1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
4 * Copyright (c) 2012 Bosch Sensortec GmbH
5 * Copyright (c) 2012 Unixphere AB
6 * Copyright (c) 2014 Intel Corporation
7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8 *
9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10 *
11 * Datasheet:
12 * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
13 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
14 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
15 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf
16 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf
17 *
18 * Notice:
19 * The link to the bmp180 datasheet points to an outdated version missing these changes:
20 * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26
21 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4
22 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26
23 */
24
25 #define pr_fmt(fmt) "bmp280: " fmt
26
27 #include <linux/bitops.h>
28 #include <linux/bitfield.h>
29 #include <linux/device.h>
30 #include <linux/module.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/regmap.h>
33 #include <linux/delay.h>
34 #include <linux/iio/iio.h>
35 #include <linux/iio/sysfs.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/interrupt.h>
39 #include <linux/irq.h> /* For irq_get_irq_data() */
40 #include <linux/completion.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/random.h>
43
44 #include <asm/unaligned.h>
45
46 #include "bmp280.h"
47
48 /*
49 * These enums are used for indexing into the array of calibration
50 * coefficients for BMP180.
51 */
52 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
53
54 enum bmp380_odr {
55 BMP380_ODR_200HZ,
56 BMP380_ODR_100HZ,
57 BMP380_ODR_50HZ,
58 BMP380_ODR_25HZ,
59 BMP380_ODR_12_5HZ,
60 BMP380_ODR_6_25HZ,
61 BMP380_ODR_3_125HZ,
62 BMP380_ODR_1_5625HZ,
63 BMP380_ODR_0_78HZ,
64 BMP380_ODR_0_39HZ,
65 BMP380_ODR_0_2HZ,
66 BMP380_ODR_0_1HZ,
67 BMP380_ODR_0_05HZ,
68 BMP380_ODR_0_02HZ,
69 BMP380_ODR_0_01HZ,
70 BMP380_ODR_0_006HZ,
71 BMP380_ODR_0_003HZ,
72 BMP380_ODR_0_0015HZ,
73 };
74
75 enum bmp580_odr {
76 BMP580_ODR_240HZ,
77 BMP580_ODR_218HZ,
78 BMP580_ODR_199HZ,
79 BMP580_ODR_179HZ,
80 BMP580_ODR_160HZ,
81 BMP580_ODR_149HZ,
82 BMP580_ODR_140HZ,
83 BMP580_ODR_129HZ,
84 BMP580_ODR_120HZ,
85 BMP580_ODR_110HZ,
86 BMP580_ODR_100HZ,
87 BMP580_ODR_89HZ,
88 BMP580_ODR_80HZ,
89 BMP580_ODR_70HZ,
90 BMP580_ODR_60HZ,
91 BMP580_ODR_50HZ,
92 BMP580_ODR_45HZ,
93 BMP580_ODR_40HZ,
94 BMP580_ODR_35HZ,
95 BMP580_ODR_30HZ,
96 BMP580_ODR_25HZ,
97 BMP580_ODR_20HZ,
98 BMP580_ODR_15HZ,
99 BMP580_ODR_10HZ,
100 BMP580_ODR_5HZ,
101 BMP580_ODR_4HZ,
102 BMP580_ODR_3HZ,
103 BMP580_ODR_2HZ,
104 BMP580_ODR_1HZ,
105 BMP580_ODR_0_5HZ,
106 BMP580_ODR_0_25HZ,
107 BMP580_ODR_0_125HZ,
108 };
109
110 /*
111 * These enums are used for indexing into the array of compensation
112 * parameters for BMP280.
