 firi_2_mcu_addr;
207  	s32 per_2_firi_addr;
208  	s32 mcu_2_firi_addr;
209  	s32 uart_2_per_addr;
210  	s32 uart_2_mcu_addr;
211  	s32 per_2_app_addr;
212  	s32 mcu_2_app_addr;
213  	s32 per_2_per_addr;
214  	s32 uartsh_2_per_addr;
215  	s32 uartsh_2_mcu_addr;
216  	s32 per_2_shp_addr;
217  	s32 mcu_2_shp_addr;
218  	s32 ata_2_mcu_addr;
219  	s32 mcu_2_ata_addr;
220  	s32 app_2_per_addr;
221  	s32 app_2_mcu_addr;
222  	s32 shp_2_per_addr;
223  	s32 shp_2_mcu_addr;
224  	s32 mshc_2_mcu_addr;
225  	s32 mcu_2_mshc_addr;
226  	s32 spdif_2_mcu_addr;
227  	s32 mcu_2_spdif_addr;
228  	s32 asrc_2_mcu_addr;
229  	s32 ext_mem_2_ipu_addr;
230  	s32 descrambler_addr;
231  	s32 dptc_dvfs_addr;
232  	s32 utra_addr;
233  	s32 ram_code_start_addr;
234  	/* End of v1 array */
235  	s32 mcu_2_ssish_addr;
236  	s32 ssish_2_mcu_addr;
237  	s32 hdmi_dma_addr;
238  	/* End of v2 array */
239  	s32 zcanfd_2_mcu_addr;
240  	s32 zqspi_2_mcu_addr;
241  	s32 mcu_2_ecspi_addr;
242  	s32 mcu_2_sai_addr;
243  	s32 sai_2_mcu_addr;
244  	s32 uart_2_mcu_rom_addr;
245  	s32 uartsh_2_mcu_rom_addr;
246  	/* End of v3 array */
247  	s32 mcu_2_zqspi_addr;
248  	/* End of v4 array */
249  };
250  
251  /*
252   * Mode/Count of data node descriptors - IPCv2
253   */
254  struct sdma_mode_count {
255  #define SDMA_BD_MAX_CNT	0xffff
256  	u32 count   : 16; /* size of the buffer pointed by this BD */
257  	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
258  	u32 command :  8; /* command mostly used for channel 0 */
259  };
260  
261  /*
262   * Buffer descriptor
263   */
264  struct sdma_buffer_descriptor {
265  	struct sdma_mode_count  mode;
266  	u32 buffer_addr;	/* address of the buffer described */
267  	u32 ext_buffer_addr;	/* extended buffer address */
268  } __attribute__ ((packed));
269  
270  /**
271   * struct sdma_channel_control - Channel control Block
272   *
273   * @current_bd_ptr:	current buffer descriptor processed
274   * @base_bd_ptr:	first element of buffer descriptor array
275   * @unused:		padding. The SDMA engine expects an array of 128 byte
276   *			control blocks
277   */
278  struct sdma_channel_control {
279  	u32 current_bd_ptr;
280  	u32 base_bd_ptr;
281  	u32 unused[2];
282  } __attribute__ ((packed));
283  
284  /**
285   * struct sdma_state_registers - SDMA context for a channel
286   *
287   * @pc:		program counter
288   * @unused1:	unused
289   * @t:		test bit: status of arithmetic & test instruction
290   * @rpc:	return program counter
291   * @unused0:	unused
292   * @sf:		source fault while loading data
293   * @spc:	loop start program counter
294   * @unused2:	unused
295   * @df:		destination fault while storing data
296   * @epc:	loop end program counter
297   * @lm:		loop mode
298   */
299  struct sdma_state_registers {
300  	u32 pc     :14;
301  	u32 unused1: 1;
302  	u32 t      : 1;
303  	u32 rpc    :14;
304  	u32 unused0: 1;
305  	u32 sf     : 1;
306  	u32 spc    :14;
307  	u32 unused2: 1;
308  	u32 df     : 1;
309  	u32 epc    :14;
310  	u32 lm     : 2;
311  } __attribute__ ((packed));
312  
313  /**
314   * struct sdma_context_data - sdma context specific to a channel
315   *
316   * @channel_state:	channel state bits
317   * @gReg:		general registers
318   * @mda:		burst dma destination address register
319   * @msa:		burst dma source address register
320   * @ms:			burst dma status register
321   * @md:			burst dma data register
322   * @pda:		peripheral dma destination address register
323   * @psa:		peripheral dma source address register
324   * @ps:			peripheral dma status register
325   * @pd:			peripheral dma data register
326   * @ca:			CRC polynomial register
327   * @cs:			CRC accumulator register
328   * @dda:		dedicated core destination address register
329   * @dsa:		dedicated core source address register
330   * @ds:			dedicated core status register
331   * @dd:			dedicated core data register
332   * @scratch0:		1st word of dedicated ram for context switch
333   * @scratch1:		2nd word of dedicated ram for context switch
334   * @scratch2:		3rd word of dedicated ram for context switch
335   * @scratch3:		4th word of dedicated ram for context switch
336   * @scratch4:		5th word of dedicated ram for context switch
337   * @scratch5:		6th word of dedicated ram for context switch
338   * @scratch6:		7th word of dedicated ram for context switch
339   * @scratch7:		8th word of dedicated ram for context switch
340   */
341  struct sdma_context_data {
342  	struct sdma_state_registers  channel_state;
343  	u32  gReg[8];
344  	u32  mda;
345  	u32  msa;
346  	u32  ms;
347  	u32  md;
348  	u32  pda;
349  	u32  psa;
350  	u32  ps;
351  	u32  pd;
352  	u32  ca;
353  	u32  cs;
354  	u32  dda;
355  	u32  dsa;
356  	u32  ds;
357  	u32  dd;
358  	u32  scratch0;
359  	u32  scratch1;
360  	u32  scratch2;
361  	u32  scratch3;
362  	u32  scratch4;
363  	u32  scratch5;
364  	u32  scratch6;
365  	u32  scratch7;
366  } __attribute__ ((packed));
367  
368  
369  struct sdma_engine;
370  
371  /**
372   * struct sdma_desc - descriptor structor for one transfer
373   * @vd:			descriptor for virt dma
374   * @num_bd:		number of descriptors currently handling
375   * @bd_phys:		physical address of bd
376   * @buf_tail:		ID of the buffer that was processed
377   * @buf_ptail:		ID of the previous buffer that was processed
378   * @period_len:		period length, used in cyclic.
379   * @chn_real_count:	the real count updated from bd->mode.count
380   * @chn_count:		the transfer count set
381   * @sdmac:		sdma_channel pointer
382   * @bd:			pointer of allocate bd
383   */
384  struct sdma_desc {
385  	struct virt_dma_desc	vd;
386  	unsigned int		num_bd;
387  	dma_addr_t		bd_phys;
388  	unsigned int		buf_tail;
389  	unsigned int		buf_ptail;
390  	unsigned int		period_len;
391  	unsigned int		chn_real_count;
392  	unsigned int		chn_count;
393  	struct sdma_channel	*sdmac;
394  	struct sdma_buffer_descriptor *bd;
395  };
396  
397  /**
398   * struct sdma_channel - housekeeping for a SDMA channel
399   *
400   * @vc:			virt_dma base structure
401   * @desc:		sdma description including vd and other special member
402   * @sdma:		pointer to the SDMA engine for this channel
403   * @channel:		the channel number, matches dmaengine chan_id + 1
404   * @direction:		transfer type. Needed for setting SDMA script
405   * @slave_config:	Slave configuration
406   * @peripheral_type:	Peripheral type. Needed for setting SDMA script
407   * @event_id0:		aka dma request line
408   * @event_id1:		for channels that use 2 events
409   * @word_size:		peripheral access size
410   * @pc_from_device:	script address for those device_2_memory
411   * @pc_to_device:	script address for those memory_2_device
412   * @device_to_device:	script address for those device_2_device
413   * @pc_to_pc:		script address for those memory_2_memory
414   * @flags:		loop mode or not
415   * @per_address:	peripheral source or destination address in common case
416   *                      destination address in p_2_p case
417   * @per_address2:	peripheral source address in p_2_p case
418   * @event_mask:		event mask used in p_2_p script
419   * @watermark_level:	value for gReg[7], some script will extend it from
420   *			basic watermark such as p_2_p
421   * @shp_addr:		value for gReg[6]
422   * @per_addr:		value for gReg[2]
423   * @status:		status of dma channel
424   * @context_loaded:	ensure context is only loaded once
425   * @data:		specific sdma interface structure
426   * @bd_pool:		dma_pool for bd
427   * @terminate_worker:	used to call back into terminate work function
428   * @terminated:		terminated list
429   * @is_ram_script:	flag for script in ram
430   * @n_fifos_src:	number of source device fifos
431   * @n_fifos_dst:	number of destination device fifos
432   * @sw_done:		software done flag
433   * @stride_fifos_src:	stride for source device FIFOs
434   * @stride_fifos_dst:	stride for destination device FIFOs
435   * @words_per_fifo:	copy number of words one time for one FIFO
436   */
437  struct sdma_channel {
438  	struct virt_dma_chan		vc;
439  	struct sdma_desc		*desc;
440  	struct sdma_engine		*sdma;
441  	unsigned int			channel;
442  	enum dma_transfer_direction		direction;
443  	struct dma_slave_config		slave_config;
444  	enum sdma_peripheral_type	peripheral_type;
445  	unsigned int			event_id0;
446  	unsigned int			event_id1;
447  	enum dma_slave_buswidth		word_size;
448  	unsigned int			pc_from_device, pc_to_device;
449  	unsigned int			device_to_device;
450  	unsigned int                    pc_to_pc;
451  	unsigned long			flags;
452  	dma_addr_t			per_address, per_address2;
453  	unsigned long			event_mask[2];
454  	unsigned long			watermark_level;
455  	u32				shp_addr, per_addr;
456  	enum dma_status			status;
457  	struct imx_dma_data		data;
458  	struct work_struct		terminate_worker;
459  	struct list_head                terminated;
460  	bool				is_ram_script;
461  	unsigned int			n_fifos_src;
462  	unsigned int			n_fifos_dst;
463  	unsigned int			stride_fifos_src;
464  	unsigned int			stride_fifos_dst;
465  	unsigned int			words_per_fifo;
466  	bool				sw_done;
467  };
468  
469  #define IMX_DMA_SG_LOOP		BIT(0)
470  
471  #define MAX_DMA_CHANNELS 32
472  #define MXC_SDMA_DEFAULT_PRIORITY 1
473  #define MXC_SDMA_MIN_PRIORITY 1
474  #define MXC_SDMA_MAX_PRIORITY 7
475  
476  #define SDMA_FIRMWARE_MAGIC 0x414d4453
477  
478  /**
479   * struct sdma_firmware_header - Layout of the firmware image
480   *
481   * @magic:		"SDMA"
482   * @version_major:	increased whenever layout of struct
483   *			sdma_script_start_addrs changes.