113 */
114 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 };
115
116 enum {
117 /* Temperature calib indexes */
118 BMP380_T1 = 0,
119 BMP380_T2 = 2,
120 BMP380_T3 = 4,
121 /* Pressure calib indexes */
122 BMP380_P1 = 5,
123 BMP380_P2 = 7,
124 BMP380_P3 = 9,
125 BMP380_P4 = 10,
126 BMP380_P5 = 11,
127 BMP380_P6 = 13,
128 BMP380_P7 = 15,
129 BMP380_P8 = 16,
130 BMP380_P9 = 17,
131 BMP380_P10 = 19,
132 BMP380_P11 = 20,
133 };
134
135 static const struct iio_chan_spec bmp280_channels[] = {
136 {
137 .type = IIO_PRESSURE,
138 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
139 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
140 },
141 {
142 .type = IIO_TEMP,
143 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
144 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
145 },
146 {
147 .type = IIO_HUMIDITYRELATIVE,
148 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
149 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
150 },
151 };
152
153 static const struct iio_chan_spec bmp380_channels[] = {
154 {
155 .type = IIO_PRESSURE,
156 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
157 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
158 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
159 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
160 },
161 {
162 .type = IIO_TEMP,
163 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
164 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
165 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
166 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
167 },
168 {
169 .type = IIO_HUMIDITYRELATIVE,
170 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
171 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
172 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
173 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
174 },
175 };
176
bmp280_read_calib(struct bmp280_data * data)177 static int bmp280_read_calib(struct bmp280_data *data)
178 {
179 struct bmp280_calib *calib = &data->calib.bmp280;
180 int ret;
181
182 /* Read temperature and pressure calibration values. */
183 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
184 data->bmp280_cal_buf,
185 sizeof(data->bmp280_cal_buf));
186 if (ret < 0) {
187 dev_err(data->dev,
188 "failed to read calibration parameters\n");
189 return ret;
190 }
191
192 /* Toss calibration data into the entropy pool */
193 add_device_randomness(data->bmp280_cal_buf,
194 sizeof(data->bmp280_cal_buf));
195
196 /* Parse temperature calibration values. */
197 calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]);
198 calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]);
199 calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]);
200
201 /* Parse pressure calibration values. */
202 calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]);
203 calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]);
204 calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]);
205 calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]);
206 calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]);
207 calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]);
208 calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]);
209 calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]);
210 calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]);
211
212 return 0;
213 }
214
bme280_read_calib(struct bmp280_data * data)215 static int bme280_read_calib(struct bmp280_data *data)
216 {
217 struct bmp280_calib *calib = &data->calib.bmp280;
218 struct device *dev = data->dev;
219 unsigned int tmp;
220 int ret;
221
222 /* Load shared calibration params with bmp280 first */
223 ret = bmp280_read_calib(data);
224 if (ret < 0) {
225 dev_err(dev, "failed to read calibration parameters\n");
226 return ret;
227 }
228
229 /*
230 * Read humidity calibration values.
231 * Due to some odd register addressing we cannot just
232 * do a big bulk read. Instead, we have to read each Hx
233 * value separately and sometimes do some bit shifting...
234 * Humidity data is only available on BME280.
235 */
236
237 ret = regmap_read(data->regmap, BME280_REG_COMP_H1, &tmp);
238 if (ret < 0) {
239 dev_err(dev, "failed to read H1 comp value\n");
240 return ret;
241 }
242 calib->H1 = tmp;
243
244 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H2,
245 &data->le16, sizeof(data->le16));
246 if (ret < 0) {
247 dev_err(dev, "failed to read H2 comp value\n");
248 return ret;
249 }
250 calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15);
251
252 ret = regmap_read(data->regmap, BME280_REG_COMP_H3, &tmp);
253 if (ret < 0) {
254 dev_err(dev, "failed to read H3 comp value\n");
255 return ret;
256 }
257 calib->H3 = tmp;
258
259 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H4,
260 &data->be16, sizeof(data->be16));
261 if (ret < 0) {
262 dev_err(dev, "failed to read H4 comp value\n");
263 return ret;
264 }
265 calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) |
266 (be16_to_cpu(data->be16) & 0xf), 11);
267
268 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H5,
269 &data->le16, sizeof(data->le16));
270 if (ret < 0) {
271 dev_err(dev, "failed to read H5 comp value\n");
272 return ret;
273 }
274 calib->H5 = sign_extend32(FIELD_GET(BME280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11);
275
276 ret = regmap_read(data->regmap, BME280_REG_COMP_H6, &tmp);
277 if (ret < 0) {
278 dev_err(dev, "failed to read H6 comp value\n");
279 return ret;
280 }
281 calib->H6 = sign_extend32(tmp, 7);
282
283 return 0;
284 }
285
286 /*
287 * Returns humidity in percent, resolution is 0.01 percent. Output value of
288 * "47445" represents 47445/1024 = 46.333 %RH.
289 *
290 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
291 */
bme280_compensate_humidity(struct bmp280_data * data,s32 adc_humidity)292 static u32 bme280_compensate_humidity(struct bmp280_data *data,
293 s32 adc_humidity)
294 {
295 struct bmp280_calib *calib = &data->calib.bmp280;
296 s32 var;
297
298 var = ((s32)data->t_fine) - (s32)76800;
299 var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
300 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
301 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
302 + (s32)2097152) * calib->H2 + 8192) >> 14);
303 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
304
305 var = clamp_val(var, 0, 419430400);
306
307 return var >> 12;
308 }
309
310 /*
311 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of
312 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global
313 * value.
314 *
315 * Taken from datasheet, Section 3.11.3, "Compensation formula".
316 */
bmp280_compensate_temp(struct bmp280_data * data,s32 adc_temp)317 static s32 bmp280_compensate_temp(struct bmp280_data *data,
318 s32 adc_temp)
319 {
320 struct bmp280_calib *calib = &data->calib.bmp280;
321 s32 var1, var2;
322
323 var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
324 ((s32)calib->T2)) >> 11;
325 var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
326 ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
327 ((s32)calib->T3)) >> 14;
328 data->t_fine = var1 + var2;
329
330 return (data->t_fine * 5 + 128) >> 8;
331 }
332
333 /*
334 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
335 * integer bits and 8 fractional bits). Output value of "24674867"
336 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
337 *
338 * Taken from datasheet, Section 3.11.3, "Compensation formula".
339 */
bmp280_compensate_press(struct bmp280_data * data,s32 adc_press)340 static u32 bmp280_compensate_press(struct bmp280_data *data,
341 s32 adc_press)
342 {
343 struct bmp280_calib *calib = &data->calib.bmp280;
344 s64 var1, var2, p;
345
346 var1 = ((s64)data->t_fine) - 128000;
347 var2 = var1 * var1 * (s64)calib->P6;
348 var2 += (var1 * (s64)calib->P5) << 17;
349 var2 += ((s64)calib->P4) << 35;
350 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
351 ((var1 * (s64)calib->P2) << 12);
352 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
353
354 if (var1 == 0)
355 return 0;
356
357 p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
358 p = div64_s64(p, var1);
359 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
360 var2 = ((s64)(calib->P8) * p) >> 19;
361 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
362
363 return (u32)p;
364 }
365
bmp280_read_temp(struct bmp280_data * data,int * val,int * val2)366 static int bmp280_read_temp(struct bmp280_data *data,
367 int *val, int *val2)
368 {
369 s32 adc_temp, comp_temp;
370 int ret;
371
372 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
373 data->buf, sizeof(data->buf));
374 if (ret < 0) {
375 dev_err(data->dev, "failed to read temperature\n");
376 return ret;
377 }
378
379 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
380 if (adc_temp == BMP280_TEMP_SKIPPED) {
381 /* reading was skipped */
382 dev_err(data->dev, "reading temperature skipped\n");
383 return -EIO;
384 }
385 comp_temp = bmp280_compensate_temp(data, adc_temp);
386
387 /*
388 * val might be NULL if we're called by the read_press routine,
389 * who only cares about the carry over t_fine value.