484   * @version_minor:	firmware minor version (for binary compatible changes)
485   * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
486   * @num_script_addrs:	Number of script addresses in this image
487   * @ram_code_start:	offset of SDMA ram image in this firmware image
488   * @ram_code_size:	size of SDMA ram image
489   * @script_addrs:	Stores the start address of the SDMA scripts
490   *			(in SDMA memory space)
491   */
492  struct sdma_firmware_header {
493  	u32	magic;
494  	u32	version_major;
495  	u32	version_minor;
496  	u32	script_addrs_start;
497  	u32	num_script_addrs;
498  	u32	ram_code_start;
499  	u32	ram_code_size;
500  };
501  
502  struct sdma_driver_data {
503  	int chnenbl0;
504  	int num_events;
505  	struct sdma_script_start_addrs	*script_addrs;
506  	bool check_ratio;
507  	/*
508  	 * ecspi ERR009165 fixed should be done in sdma script
509  	 * and it has been fixed in soc from i.mx6ul.
510  	 * please get more information from the below link:
511  	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
512  	 */
513  	bool ecspi_fixed;
514  };
515  
516  struct sdma_engine {
517  	struct device			*dev;
518  	struct sdma_channel		channel[MAX_DMA_CHANNELS];
519  	struct sdma_channel_control	*channel_control;
520  	void __iomem			*regs;
521  	struct sdma_context_data	*context;
522  	dma_addr_t			context_phys;
523  	struct dma_device		dma_device;
524  	struct clk			*clk_ipg;
525  	struct clk			*clk_ahb;
526  	spinlock_t			channel_0_lock;
527  	u32				script_number;
528  	struct sdma_script_start_addrs	*script_addrs;
529  	const struct sdma_driver_data	*drvdata;
530  	u32				spba_start_addr;
531  	u32				spba_end_addr;
532  	unsigned int			irq;
533  	dma_addr_t			bd0_phys;
534  	struct sdma_buffer_descriptor	*bd0;
535  	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
536  	bool				clk_ratio;
537  	bool                            fw_loaded;
538  };
539  
540  static int sdma_config_write(struct dma_chan *chan,
541  		       struct dma_slave_config *dmaengine_cfg,
542  		       enum dma_transfer_direction direction);
543  
544  static struct sdma_driver_data sdma_imx31 = {
545  	.chnenbl0 = SDMA_CHNENBL0_IMX31,
546  	.num_events = 32,
547  };
548  
549  static struct sdma_script_start_addrs sdma_script_imx25 = {
550  	.ap_2_ap_addr = 729,
551  	.uart_2_mcu_addr = 904,
552  	.per_2_app_addr = 1255,
553  	.mcu_2_app_addr = 834,
554  	.uartsh_2_mcu_addr = 1120,
555  	.per_2_shp_addr = 1329,
556  	.mcu_2_shp_addr = 1048,
557  	.ata_2_mcu_addr = 1560,
558  	.mcu_2_ata_addr = 1479,
559  	.app_2_per_addr = 1189,
560  	.app_2_mcu_addr = 770,
561  	.shp_2_per_addr = 1407,
562  	.shp_2_mcu_addr = 979,
563  };
564  
565  static struct sdma_driver_data sdma_imx25 = {
566  	.chnenbl0 = SDMA_CHNENBL0_IMX35,
567  	.num_events = 48,
568  	.script_addrs = &sdma_script_imx25,
569  };
570  
571  static struct sdma_driver_data sdma_imx35 = {
572  	.chnenbl0 = SDMA_CHNENBL0_IMX35,
573  	.num_events = 48,
574  };
575  
576  static struct sdma_script_start_addrs sdma_script_imx51 = {
577  	.ap_2_ap_addr = 642,
578  	.uart_2_mcu_addr = 817,
579  	.mcu_2_app_addr = 747,
580  	.mcu_2_shp_addr = 961,
581  	.ata_2_mcu_addr = 1473,
582  	.mcu_2_ata_addr = 1392,
583  	.app_2_per_addr = 1033,
584  	.app_2_mcu_addr = 683,
585  	.shp_2_per_addr = 1251,
586  	.shp_2_mcu_addr = 892,
587  };
588  
589  static struct sdma_driver_data sdma_imx51 = {
590  	.chnenbl0 = SDMA_CHNENBL0_IMX35,
591  	.num_events = 48,
592  	.script_addrs = &sdma_script_imx51,
593  };
594  
595  static struct sdma_script_start_addrs sdma_script_imx53 = {
596  	.ap_2_ap_addr = 642,
597  	.app_2_mcu_addr = 683,
598  	.mcu_2_app_addr = 747,
599  	.uart_2_mcu_addr = 817,
600  	.shp_2_mcu_addr = 891,
601  	.mcu_2_shp_addr = 960,
602  	.uartsh_2_mcu_addr = 1032,
603  	.spdif_2_mcu_addr = 1100,
604  	.mcu_2_spdif_addr = 1134,
605  	.firi_2_mcu_addr = 1193,
606  	.mcu_2_firi_addr = 1290,
607  };
608  
609  static struct sdma_driver_data sdma_imx53 = {
610  	.chnenbl0 = SDMA_CHNENBL0_IMX35,
611  	.num_events = 48,
612  	.script_addrs = &sdma_script_imx53,
613  };
614  
615  static struct sdma_script_start_addrs sdma_script_imx6q = {
616  	.ap_2_ap_addr = 642,
617  	.uart_2_mcu_addr = 817,
618  	.mcu_2_app_addr = 747,
619  	.per_2_per_addr = 6331,
620  	.uartsh_2_mcu_addr = 1032,
621  	.mcu_2_shp_addr = 960,
622  	.app_2_mcu_addr = 683,
623  	.shp_2_mcu_addr = 891,
624  	.spdif_2_mcu_addr = 1100,
625  	.mcu_2_spdif_addr = 1134,
626  };
627  
628  static struct sdma_driver_data sdma_imx6q = {
629  	.chnenbl0 = SDMA_CHNENBL0_IMX35,
630  	.num_events = 48,
631  	.script_addrs = &sdma_script_imx6q,
632  };
633  
634  static struct sdma_driver_data sdma_imx6ul = {
635  	.chnenbl0 = SDMA_CHNENBL0_IMX35,
636  	.num_events = 48,
637  	.script_addrs = &sdma_script_imx6q,
638  	.ecspi_fixed = true,
639  };
640  
641  static struct sdma_script_start_addrs sdma_script_imx7d = {
642  	.ap_2_ap_addr = 644,
643  	.uart_2_mcu_addr = 819,
644  	.mcu_2_app_addr = 749,
645  	.uartsh_2_mcu_addr = 1034,
646  	.mcu_2_shp_addr = 962,
647  	.app_2_mcu_addr = 685,
648  	.shp_2_mcu_addr = 893,
649  	.spdif_2_mcu_addr = 1102,
650  	.mcu_2_spdif_addr = 1136,
651  };
652  
653  static struct sdma_driver_data sdma_imx7d = {
654  	.chnenbl0 = SDMA_CHNENBL0_IMX35,
655  	.num_events = 48,
656  	.script_addrs = &sdma_script_imx7d,
657  };
658  
659  static struct sdma_driver_data sdma_imx8mq = {
660  	.chnenbl0 = SDMA_CHNENBL0_IMX35,
661  	.num_events = 48,
662  	.script_addrs = &sdma_script_imx7d,
663  	.check_ratio = 1,
664  };
665  
666  static const struct of_device_id sdma_dt_ids[] = {
667  	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
668  	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
669  	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
670  	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
671  	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
672  	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
673  	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
674  	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
675  	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
676  	{ /* sentinel */ }
677  };
678  MODULE_DEVICE_TABLE(of, sdma_dt_ids);
679  
680  #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
681  #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
682  #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
683  #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
684  
chnenbl_ofs(struct sdma_engine * sdma,unsigned int event)685  static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
686  {
687  	u32 chnenbl0 = sdma->drvdata->chnenbl0;
688  	return chnenbl0 + event * 4;
689  }
690  
sdma_config_ownership(struct sdma_channel * sdmac,bool event_override,bool mcu_override,bool dsp_override)691  static int sdma_config_ownership(struct sdma_channel *sdmac,
692  		bool event_override, bool mcu_override, bool dsp_override)
693  {
694  	struct sdma_engine *sdma = sdmac->sdma;
695  	int channel = sdmac->channel;
696  	unsigned long evt, mcu, dsp;
697  
698  	if (event_override && mcu_override && dsp_override)
699  		return -EINVAL;
700  
701  	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
702  	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
703  	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
704  
705  	if (dsp_override)
706  		__clear_bit(channel, &dsp);
707  	else
708  		__set_bit(channel, &dsp);
709  
710  	if (event_override)
711  		__clear_bit(channel, &evt);
712  	else
713  		__set_bit(channel, &evt);
714  
715  	if (mcu_override)
716  		__clear_bit(channel, &mcu);
717  	else
718  		__set_bit(channel, &mcu);
719  
720  	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
721  	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
722  	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
723  
724  	return 0;
725  }
726  
is_sdma_channel_enabled(struct sdma_engine * sdma,int channel)727  static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
728  {
729  	return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
730  }
731  
sdma_enable_channel(struct sdma_engine * sdma,int channel)732  static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
733  {
734  	writel(BIT(channel), sdma->regs + SDMA_H_START);
735  }
736  
737  /*
738   * sdma_run_channel0 - run a channel and wait till it's done
739   */
sdma_run_channel0(struct sdma_engine * sdma)740  static int sdma_run_channel0(struct sdma_engine *sdma)
741  {
742  	int ret;
743  	u32 reg;
744  
745  	sdma_enable_channel(sdma, 0);
746  
747  	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
748  						reg, !(reg & 1), 1, 500);
749  	if (ret)
750  		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
751  
752  	/* Set bits of CONFIG register with dynamic context switching */
753  	reg = readl(sdma->regs + SDMA_H_CONFIG);
754  	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
755  		reg |= SDMA_H_CONFIG_CSM;
756  		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
757  	}
758  
759  	return ret;
760  }
761  
sdma_load_script(struct sdma_engine * sdma,void * buf,int size,u32 address)762  static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
763  		u32 address)
764  {
765  	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
766  	void *buf_virt;
767  	dma_addr_t buf_phys;
768  	int ret;
769  	unsigned long flags;
770  
771  	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
772  	if (!buf_virt)
773  		return -ENOMEM;
774  
775  	spin_lock_irqsave(&sdma->channel_0_lock, flags);
776  
777  	bd0->mode.command = C0_SETPM;
778  	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
779  	bd0->mode.count = size / 2;
780  	bd0->buffer_addr = buf_phys;
781  	bd0->ext_buffer_addr = address;
782  
783  	memcpy(buf_virt, buf, size);
784  
785  	ret = sdma_run_channel0(sdma);
786  
787  	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
788  
789  	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
790  
791  	return ret;
792  }
793  
sdma_event_enable(struct sdma_channel * sdmac,unsigned int event)794  static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
795  {
796  	struct sdma_engine *sdma = sdmac->sdma;
797  	int channel = sdmac->channel;
798  	unsigned long val;
799  	u32 chnenbl = chnenbl_ofs(sdma, event);
800  
801  	val = readl_relaxed(sdma->regs + chnenbl);
802  	__set_bit(channel, &val);
803  	writel_relaxed(val, sdma->regs + chnenbl);
804  
805  	/* Set SDMA_DONEx_CONFIG is sw_done enabled */
806  	if (sdmac->sw_done) {
807  		val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
808  		val |= SDMA_DONE0_CONFIG_DONE_SEL;
809  		val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
810  		writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
811  	}
812  }
813  
sdma_event_disable(struct sdma_channel * sdmac,unsigned int event)814  static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
815  {
816  	struct sdma_engine *sdma = sdmac->sdma;
817  	int channel = sdmac->channel;
818  	u32 chnenbl = chnenbl_ofs(sdma, event);
819  	unsigned long val;
820  
821  	val = readl_relaxed(sdma->regs + chnenbl);
822  	__clear_bit(channel, &val);
823  	writel_relaxed(val, sdma->regs + chnenbl);
824  }
825  
to_sdma_desc(struct dma_async_tx_descriptor * t)826  static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
827  {
828  	return container_of(t, struct sdma_desc, vd.tx);
829  }
830  
sdma_start_desc(struct sdma_channel * sdmac)831  static void sdma_start_desc(struct sdma_channel *sdmac)
832  {
833  	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
834  	struct sdma_desc *desc;
835  	struct sdma_engine *sdma = sdmac->sdma;
836  	int channel = sdmac->channel;
837  
838  	if (!vd) {
839  		sdmac->desc = NULL;
840  		return;
841  	}
842  	sdmac->desc = desc = to_sdma_desc(&vd->tx);
843  
844  	list_del(&vd->node);
845  
846  	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
847  	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
848  	sdma_enable_channel(sdma, sdmac->channel);
849  }
850  
sdma_update_channel_loop(struct sdma_channel * sdmac)851  static void sdma_update_channel_loop(struct sdma_channel *sdmac)
852  {
853  	struct sdma_buffer_descriptor *bd;
854  	int error = 0;
855  	enum dma_status	old_status = sdmac->status;
856  
857  	/*
858  	 * loop mode. Iterate over descriptors, re-setup them and
859  	 * call callback function.
860  	 */
861  	while (sdmac->desc) {
862  		struct sdma_desc *desc = sdmac->desc;
863  
864  		bd = &desc->bd[desc->buf_tail];
865  
866  		if (bd->mode.status & BD_DONE)
867  			break;
868  
869  		if (bd->mode.status & BD_RROR) {
870  			bd->mode.status &= ~BD_RROR;
871  			sdmac->status = DMA_ERROR;
872  			error = -EIO;
873  		}
874  
875  	       /*
876  		* We use bd->mode.count to calculate the residue, since contains
877  		* the number of bytes present in the current buffer descriptor.
878  		*/
879  
880  		desc->chn_real_count = bd->mode.count;
881  		bd->mode.count = desc->period_len;
882  		desc->buf_ptail = desc->buf_tail;
883  		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
884  
885  		/*
886  		 * The callback is called from the interrupt context in order
887  		 * to reduce latency and to avoid the risk of altering the
888  		 * SDMA transaction status by the time the client tasklet is
889  		 * executed.
890  		 */
891  		spin_unlock(&sdmac->vc.lock);
892  		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
893  		spin_lock(&sdmac->vc.lock);
894  
895  		/* Assign buffer ownership to SDMA */
896  		bd->mode.status |= BD_DONE;
897  
898  		if (error)
899  			sdmac->status = old_status;
900  	}
901  
902  	/*
903  	 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
904  	 * owned buffer is available (i.e. BD_DONE was set too late).