390 */
391 if (val) {
392 *val = comp_temp * 10;
393 return IIO_VAL_INT;
394 }
395
396 return 0;
397 }
398
bmp280_read_press(struct bmp280_data * data,int * val,int * val2)399 static int bmp280_read_press(struct bmp280_data *data,
400 int *val, int *val2)
401 {
402 u32 comp_press;
403 s32 adc_press;
404 int ret;
405
406 /* Read and compensate temperature so we get a reading of t_fine. */
407 ret = bmp280_read_temp(data, NULL, NULL);
408 if (ret < 0)
409 return ret;
410
411 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
412 data->buf, sizeof(data->buf));
413 if (ret < 0) {
414 dev_err(data->dev, "failed to read pressure\n");
415 return ret;
416 }
417
418 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
419 if (adc_press == BMP280_PRESS_SKIPPED) {
420 /* reading was skipped */
421 dev_err(data->dev, "reading pressure skipped\n");
422 return -EIO;
423 }
424 comp_press = bmp280_compensate_press(data, adc_press);
425
426 *val = comp_press;
427 *val2 = 256000;
428
429 return IIO_VAL_FRACTIONAL;
430 }
431
bme280_read_humid(struct bmp280_data * data,int * val,int * val2)432 static int bme280_read_humid(struct bmp280_data *data, int *val, int *val2)
433 {
434 u32 comp_humidity;
435 s32 adc_humidity;
436 int ret;
437
438 /* Read and compensate temperature so we get a reading of t_fine. */
439 ret = bmp280_read_temp(data, NULL, NULL);
440 if (ret < 0)
441 return ret;
442
443 ret = regmap_bulk_read(data->regmap, BME280_REG_HUMIDITY_MSB,
444 &data->be16, sizeof(data->be16));
445 if (ret < 0) {
446 dev_err(data->dev, "failed to read humidity\n");
447 return ret;
448 }
449
450 adc_humidity = be16_to_cpu(data->be16);
451 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
452 /* reading was skipped */
453 dev_err(data->dev, "reading humidity skipped\n");
454 return -EIO;
455 }
456 comp_humidity = bme280_compensate_humidity(data, adc_humidity);
457
458 *val = comp_humidity * 1000 / 1024;
459
460 return IIO_VAL_INT;
461 }
462
bmp280_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)463 static int bmp280_read_raw(struct iio_dev *indio_dev,
464 struct iio_chan_spec const *chan,
465 int *val, int *val2, long mask)
466 {
467 struct bmp280_data *data = iio_priv(indio_dev);
468 int ret;
469
470 pm_runtime_get_sync(data->dev);
471 mutex_lock(&data->lock);
472
473 switch (mask) {
474 case IIO_CHAN_INFO_PROCESSED:
475 switch (chan->type) {
476 case IIO_HUMIDITYRELATIVE:
477 ret = data->chip_info->read_humid(data, val, val2);
478 break;
479 case IIO_PRESSURE:
480 ret = data->chip_info->read_press(data, val, val2);
481 break;
482 case IIO_TEMP:
483 ret = data->chip_info->read_temp(data, val, val2);
484 break;
485 default:
486 ret = -EINVAL;
487 break;
488 }
489 break;
490 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
491 switch (chan->type) {
492 case IIO_HUMIDITYRELATIVE:
493 *val = 1 << data->oversampling_humid;
494 ret = IIO_VAL_INT;
495 break;
496 case IIO_PRESSURE:
497 *val = 1 << data->oversampling_press;
498 ret = IIO_VAL_INT;
499 break;
500 case IIO_TEMP:
501 *val = 1 << data->oversampling_temp;
502 ret = IIO_VAL_INT;
503 break;
504 default:
505 ret = -EINVAL;
506 break;
507 }
508 break;
509 case IIO_CHAN_INFO_SAMP_FREQ:
510 if (!data->chip_info->sampling_freq_avail) {
511 ret = -EINVAL;
512 break;
513 }
514
515 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0];
516 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1];
517 ret = IIO_VAL_INT_PLUS_MICRO;
518 break;
519 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
520 if (!data->chip_info->iir_filter_coeffs_avail) {
521 ret = -EINVAL;
522 break;
523 }
524
525 *val = (1 << data->iir_filter_coeff) - 1;
526 ret = IIO_VAL_INT;
527 break;
528 default:
529 ret = -EINVAL;
530 break;
531 }
532
533 mutex_unlock(&data->lock);
534 pm_runtime_mark_last_busy(data->dev);
535 pm_runtime_put_autosuspend(data->dev);
536
537 return ret;
538 }
539
bme280_write_oversampling_ratio_humid(struct bmp280_data * data,int val)540 static int bme280_write_oversampling_ratio_humid(struct bmp280_data *data,
541 int val)
542 {
543 const int *avail = data->chip_info->oversampling_humid_avail;
544 const int n = data->chip_info->num_oversampling_humid_avail;
545 int ret, prev;
546 int i;
547
548 for (i = 0; i < n; i++) {
549 if (avail[i] == val) {
550 prev = data->oversampling_humid;
551 data->oversampling_humid = ilog2(val);
552
553 ret = data->chip_info->chip_config(data);
554 if (ret) {
555 data->oversampling_humid = prev;
556 data->chip_info->chip_config(data);
557 return ret;
558 }
559 return 0;
560 }
561 }
562 return -EINVAL;
563 }
564
bmp280_write_oversampling_ratio_temp(struct bmp280_data * data,int val)565 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
566 int val)
567 {
568 const int *avail = data->chip_info->oversampling_temp_avail;
569 const int n = data->chip_info->num_oversampling_temp_avail;
570 int ret, prev;
571 int i;
572
573 for (i = 0; i < n; i++) {
574 if (avail[i] == val) {
575 prev = data->oversampling_temp;
576 data->oversampling_temp = ilog2(val);
577
578 ret = data->chip_info->chip_config(data);
579 if (ret) {
580 data->oversampling_temp = prev;
581 data->chip_info->chip_config(data);
582 return ret;
583 }
584 return 0;
585 }
586 }
587 return -EINVAL;
588 }
589
bmp280_write_oversampling_ratio_press(struct bmp280_data * data,int val)590 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
591 int val)
592 {
593 const int *avail = data->chip_info->oversampling_press_avail;
594 const int n = data->chip_info->num_oversampling_press_avail;
595 int ret, prev;
596 int i;
597
598 for (i = 0; i < n; i++) {
599 if (avail[i] == val) {
600 prev = data->oversampling_press;
601 data->oversampling_press = ilog2(val);
602
603 ret = data->chip_info->chip_config(data);
604 if (ret) {
605 data->oversampling_press = prev;
606 data->chip_info->chip_config(data);
607 return ret;
608 }
609 return 0;
610 }
611 }
612 return -EINVAL;
613 }
614
bmp280_write_sampling_frequency(struct bmp280_data * data,int val,int val2)615 static int bmp280_write_sampling_frequency(struct bmp280_data *data,
616 int val, int val2)
617 {
618 const int (*avail)[2] = data->chip_info->sampling_freq_avail;
619 const int n = data->chip_info->num_sampling_freq_avail;
620 int ret, prev;
621 int i;
622
623 for (i = 0; i < n; i++) {
624 if (avail[i][0] == val && avail[i][1] == val2) {
625 prev = data->sampling_freq;
626 data->sampling_freq = i;
627
628 ret = data->chip_info->chip_config(data);
629 if (ret) {
630 data->sampling_freq = prev;
631 data->chip_info->chip_config(data);
632 return ret;
633 }
634 return 0;
635 }
636 }
637 return -EINVAL;
638 }
639
bmp280_write_iir_filter_coeffs(struct bmp280_data * data,int val)640 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val)
641 {
642 const int *avail = data->chip_info->iir_filter_coeffs_avail;
643 const int n = data->chip_info->num_iir_filter_coeffs_avail;
644 int ret, prev;
645 int i;
646
647 for (i = 0; i < n; i++) {
648 if (avail[i] - 1 == val) {
649 prev = data->iir_filter_coeff;
650 data->iir_filter_coeff = i;
651
652 ret = data->chip_info->chip_config(data);
653 if (ret) {
654 data->iir_filter_coeff = prev;
655 data->chip_info->chip_config(data);
656 return ret;
657
658 }
659 return 0;
660 }
661 }
662 return -EINVAL;
663 }
664
bmp280_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)665 static int bmp280_write_raw(struct iio_dev *indio_dev,
666 struct iio_chan_spec const *chan,
667 int val, int val2, long mask)
668 {
669 struct bmp280_data *data = iio_priv(indio_dev);
670 int ret = 0;
671
672 /*
673 * Helper functions to update sensor running configuration.