905  	 */
906  	if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
907  		dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
908  		sdma_enable_channel(sdmac->sdma, sdmac->channel);
909  	}
910  }
911  
mxc_sdma_handle_channel_normal(struct sdma_channel * data)912  static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
913  {
914  	struct sdma_channel *sdmac = (struct sdma_channel *) data;
915  	struct sdma_buffer_descriptor *bd;
916  	int i, error = 0;
917  
918  	sdmac->desc->chn_real_count = 0;
919  	/*
920  	 * non loop mode. Iterate over all descriptors, collect
921  	 * errors and call callback function
922  	 */
923  	for (i = 0; i < sdmac->desc->num_bd; i++) {
924  		bd = &sdmac->desc->bd[i];
925  
926  		if (bd->mode.status & (BD_DONE | BD_RROR))
927  			error = -EIO;
928  		sdmac->desc->chn_real_count += bd->mode.count;
929  	}
930  
931  	if (error)
932  		sdmac->status = DMA_ERROR;
933  	else
934  		sdmac->status = DMA_COMPLETE;
935  }
936  
sdma_int_handler(int irq,void * dev_id)937  static irqreturn_t sdma_int_handler(int irq, void *dev_id)
938  {
939  	struct sdma_engine *sdma = dev_id;
940  	unsigned long stat;
941  
942  	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
943  	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
944  	/* channel 0 is special and not handled here, see run_channel0() */
945  	stat &= ~1;
946  
947  	while (stat) {
948  		int channel = fls(stat) - 1;
949  		struct sdma_channel *sdmac = &sdma->channel[channel];
950  		struct sdma_desc *desc;
951  
952  		spin_lock(&sdmac->vc.lock);
953  		desc = sdmac->desc;
954  		if (desc) {
955  			if (sdmac->flags & IMX_DMA_SG_LOOP) {
956  				if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
957  					sdma_update_channel_loop(sdmac);
958  				else
959  					vchan_cyclic_callback(&desc->vd);
960  			} else {
961  				mxc_sdma_handle_channel_normal(sdmac);
962  				vchan_cookie_complete(&desc->vd);
963  				sdma_start_desc(sdmac);
964  			}
965  		}
966  
967  		spin_unlock(&sdmac->vc.lock);
968  		__clear_bit(channel, &stat);
969  	}
970  
971  	return IRQ_HANDLED;
972  }
973  
974  /*
975   * sets the pc of SDMA script according to the peripheral type
976   */
sdma_get_pc(struct sdma_channel * sdmac,enum sdma_peripheral_type peripheral_type)977  static int sdma_get_pc(struct sdma_channel *sdmac,
978  		enum sdma_peripheral_type peripheral_type)
979  {
980  	struct sdma_engine *sdma = sdmac->sdma;
981  	int per_2_emi = 0, emi_2_per = 0;
982  	/*
983  	 * These are needed once we start to support transfers between
984  	 * two peripherals or memory-to-memory transfers
985  	 */
986  	int per_2_per = 0, emi_2_emi = 0;
987  
988  	sdmac->pc_from_device = 0;
989  	sdmac->pc_to_device = 0;
990  	sdmac->device_to_device = 0;
991  	sdmac->pc_to_pc = 0;
992  	sdmac->is_ram_script = false;
993  
994  	switch (peripheral_type) {
995  	case IMX_DMATYPE_MEMORY:
996  		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
997  		break;
998  	case IMX_DMATYPE_DSP:
999  		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
1000  		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1001  		break;
1002  	case IMX_DMATYPE_FIRI:
1003  		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1004  		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1005  		break;
1006  	case IMX_DMATYPE_UART:
1007  		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1008  		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1009  		break;
1010  	case IMX_DMATYPE_UART_SP:
1011  		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1012  		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1013  		break;
1014  	case IMX_DMATYPE_ATA:
1015  		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1016  		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1017  		break;
1018  	case IMX_DMATYPE_CSPI:
1019  		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1020  
1021  		/* Use rom script mcu_2_app if ERR009165 fixed */
1022  		if (sdmac->sdma->drvdata->ecspi_fixed) {
1023  			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1024  		} else {
1025  			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1026  			sdmac->is_ram_script = true;
1027  		}
1028  
1029  		break;
1030  	case IMX_DMATYPE_EXT:
1031  	case IMX_DMATYPE_SSI:
1032  	case IMX_DMATYPE_SAI:
1033  		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1034  		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1035  		break;
1036  	case IMX_DMATYPE_SSI_DUAL:
1037  		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1038  		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1039  		sdmac->is_ram_script = true;
1040  		break;
1041  	case IMX_DMATYPE_SSI_SP:
1042  	case IMX_DMATYPE_MMC:
1043  	case IMX_DMATYPE_SDHC:
1044  	case IMX_DMATYPE_CSPI_SP:
1045  	case IMX_DMATYPE_ESAI:
1046  	case IMX_DMATYPE_MSHC_SP:
1047  		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1048  		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1049  		break;
1050  	case IMX_DMATYPE_ASRC:
1051  		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1052  		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1053  		per_2_per = sdma->script_addrs->per_2_per_addr;
1054  		sdmac->is_ram_script = true;
1055  		break;
1056  	case IMX_DMATYPE_ASRC_SP:
1057  		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1058  		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1059  		per_2_per = sdma->script_addrs->per_2_per_addr;
1060  		break;
1061  	case IMX_DMATYPE_MSHC:
1062  		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1063  		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1064  		break;
1065  	case IMX_DMATYPE_CCM:
1066  		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1067  		break;
1068  	case IMX_DMATYPE_SPDIF:
1069  		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1070  		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1071  		break;
1072  	case IMX_DMATYPE_IPU_MEMORY:
1073  		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1074  		break;
1075  	case IMX_DMATYPE_MULTI_SAI:
1076  		per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1077  		emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1078  		break;
1079  	case IMX_DMATYPE_HDMI:
1080  		emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1081  		sdmac->is_ram_script = true;
1082  		break;
1083  	default:
1084  		dev_err(sdma->dev, "Unsupported transfer type %d\n",
1085  			peripheral_type);
1086  		return -EINVAL;
1087  	}
1088  
1089  	sdmac->pc_from_device = per_2_emi;
1090  	sdmac->pc_to_device = emi_2_per;
1091  	sdmac->device_to_device = per_2_per;
1092  	sdmac->pc_to_pc = emi_2_emi;
1093  
1094  	return 0;
1095  }
1096  
sdma_load_context(struct sdma_channel * sdmac)1097  static int sdma_load_context(struct sdma_channel *sdmac)
1098  {
1099  	struct sdma_engine *sdma = sdmac->sdma;
1100  	int channel = sdmac->channel;
1101  	int load_address;
1102  	struct sdma_context_data *context = sdma->context;
1103  	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1104  	int ret;
1105  	unsigned long flags;
1106  
1107  	if (sdmac->direction == DMA_DEV_TO_MEM)
1108  		load_address = sdmac->pc_from_device;
1109  	else if (sdmac->direction == DMA_DEV_TO_DEV)
1110  		load_address = sdmac->device_to_device;
1111  	else if (sdmac->direction == DMA_MEM_TO_MEM)
1112  		load_address = sdmac->pc_to_pc;
1113  	else
1114  		load_address = sdmac->pc_to_device;
1115  
1116  	if (load_address < 0)
1117  		return load_address;
1118  
1119  	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1120  	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1121  	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1122  	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1123  	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1124  	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1125  
1126  	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1127  
1128  	memset(context, 0, sizeof(*context));
1129  	context->channel_state.pc = load_address;
1130  
1131  	/* Send by context the event mask,base address for peripheral
1132  	 * and watermark level
1133  	 */
1134  	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1135  		context->gReg[4] = sdmac->per_addr;
1136  		context->gReg[6] = sdmac->shp_addr;
1137  	} else {
1138  		context->gReg[0] = sdmac->event_mask[1];
1139  		context->gReg[1] = sdmac->event_mask[0];
1140  		context->gReg[2] = sdmac->per_addr;
1141  		context->gReg[6] = sdmac->shp_addr;
1142  		context->gReg[7] = sdmac->watermark_level;
1143  	}
1144  
1145  	bd0->mode.command = C0_SETDM;
1146  	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1147  	bd0->mode.count = sizeof(*context) / 4;
1148  	bd0->buffer_addr = sdma->context_phys;
1149  	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1150  	ret = sdma_run_channel0(sdma);
1151  
1152  	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1153  
1154  	return ret;
1155  }
1156  
to_sdma_chan(struct dma_chan * chan)1157  static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1158  {
1159  	return container_of(chan, struct sdma_channel, vc.chan);
1160  }
1161  
sdma_disable_channel(struct dma_chan * chan)1162  static int sdma_disable_channel(struct dma_chan *chan)
1163  {
1164  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1165  	struct sdma_engine *sdma = sdmac->sdma;
1166  	int channel = sdmac->channel;
1167  
1168  	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1169  	sdmac->status = DMA_ERROR;
1170  
1171  	return 0;
1172  }
sdma_channel_terminate_work(struct work_struct * work)1173  static void sdma_channel_terminate_work(struct work_struct *work)
1174  {
1175  	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1176  						  terminate_worker);
1177  	/*
1178  	 * According to NXP R&D team a delay of one BD SDMA cost time
1179  	 * (maximum is 1ms) should be added after disable of the channel
1180  	 * bit, to ensure SDMA core has really been stopped after SDMA
1181  	 * clients call .device_terminate_all.
1182  	 */
1183  	usleep_range(1000, 2000);
1184  
1185  	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1186  }
1187  
sdma_terminate_all(struct dma_chan * chan)1188  static int sdma_terminate_all(struct dma_chan *chan)
1189  {
1190  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1191  	unsigned long flags;
1192  
1193  	spin_lock_irqsave(&sdmac->vc.lock, flags);
1194  
1195  	sdma_disable_channel(chan);
1196  
1197  	if (sdmac->desc) {
1198  		vchan_terminate_vdesc(&sdmac->desc->vd);
1199  		/*
1200  		 * move out current descriptor into terminated list so that
1201  		 * it could be free in sdma_channel_terminate_work alone
1202  		 * later without potential involving next descriptor raised
1203  		 * up before the last descriptor terminated.
1204  		 */
1205  		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1206  		sdmac->desc = NULL;
1207  		schedule_work(&sdmac->terminate_worker);
1208  	}
1209  
1210  	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1211  
1212  	return 0;
1213  }
1214  
sdma_channel_synchronize(struct dma_chan * chan)1215  static void sdma_channel_synchronize(struct dma_chan *chan)
1216  {
1217  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1218  
1219  	vchan_synchronize(&sdmac->vc);
1220  
1221  	flush_work(&sdmac->terminate_worker);
1222  }
1223  
sdma_set_watermarklevel_for_p2p(struct sdma_channel * sdmac)1224  static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1225  {
1226  	struct sdma_engine *sdma = sdmac->sdma;
1227  
1228  	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1229  	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1230  
1231  	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1232  	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1233  
1234  	if (sdmac->event_id0 > 31)
1235  		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1236  
1237  	if (sdmac->event_id1 > 31)
1238  		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1239  
1240  	/*
1241  	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1242  	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1243  	 * r0(event_mask[1]) and r1(event_mask[0]).