674 * If an error happens applying new settings, will try restore
675 * previous parameters to ensure the sensor is left in a known
676 * working configuration.
677 */
678 switch (mask) {
679 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
680 pm_runtime_get_sync(data->dev);
681 mutex_lock(&data->lock);
682 switch (chan->type) {
683 case IIO_HUMIDITYRELATIVE:
684 ret = bme280_write_oversampling_ratio_humid(data, val);
685 break;
686 case IIO_PRESSURE:
687 ret = bmp280_write_oversampling_ratio_press(data, val);
688 break;
689 case IIO_TEMP:
690 ret = bmp280_write_oversampling_ratio_temp(data, val);
691 break;
692 default:
693 ret = -EINVAL;
694 break;
695 }
696 mutex_unlock(&data->lock);
697 pm_runtime_mark_last_busy(data->dev);
698 pm_runtime_put_autosuspend(data->dev);
699 break;
700 case IIO_CHAN_INFO_SAMP_FREQ:
701 pm_runtime_get_sync(data->dev);
702 mutex_lock(&data->lock);
703 ret = bmp280_write_sampling_frequency(data, val, val2);
704 mutex_unlock(&data->lock);
705 pm_runtime_mark_last_busy(data->dev);
706 pm_runtime_put_autosuspend(data->dev);
707 break;
708 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
709 pm_runtime_get_sync(data->dev);
710 mutex_lock(&data->lock);
711 ret = bmp280_write_iir_filter_coeffs(data, val);
712 mutex_unlock(&data->lock);
713 pm_runtime_mark_last_busy(data->dev);
714 pm_runtime_put_autosuspend(data->dev);
715 break;
716 default:
717 return -EINVAL;
718 }
719
720 return ret;
721 }
722
bmp280_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)723 static int bmp280_read_avail(struct iio_dev *indio_dev,
724 struct iio_chan_spec const *chan,
725 const int **vals, int *type, int *length,
726 long mask)
727 {
728 struct bmp280_data *data = iio_priv(indio_dev);
729
730 switch (mask) {
731 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
732 switch (chan->type) {
733 case IIO_PRESSURE:
734 *vals = data->chip_info->oversampling_press_avail;
735 *length = data->chip_info->num_oversampling_press_avail;
736 break;
737 case IIO_TEMP:
738 *vals = data->chip_info->oversampling_temp_avail;
739 *length = data->chip_info->num_oversampling_temp_avail;
740 break;
741 default:
742 return -EINVAL;
743 }
744 *type = IIO_VAL_INT;
745 return IIO_AVAIL_LIST;
746 case IIO_CHAN_INFO_SAMP_FREQ:
747 *vals = (const int *)data->chip_info->sampling_freq_avail;
748 *type = IIO_VAL_INT_PLUS_MICRO;
749 /* Values are stored in a 2D matrix */
750 *length = data->chip_info->num_sampling_freq_avail;
751 return IIO_AVAIL_LIST;
752 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
753 *vals = data->chip_info->iir_filter_coeffs_avail;
754 *type = IIO_VAL_INT;
755 *length = data->chip_info->num_iir_filter_coeffs_avail;
756 return IIO_AVAIL_LIST;
757 default:
758 return -EINVAL;
759 }
760 }
761
762 static const struct iio_info bmp280_info = {
763 .read_raw = &bmp280_read_raw,
764 .read_avail = &bmp280_read_avail,
765 .write_raw = &bmp280_write_raw,
766 };
767
bmp280_chip_config(struct bmp280_data * data)768 static int bmp280_chip_config(struct bmp280_data *data)
769 {
770 u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) |