1244  	 */
1245  	if (lwml > hwml) {
1246  		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1247  						SDMA_WATERMARK_LEVEL_HWML);
1248  		sdmac->watermark_level |= hwml;
1249  		sdmac->watermark_level |= lwml << 16;
1250  		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1251  	}
1252  
1253  	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1254  			sdmac->per_address2 <= sdma->spba_end_addr)
1255  		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1256  
1257  	if (sdmac->per_address >= sdma->spba_start_addr &&
1258  			sdmac->per_address <= sdma->spba_end_addr)
1259  		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1260  
1261  	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1262  }
1263  
sdma_set_watermarklevel_for_sais(struct sdma_channel * sdmac)1264  static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1265  {
1266  	unsigned int n_fifos;
1267  	unsigned int stride_fifos;
1268  	unsigned int words_per_fifo;
1269  
1270  	if (sdmac->sw_done)
1271  		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1272  
1273  	if (sdmac->direction == DMA_DEV_TO_MEM) {
1274  		n_fifos = sdmac->n_fifos_src;
1275  		stride_fifos = sdmac->stride_fifos_src;
1276  	} else {
1277  		n_fifos = sdmac->n_fifos_dst;
1278  		stride_fifos = sdmac->stride_fifos_dst;
1279  	}
1280  
1281  	words_per_fifo = sdmac->words_per_fifo;
1282  
1283  	sdmac->watermark_level |=
1284  			FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1285  	sdmac->watermark_level |=
1286  			FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1287  	if (words_per_fifo)
1288  		sdmac->watermark_level |=
1289  			FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1290  }
1291  
sdma_config_channel(struct dma_chan * chan)1292  static int sdma_config_channel(struct dma_chan *chan)
1293  {
1294  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1295  	int ret;
1296  
1297  	sdma_disable_channel(chan);
1298  
1299  	sdmac->event_mask[0] = 0;
1300  	sdmac->event_mask[1] = 0;
1301  	sdmac->shp_addr = 0;
1302  	sdmac->per_addr = 0;
1303  
1304  	switch (sdmac->peripheral_type) {
1305  	case IMX_DMATYPE_DSP:
1306  		sdma_config_ownership(sdmac, false, true, true);
1307  		break;
1308  	case IMX_DMATYPE_MEMORY:
1309  		sdma_config_ownership(sdmac, false, true, false);
1310  		break;
1311  	default:
1312  		sdma_config_ownership(sdmac, true, true, false);
1313  		break;
1314  	}
1315  
1316  	ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1317  	if (ret)
1318  		return ret;
1319  
1320  	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1321  			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1322  		/* Handle multiple event channels differently */
1323  		if (sdmac->event_id1) {
1324  			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1325  			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1326  				sdma_set_watermarklevel_for_p2p(sdmac);
1327  		} else {
1328  			if (sdmac->peripheral_type ==
1329  					IMX_DMATYPE_MULTI_SAI)
1330  				sdma_set_watermarklevel_for_sais(sdmac);
1331  
1332  			__set_bit(sdmac->event_id0, sdmac->event_mask);
1333  		}
1334  
1335  		/* Address */
1336  		sdmac->shp_addr = sdmac->per_address;
1337  		sdmac->per_addr = sdmac->per_address2;
1338  	} else {
1339  		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1340  	}
1341  
1342  	return 0;
1343  }
1344  
sdma_set_channel_priority(struct sdma_channel * sdmac,unsigned int priority)1345  static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1346  				     unsigned int priority)
1347  {
1348  	struct sdma_engine *sdma = sdmac->sdma;
1349  	int channel = sdmac->channel;
1350  
1351  	if (priority < MXC_SDMA_MIN_PRIORITY
1352  	    || priority > MXC_SDMA_MAX_PRIORITY) {
1353  		return -EINVAL;
1354  	}
1355  
1356  	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1357  
1358  	return 0;
1359  }
1360  
sdma_request_channel0(struct sdma_engine * sdma)1361  static int sdma_request_channel0(struct sdma_engine *sdma)
1362  {
1363  	int ret = -EBUSY;
1364  
1365  	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1366  				       GFP_NOWAIT);
1367  	if (!sdma->bd0) {
1368  		ret = -ENOMEM;
1369  		goto out;
1370  	}
1371  
1372  	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1373  	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1374  
1375  	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1376  	return 0;
1377  out:
1378  
1379  	return ret;
1380  }
1381  
1382  
sdma_alloc_bd(struct sdma_desc * desc)1383  static int sdma_alloc_bd(struct sdma_desc *desc)
1384  {
1385  	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1386  	int ret = 0;
1387  
1388  	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1389  				      &desc->bd_phys, GFP_NOWAIT);
1390  	if (!desc->bd) {
1391  		ret = -ENOMEM;
1392  		goto out;
1393  	}
1394  out:
1395  	return ret;
1396  }
1397  
sdma_free_bd(struct sdma_desc * desc)1398  static void sdma_free_bd(struct sdma_desc *desc)
1399  {
1400  	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1401  
1402  	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1403  			  desc->bd_phys);
1404  }
1405  
sdma_desc_free(struct virt_dma_desc * vd)1406  static void sdma_desc_free(struct virt_dma_desc *vd)
1407  {
1408  	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1409  
1410  	sdma_free_bd(desc);
1411  	kfree(desc);
1412  }
1413  
sdma_alloc_chan_resources(struct dma_chan * chan)1414  static int sdma_alloc_chan_resources(struct dma_chan *chan)
1415  {
1416  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1417  	struct imx_dma_data *data = chan->private;
1418  	struct imx_dma_data mem_data;
1419  	int prio, ret;
1420  
1421  	/*
1422  	 * MEMCPY may never setup chan->private by filter function such as
1423  	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1424  	 * Please note in any other slave case, you have to setup chan->private
1425  	 * with 'struct imx_dma_data' in your own filter function if you want to
1426  	 * request dma channel by dma_request_channel() rather than
1427  	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1428  	 * to warn you to correct your filter function.
1429  	 */
1430  	if (!data) {
1431  		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1432  		mem_data.priority = 2;
1433  		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1434  		mem_data.dma_request = 0;
1435  		mem_data.dma_request2 = 0;
1436  		data = &mem_data;
1437  
1438  		ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1439  		if (ret)
1440  			return ret;
1441  	}
1442  
1443  	switch (data->priority) {
1444  	case DMA_PRIO_HIGH:
1445  		prio = 3;
1446  		break;
1447  	case DMA_PRIO_MEDIUM:
1448  		prio = 2;
1449  		break;
1450  	case DMA_PRIO_LOW:
1451  	default:
1452  		prio = 1;
1453  		break;
1454  	}
1455  
1456  	sdmac->peripheral_type = data->peripheral_type;
1457  	sdmac->event_id0 = data->dma_request;
1458  	sdmac->event_id1 = data->dma_request2;
1459  
1460  	ret = clk_enable(sdmac->sdma->clk_ipg);
1461  	if (ret)
1462  		return ret;
1463  	ret = clk_enable(sdmac->sdma->clk_ahb);
1464  	if (ret)
1465  		goto disable_clk_ipg;
1466  
1467  	ret = sdma_set_channel_priority(sdmac, prio);
1468  	if (ret)
1469  		goto disable_clk_ahb;
1470  
1471  	return 0;
1472  
1473  disable_clk_ahb:
1474  	clk_disable(sdmac->sdma->clk_ahb);
1475  disable_clk_ipg:
1476  	clk_disable(sdmac->sdma->clk_ipg);
1477  	return ret;
1478  }
1479  
sdma_free_chan_resources(struct dma_chan * chan)1480  static void sdma_free_chan_resources(struct dma_chan *chan)
1481  {
1482  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1483  	struct sdma_engine *sdma = sdmac->sdma;
1484  
1485  	sdma_terminate_all(chan);
1486  
1487  	sdma_channel_synchronize(chan);
1488  
1489  	sdma_event_disable(sdmac, sdmac->event_id0);
1490  	if (sdmac->event_id1)
1491  		sdma_event_disable(sdmac, sdmac->event_id1);
1492  
1493  	sdmac->event_id0 = 0;
1494  	sdmac->event_id1 = 0;
1495  
1496  	sdma_set_channel_priority(sdmac, 0);
1497  
1498  	clk_disable(sdma->clk_ipg);
1499  	clk_disable(sdma->clk_ahb);
1500  }
1501  
sdma_transfer_init(struct sdma_channel * sdmac,enum dma_transfer_direction direction,u32 bds)1502  static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1503  				enum dma_transfer_direction direction, u32 bds)
1504  {
1505  	struct sdma_desc *desc;
1506  
1507  	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1508  		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1509  		goto err_out;
1510  	}
1511  
1512  	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1513  	if (!desc)
1514  		goto err_out;
1515  
1516  	sdmac->status = DMA_IN_PROGRESS;
1517  	sdmac->direction = direction;
1518  	sdmac->flags = 0;
1519  
1520  	desc->chn_count = 0;
1521  	desc->chn_real_count = 0;
1522  	desc->buf_tail = 0;
1523  	desc->buf_ptail = 0;
1524  	desc->sdmac = sdmac;
1525  	desc->num_bd = bds;
1526  
1527  	if (bds && sdma_alloc_bd(desc))
1528  		goto err_desc_out;
1529  
1530  	/* No slave_config called in MEMCPY case, so do here */
1531  	if (direction == DMA_MEM_TO_MEM)
1532  		sdma_config_ownership(sdmac, false, true, false);
1533  
1534  	if (sdma_load_context(sdmac))
1535  		goto err_bd_out;
1536  
1537  	return desc;
1538  
1539  err_bd_out:
1540  	sdma_free_bd(desc);
1541  err_desc_out:
1542  	kfree(desc);
1543  err_out:
1544  	return NULL;
1545  }
1546  
sdma_prep_memcpy(struct dma_chan * chan,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len,unsigned long flags)1547  static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1548  		struct dma_chan *chan, dma_addr_t dma_dst,
1549  		dma_addr_t dma_src, size_t len, unsigned long flags)
1550  {
1551  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1552  	struct sdma_engine *sdma = sdmac->sdma;
1553  	int channel = sdmac->channel;
1554  	size_t count;
1555  	int i = 0, param;
1556  	struct sdma_buffer_descriptor *bd;
1557  	struct sdma_desc *desc;
1558  
1559  	if (!chan || !len)
1560  		return NULL;
1561  
1562  	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1563  		&dma_src, &dma_dst, len, channel);
1564  
1565  	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1566  					len / SDMA_BD_MAX_CNT + 1);
1567  	if (!desc)
1568  		return NULL;
1569  
1570  	do {
1571  		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1572  		bd = &desc->bd[i];
1573  		bd->buffer_addr = dma_src;
1574  		bd->ext_buffer_addr = dma_dst;
1575  		bd->mode.count = count;
1576  		desc->chn_count += count;
1577  		bd->mode.command = 0;
1578  
1579  		dma_src += count;
1580  		dma_dst += count;
1581  		len -= count;
1582  		i++;
1583  
1584  		param = BD_DONE | BD_EXTD | BD_CONT;
1585  		/* last bd */
1586  		if (!len) {
1587  			param |= BD_INTR;
1588  			param |= BD_LAST;
1589  			param &= ~BD_CONT;
1590  		}
1591  
1592  		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1593  				i, count, bd->buffer_addr,
1594  				param & BD_WRAP ? "wrap" : "",
1595  				param & BD_INTR ? " intr" : "");
1596  
1597  		bd->mode.status = param;
1598  	} while (len);
1599  
1600  	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1601  }
1602  
sdma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1603  static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1604  		struct dma_chan *chan, struct scatterlist *sgl,
1605  		unsigned int sg_len, enum dma_transfer_direction direction,
1606  		unsigned long flags, void *context)
1607  {
1608  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1609  	struct sdma_engine *sdma = sdmac->sdma;
1610  	int i, count;
1611  	int channel = sdmac->channel;
1612  	struct scatterlist *sg;
1613  	struct sdma_desc *desc;
1614  
1615  	sdma_config_write(chan, &sdmac->slave_config, direction);
1616  
1617  	desc = sdma_transfer_init(sdmac, direction, sg_len);
1618  	if (!desc)
1619  		goto err_out;
1620  
1621  	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1622  			sg_len, channel);
1623  
1624  	for_each_sg(sgl, sg, sg_len, i) {
1625  		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1626  		int param;
1627  
1628  		bd->buffer_addr = sg->dma_address;
1629  
1630  		count = sg_dma_len(sg);
1631  
1632  		if (count > SDMA_BD_MAX_CNT) {
1633  			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1634  					channel, count, SDMA_BD_MAX_CNT);
1635  			goto err_bd_out;
1636  		}
1637  
1638  		bd->mode.count = count;
1639  		desc->chn_count += count;
1640  
1641  		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1642  			goto err_bd_out;
1643  
1644  		switch (sdmac->word_size) {
1645  		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1646  			bd->mode.command = 0;
1647  			if (count & 3 || sg->dma_address & 3)
1648  				goto err_bd_out;
1649  			break;
1650  		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1651  			bd->mode.command = 2;
1652  			if (count & 1 || sg->dma_address & 1)
1653  				goto err_bd_out;
1654  			break;
1655  		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1656  			bd->mode.command = 1;
1657  			break;
1658  		default:
1659  			goto err_bd_out;
1660  		}
1661  
1662  		param = BD_DONE | BD_EXTD | BD_CONT;
1663  
1664  		if (i + 1 == sg_len) {
1665  			param |= BD_INTR;
1666  			param |= BD_LAST;
1667  			param &= ~BD_CONT;
1668  		}
1669  
1670  		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1671  				i, count, (u64)sg->dma_address,
1672  				param & BD_WRAP ? "wrap" : "",
1673  				param & BD_INTR ? " intr" : "");
1674  
1675  		bd->mode.status = param;
1676  	}
1677  
1678  	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1679  err_bd_out:
1680  	sdma_free_bd(desc);
1681  	kfree(desc);
1682  err_out:
1683  	sdmac->status = DMA_ERROR;
1684  	return NULL;
1685  }
1686  
sdma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1687  static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1688  		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1689  		size_t period_len, enum dma_transfer_direction direction,
1690  		unsigned long flags)
1691  {
1692  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1693  	struct sdma_engine *sdma = sdmac->sdma;
1694  	int num_periods = 0;
1695  	int channel = sdmac->channel;
1696  	int i = 0, buf = 0;
1697  	struct sdma_desc *desc;
1698  
1699  	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1700  
1701  	if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1702  		num_periods = buf_len / period_len;
1703  
1704  	sdma_config_write(chan, &sdmac->slave_config, direction);
1705  
1706  	desc = sdma_transfer_init(sdmac, direction, num_periods);
1707  	if (!desc)
1708  		goto err_out;
1709  
1710  	desc->period_len = period_len;
1711  
1712  	sdmac->flags |= IMX_DMA_SG_LOOP;
1713  
1714  	if (period_len > SDMA_BD_MAX_CNT) {
1715  		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1716  				channel, period_len, SDMA_BD_MAX_CNT);
1717  		goto err_bd_out;
1718  	}
1719  
1720  	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1721  		return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1722  
1723  	while (buf < buf_len) {
1724  		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1725  		int param;
1726  
1727  		bd->buffer_addr = dma_addr;
1728  
1729  		bd->mode.count = period_len;
1730  
1731  		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1732  			goto err_bd_out;
1733  		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1734  			bd->mode.command = 0;
1735  		else
1736  			bd->mode.command = sdmac->word_size;
1737  
1738  		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1739  		if (i + 1 == num_periods)
1740  			param |= BD_WRAP;
1741  
1742  		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1743  				i, period_len, (u64)dma_addr,
1744  				param & BD_WRAP ? "wrap" : "",
1745  				param & BD_INTR ? " intr" : "");
1746  
1747  		bd->mode.status = param;
1748  
1749  		dma_addr += period_len;
1750  		buf += period_len;
1751  
1752  		i++;
1753  	}
1754  
1755  	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1756  err_bd_out:
1757  	sdma_free_bd(desc);
1758  	kfree(desc);
1759  err_out:
1760  	sdmac->status = DMA_ERROR;
1761  	return NULL;
1762  }
1763  
sdma_config_write(struct dma_chan * chan,struct dma_slave_config * dmaengine_cfg,enum dma_transfer_direction direction)1764  static int sdma_config_write(struct dma_chan *chan,
1765  		       struct dma_slave_config *dmaengine_cfg,
1766  		       enum dma_transfer_direction direction)
1767  {
1768  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1769  
1770  	if (direction == DMA_DEV_TO_MEM) {
1771  		sdmac->per_address = dmaengine_cfg->src_addr;
1772  		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1773  			dmaengine_cfg->src_addr_width;
1774  		sdmac->word_size = dmaengine_cfg->src_addr_width;
1775  	} else if (direction == DMA_DEV_TO_DEV) {
1776  		sdmac->per_address2 = dmaengine_cfg->src_addr;
1777  		sdmac->per_address = dmaengine_cfg->dst_addr;
1778  		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1779  			SDMA_WATERMARK_LEVEL_LWML;
1780  		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1781  			SDMA_WATERMARK_LEVEL_HWML;
1782  		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1783  	} else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1784  		sdmac->per_address = dmaengine_cfg->dst_addr;
1785  		sdmac->per_address2 = dmaengine_cfg->src_addr;
1786  		sdmac->watermark_level = 0;
1787  	} else {
1788  		sdmac->per_address = dmaengine_cfg->dst_addr;
1789  		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1790  			dmaengine_cfg->dst_addr_width;
1791  		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1792  	}
1793  	sdmac->direction = direction;
1794  	return sdma_config_channel(chan);
1795  }
1796  
sdma_config(struct dma_chan * chan,struct dma_slave_config * dmaengine_cfg)1797  static int sdma_config(struct dma_chan *chan,
1798  		       struct dma_slave_config *dmaengine_cfg)
1799  {
1800  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1801  	struct sdma_engine *sdma = sdmac->sdma;
1802  
1803  	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1804  
1805  	if (dmaengine_cfg->peripheral_config) {
1806  		struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1807  		if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1808  			dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1809  				dmaengine_cfg->peripheral_size,
1810  				sizeof(struct sdma_peripheral_config));
1811  			return -EINVAL;
1812  		}
1813  		sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1814  		sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1815  		sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1816  		sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1817  		sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1818  		sdmac->sw_done = sdmacfg->sw_done;
1819  	}
1820  
1821  	/* Set ENBLn earlier to make sure dma request triggered after that */
1822  	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1823  		return -EINVAL;
1824  	sdma_event_enable(sdmac, sdmac->event_id0);
1825  
1826  	if (sdmac->event_id1) {
1827  		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1828  			return -EINVAL;
1829  		sdma_event_enable(sdmac, sdmac->event_id1);
1830  	}
1831  
1832  	return 0;
1833  }
1834  
sdma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1835  static enum dma_status sdma_tx_status(struct dma_chan *chan,
1836  				      dma_cookie_t cookie,
1837  				      struct dma_tx_state *txstate)
1838  {
1839  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1840  	struct sdma_desc *desc = NULL;
1841  	u32 residue;
1842  	struct virt_dma_desc *vd;
1843  	enum dma_status ret;
1844  	unsigned long flags;
1845  
1846  	ret = dma_cookie_status(chan, cookie, txstate);
1847  	if (ret == DMA_COMPLETE || !txstate)
1848  		return ret;
1849  
1850  	spin_lock_irqsave(&sdmac->vc.lock, flags);
1851  
1852  	vd = vchan_find_desc(&sdmac->vc, cookie);
1853  	if (vd)
1854  		desc = to_sdma_desc(&vd->tx);
1855  	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1856  		desc = sdmac->desc;
1857  
1858  	if (desc) {
1859  		if (sdmac->flags & IMX_DMA_SG_LOOP)
1860  			residue = (desc->num_bd - desc->buf_ptail) *
1861  				desc->period_len - desc->chn_real_count;
1862  		else
1863  			residue = desc->chn_count - desc->chn_real_count;
1864  	} else {
1865  		residue = 0;
1866  	}
1867  
1868  	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1869  
1870  	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1871  			 residue);
1872  
1873  	return sdmac->status;
1874  }
1875  
sdma_issue_pending(struct dma_chan * chan)1876  static void sdma_issue_pending(struct dma_chan *chan)
1877  {
1878  	struct sdma_channel *sdmac = to_sdma_chan(chan);
1879  	unsigned long flags;
1880  
1881  	spin_lock_irqsave(&sdmac->vc.lock, flags);
1882  	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1883  		sdma_start_desc(sdmac);
1884  	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1885  }
1886  
1887  #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1888  #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1889  #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	45
1890  #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	46
1891  
sdma_add_scripts(struct sdma_engine * sdma,const struct sdma_script_start_addrs * addr)1892  static void sdma_add_scripts(struct sdma_engine *sdma,
1893  			     const struct sdma_script_start_addrs *addr)
1894  {
1895  	s32 *addr_arr = (u32 *)addr;
1896  	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1897  	int i;
1898  
1899  	/* use the default firmware in ROM if missing external firmware */
1900  	if (!sdma->script_number)
1901  		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1902  
1903  	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1904  				  / sizeof(s32)) {
1905  		dev_err(sdma->dev,
1906  			"SDMA script number %d not match with firmware.\n",
1907  			sdma->script_number);
1908  		return;
1909  	}
1910  
1911  	for (i = 0; i < sdma->script_number; i++)
1912  		if (addr_arr[i] > 0)
1913  			saddr_arr[i] = addr_arr[i];
1914  
1915  	/*
1916  	 * For compatibility with NXP internal legacy kernel before 4.19 which
1917  	 * is based on uart ram script and mainline kernel based on uart rom
1918  	 * script, both uart ram/rom scripts are present in newer sdma
1919  	 * firmware. Use the rom versions if they are present (V3 or newer).
1920  	 */
1921  	if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1922  		if (addr->uart_2_mcu_rom_addr)
1923  			sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1924  		if (addr->uartsh_2_mcu_rom_addr)
1925  			sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1926  	}
1927  }
1928  
sdma_load_firmware(const struct firmware * fw,void * context)1929  static void sdma_load_firmware(const struct firmware *fw, void *context)
1930  {
1931  	struct sdma_engine *sdma = context;
1932  	const struct sdma_firmware_header *header;
1933  	const struct sdma_script_start_addrs *addr;
1934  	unsigned short *ram_code;
1935  
1936  	if (!fw) {
1937  		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1938  		/* In this case we just use the ROM firmware. */
1939  		return;
1940  	}
1941  
1942  	if (fw->size < sizeof(*header))
1943  		goto err_firmware;
1944  
1945  	header = (struct sdma_firmware_header *)fw->data;
1946  
1947  	if (header->magic != SDMA_FIRMWARE_MAGIC)
1948  		goto err_firmware;
1949  	if (header->ram_code_start + header->ram_code_size > fw->size)
1950  		goto err_firmware;
1951  	switch (header->version_major) {
1952  	case 1:
1953  		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1954  		break;
1955  	case 2:
1956  		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1957  		break;
1958  	case 3:
1959  		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1960  		break;
1961  	case 4:
1962  		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1963  		break;
1964  	default:
1965  		dev_err(sdma->dev, "unknown firmware version\n");
1966  		goto err_firmware;
1967  	}
1968  
1969  	addr = (void *)header + header->script_addrs_start;
1970  	ram_code = (void *)header + header->ram_code_start;
1971  
1972  	clk_enable(sdma->clk_ipg);
1973  	clk_enable(sdma->clk_ahb);
1974  	/* download the RAM image for SDMA */
1975  	sdma_load_script(sdma, ram_code,
1976  			 header->ram_code_size,
1977  			 addr->ram_code_start_addr);
1978  	clk_disable(sdma->clk_ipg);
1979  	clk_disable(sdma->clk_ahb);
1980  
1981  	sdma_add_scripts(sdma, addr);
1982  
1983  	sdma->fw_loaded = true;
1984  
1985  	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1986  		 header->version_major,
1987  		 header->version_minor);
1988  
1989  err_firmware:
1990  	release_firmware(fw);
1991  }
1992  
1993  #define EVENT_REMAP_CELLS 3
1994  
sdma_event_remap(struct sdma_engine * sdma)1995  static int sdma_event_remap(struct sdma_engine *sdma)
1996  {
1997  	struct device_node *np = sdma->dev->of_node;
1998  	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1999  	struct property *event_remap;
2000  	struct regmap *gpr;
2001  	char propname[] = "fsl,sdma-event-remap";
2002  	u32 reg, val, shift, num_map, i;
2003  	int ret = 0;
2004  
2005  	if (IS_ERR(np) || !gpr_np)
2006  		goto out;
2007  
2008  	event_remap = of_find_property(np, propname, NULL);
2009  	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2010  	if (!num_map) {
2011  		dev_dbg(sdma->dev, "no event needs to be remapped\n");
2012  		goto out;
2013  	} else if (num_map % EVENT_REMAP_CELLS) {
2014  		dev_err(sdma->dev, "the property %s must modulo %d\n",
2015  				propname, EVENT_REMAP_CELLS);
2016  		ret = -EINVAL;
2017  		goto out;
2018  	}
2019  
2020  	gpr = syscon_node_to_regmap(gpr_np);
2021  	if (IS_ERR(gpr)) {
2022  		dev_err(sdma->dev, "failed to get gpr regmap\n");
2023  		ret = PTR_ERR(gpr);
2024  		goto out;
2025  	}
2026  
2027  	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2028  		ret = of_property_read_u32_index(np, propname, i, &reg);
2029  		if (ret) {
2030  			dev_err(sdma->dev, "failed to read property %s index %d\n",
2031  					propname, i);
2032  			goto out;
2033  		}
2034  
2035  		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2036  		if (ret) {
2037  			dev_err(sdma->dev, "failed to read property %s index %d\n",
2038  					propname, i + 1);
2039  			goto out;
2040  		}
2041  
2042  		ret = of_property_read_u32_index(np, propname, i + 2, &val);
2043  		if (ret) {
2044  			dev_err(sdma->dev, "failed to read property %s index %d\n",
2045  					propname, i + 2);
2046  			goto out;
2047  		}
2048  
2049  		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2050  	}
2051  
2052  out:
2053  	if (gpr_np)
2054  		of_node_put(gpr_np);
2055  
2056  	return ret;
2057  }
2058  
sdma_get_firmware(struct sdma_engine * sdma,const char * fw_name)2059  static int sdma_get_firmware(struct sdma_engine *sdma,
2060  		const char *fw_name)
2061  {
2062  	int ret;
2063  
2064  	ret = request_firmware_nowait(THIS_MODULE,
2065  			FW_ACTION_UEVENT, fw_name, sdma->dev,
2066  			GFP_KERNEL, sdma, sdma_load_firmware);
2067  
2068  	return ret;
2069  }
2070  
sdma_init(struct sdma_engine * sdma)2071  static int sdma_init(struct sdma_engine *sdma)
2072  {
2073  	int i, ret;
2074  	dma_addr_t ccb_phys;
2075  
2076  	ret = clk_enable(sdma->clk_ipg);
2077  	if (ret)
2078  		return ret;
2079  	ret = clk_enable(sdma->clk_ahb);
2080  	if (ret)
2081  		goto disable_clk_ipg;
2082  
2083  	if (sdma->drvdata->check_ratio &&
2084  	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2085  		sdma->clk_ratio = 1;
2086  
2087  	/* Be sure SDMA has not started yet */
2088  	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2089  
2090  	sdma->channel_control = dma_alloc_coherent(sdma->dev,
2091  			MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2092  			sizeof(struct sdma_context_data),
2093  			&ccb_phys, GFP_KERNEL);
2094  
2095  	if (!sdma->channel_control) {
2096  		ret = -ENOMEM;
2097  		goto err_dma_alloc;
2098  	}
2099  
2100  	sdma->context = (void *)sdma->channel_control +
2101  		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2102  	sdma->context_phys = ccb_phys +
2103  		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2104  
2105  	/* disable all channels */
2106  	for (i = 0; i < sdma->drvdata->num_events; i++)
2107  		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2108  
2109  	/* All channels have priority 0 */
2110  	for (i = 0; i < MAX_DMA_CHANNELS; i++)
2111  		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2112  
2113  	ret = sdma_request_channel0(sdma);
2114  	if (ret)
2115  		goto err_dma_alloc;
2116  
2117  	sdma_config_ownership(&sdma->channel[0], false, true, false);
2118  
2119  	/* Set Command Channel (Channel Zero) */
2120  	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2121  
2122  	/* Set bits of CONFIG register but with static context switching */
2123  	if (sdma->clk_ratio)
2124  		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2125  	else
2126  		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2127  
2128  	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2129  
2130  	/* Initializes channel's priorities */
2131  	sdma_set_channel_priority(&sdma->channel[0], 7);
2132  
2133  	clk_disable(sdma->clk_ipg);
2134  	clk_disable(sdma->clk_ahb);
2135  
2136  	return 0;
2137  
2138  err_dma_alloc:
2139  	clk_disable(sdma->clk_ahb);
2140  disable_clk_ipg:
2141  	clk_disable(sdma->clk_ipg);
2142  	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2143  	return ret;
2144  }
2145  
sdma_filter_fn(struct dma_chan * chan,void * fn_param)2146  static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2147  {
2148  	struct sdma_channel *sdmac = to_sdma_chan(chan);
2149  	struct imx_dma_data *data = fn_param;
2150  
2151  	if (!imx_dma_is_general_purpose(chan))
2152  		return false;
2153  
2154  	sdmac->data = *data;
2155  	chan->private = &sdmac->data;
2156  
2157  	return true;
2158  }
2159  
sdma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2160  static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2161  				   struct of_dma *ofdma)
2162  {
2163  	struct sdma_engine *sdma = ofdma->of_dma_data;
2164  	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2165  	struct imx_dma_data data;
2166  
2167  	if (dma_spec->args_count != 3)
2168  		return NULL;
2169  
2170  	data.dma_request = dma_spec->args[0];
2171  	data.peripheral_type = dma_spec->args[1];
2172  	data.priority = dma_spec->args[2];
2173  	/*
2174  	 * init dma_request2 to zero, which is not used by the dts.
2175  	 * For P2P, dma_request2 is init from dma_request_channel(),
2176  	 * chan->private will point to the imx_dma_data, and in
2177  	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2178  	 * be set to sdmac->event_id1.
2179  	 */
2180  	data.dma_request2 = 0;
2181  
2182  	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2183  				     ofdma->of_node);
2184  }
2185  
sdma_probe(struct platform_device * pdev)2186  static int sdma_probe(struct platform_device *pdev)
2187  {
2188  	struct device_node *np = pdev->dev.of_node;
2189  	struct device_node *spba_bus;
2190  	const char *fw_name;
2191  	int ret;
2192  	int irq;
2193  	struct resource spba_res;
2194  	int i;
2195  	struct sdma_engine *sdma;
2196  	s32 *saddr_arr;
2197  
2198  	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2199  	if (ret)
2200  		return ret;
2201  
2202  	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2203  	if (!sdma)
2204  		return -ENOMEM;
2205  
2206  	spin_lock_init(&sdma->channel_0_lock);
2207  
2208  	sdma->dev = &pdev->dev;
2209  	sdma->drvdata = of_device_get_match_data(sdma->dev);
2210  
2211  	irq = platform_get_irq(pdev, 0);
2212  	if (irq < 0)
2213  		return irq;
2214  
2215  	sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2216  	if (IS_ERR(sdma->regs))
2217  		return PTR_ERR(sdma->regs);
2218  
2219  	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2220  	if (IS_ERR(sdma->clk_ipg))
2221  		return PTR_ERR(sdma->clk_ipg);
2222  
2223  	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2224  	if (IS_ERR(sdma->clk_ahb))
2225  		return PTR_ERR(sdma->clk_ahb);
2226  
2227  	ret = clk_prepare(sdma->clk_ipg);
2228  	if (ret)
2229  		return ret;
2230  
2231  	ret = clk_prepare(sdma->clk_ahb);
2232  	if (ret)
2233  		goto err_clk;
2234  
2235  	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2236  				dev_name(&pdev->dev), sdma);
2237  	if (ret)
2238  		goto err_irq;
2239  
2240  	sdma->irq = irq;
2241  
2242  	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2243  	if (!sdma->script_addrs) {
2244  		ret = -ENOMEM;
2245  		goto err_irq;
2246  	}
2247  
2248  	/* initially no scripts available */
2249  	saddr_arr = (s32 *)sdma->script_addrs;
2250  	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2251  		saddr_arr[i] = -EINVAL;
2252  
2253  	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2254  	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2255  	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2256  	dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2257  
2258  	INIT_LIST_HEAD(&sdma->dma_device.channels);
2259  	/* Initialize channel parameters */
2260  	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2261  		struct sdma_channel *sdmac = &sdma->channel[i];
2262  
2263  		sdmac->sdma = sdma;
2264  
2265  		sdmac->channel = i;
2266  		sdmac->vc.desc_free = sdma_desc_free;
2267  		INIT_LIST_HEAD(&sdmac->terminated);
2268  		INIT_WORK(&sdmac->terminate_worker,
2269  				sdma_channel_terminate_work);
2270  		/*
2271  		 * Add the channel to the DMAC list. Do not add channel 0 though
2272  		 * because we need it internally in the SDMA driver. This also means
2273  		 * that channel 0 in dmaengine counting matches sdma channel 1.
2274  		 */
2275  		if (i)
2276  			vchan_init(&sdmac->vc, &sdma->dma_device);
2277  	}
2278  
2279  	ret = sdma_init(sdma);
2280  	if (ret)
2281  		goto err_init;
2282  
2283  	ret = sdma_event_remap(sdma);
2284  	if (ret)
2285  		goto err_init;
2286  
2287  	if (sdma->drvdata->script_addrs)
2288  		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2289  
2290  	sdma->dma_device.dev = &pdev->dev;
2291  
2292  	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2293  	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2294  	sdma->dma_device.device_tx_status = sdma_tx_status;
2295  	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2296  	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2297  	sdma->dma_device.device_config = sdma_config;
2298  	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2299  	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2300  	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2301  	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2302  	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2303  	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2304  	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2305  	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2306  	sdma->dma_device.copy_align = 2;
2307  	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2308  
2309  	platform_set_drvdata(pdev, sdma);
2310  
2311  	ret = dma_async_device_register(&sdma->dma_device);
2312  	if (ret) {
2313  		dev_err(&pdev->dev, "unable to register\n");
2314  		goto err_init;
2315  	}
2316  
2317  	if (np) {
2318  		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2319  		if (ret) {
2320  			dev_err(&pdev->dev, "failed to register controller\n");
2321  			goto err_register;
2322  		}
2323  
2324  		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2325  		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2326  		if (!ret) {
2327  			sdma->spba_start_addr = spba_res.start;
2328  			sdma->spba_end_addr = spba_res.end;
2329  		}
2330  		of_node_put(spba_bus);
2331  	}
2332  
2333  	/*
2334  	 * Because that device tree does not encode ROM script address,
2335  	 * the RAM script in firmware is mandatory for device tree
2336  	 * probe, otherwise it fails.
2337  	 */
2338  	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2339  				      &fw_name);
2340  	if (ret) {
2341  		dev_warn(&pdev->dev, "failed to get firmware name\n");
2342  	} else {
2343  		ret = sdma_get_firmware(sdma, fw_name);
2344  		if (ret)
2345  			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2346  	}
2347  
2348  	return 0;
2349  
2350  err_register:
2351  	dma_async_device_unregister(&sdma->dma_device);
2352  err_init:
2353  	kfree(sdma->script_addrs);
2354  err_irq:
2355  	clk_unprepare(sdma->clk_ahb);
2356  err_clk:
2357  	clk_unprepare(sdma->clk_ipg);
2358  	return ret;
2359  }
2360  
sdma_remove(struct platform_device * pdev)2361  static int sdma_remove(struct platform_device *pdev)
2362  {
2363  	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2364  	int i;
2365  
2366  	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2367  	dma_async_device_unregister(&sdma->dma_device);
2368  	kfree(sdma->script_addrs);
2369  	clk_unprepare(sdma->clk_ahb);
2370  	clk_unprepare(sdma->clk_ipg);
2371  	/* Kill the tasklet */
2372  	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2373  		struct sdma_channel *sdmac = &sdma->channel[i];
2374  
2375  		tasklet_kill(&sdmac->vc.task);
2376  		sdma_free_chan_resources(&sdmac->vc.chan);
2377  	}
2378  
2379  	platform_set_drvdata(pdev, NULL);
2380  	return 0;
2381  }
2382  
2383  static struct platform_driver sdma_driver = {
2384  	.driver		= {
2385  		.name	= "imx-sdma",
2386  		.of_match_table = sdma_dt_ids,
2387  	},
2388  	.remove		= sdma_remove,
2389  	.probe		= sdma_probe,
2390  };
2391  
2392  module_platform_driver(sdma_driver);
2393  
2394  MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2395  MODULE_DESCRIPTION("i.MX SDMA driver");
2396  #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2397  MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2398  #endif
2399  #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2400  MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2401  #endif
2402  MODULE_LICENSE("GPL");
2403