771 FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1);
772 int ret;
773
774 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
775 BMP280_OSRS_TEMP_MASK |
776 BMP280_OSRS_PRESS_MASK |
777 BMP280_MODE_MASK,
778 osrs | BMP280_MODE_NORMAL);
779 if (ret < 0) {
780 dev_err(data->dev, "failed to write ctrl_meas register\n");
781 return ret;
782 }
783
784 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
785 BMP280_FILTER_MASK,
786 BMP280_FILTER_4X);
787 if (ret < 0) {
788 dev_err(data->dev, "failed to write config register\n");
789 return ret;
790 }
791
792 return ret;
793 }
794
795 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
796 static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID };
797
798 const struct bmp280_chip_info bmp280_chip_info = {
799 .id_reg = BMP280_REG_ID,
800 .chip_id = bmp280_chip_ids,
801 .num_chip_id = ARRAY_SIZE(bmp280_chip_ids),
802 .regmap_config = &bmp280_regmap_config,
803 .start_up_time = 2000,
804 .channels = bmp280_channels,
805 .num_channels = 2,
806
807 .oversampling_temp_avail = bmp280_oversampling_avail,
808 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
809 /*
810 * Oversampling config values on BMx280 have one additional setting
811 * that other generations of the family don't:
812 * The value 0 means the measurement is bypassed instead of
813 * oversampling set to x1.
814 *
815 * To account for this difference, and preserve the same common
816 * config logic, this is handled later on chip_config callback
817 * incrementing one unit the oversampling setting.
818 */
819 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
820
821 .oversampling_press_avail = bmp280_oversampling_avail,
822 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
823 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
824
825 .chip_config = bmp280_chip_config,
826 .read_temp = bmp280_read_temp,
827 .read_press = bmp280_read_press,
828 .read_calib = bmp280_read_calib,
829 };
830 EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280);
831
bme280_chip_config(struct bmp280_data * data)832 static int bme280_chip_config(struct bmp280_data *data)
833 {
834 u8 osrs = FIELD_PREP(BME280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1);
835 int ret;
836
837 /*
838 * Oversampling of humidity must be set before oversampling of
839 * temperature/pressure is set to become effective.
840 */
841 ret = regmap_update_bits(data->regmap, BME280_REG_CTRL_HUMIDITY,
842 BME280_OSRS_HUMIDITY_MASK, osrs);
843 if (ret < 0)
844 return ret;
845
846 return bmp280_chip_config(data);
847 }
848
849 static const u8 bme280_chip_ids[] = { BME280_CHIP_ID };
850
851 const struct bmp280_chip_info bme280_chip_info = {
852 .id_reg = BMP280_REG_ID,
853 .chip_id = bme280_chip_ids,
854 .num_chip_id = ARRAY_SIZE(bme280_chip_ids),
855 .regmap_config = &bme280_regmap_config,
856 .start_up_time = 2000,
857 .channels = bmp280_channels,
858 .num_channels = 3,
859
860 .oversampling_temp_avail = bmp280_oversampling_avail,
861 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
862 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
863
864 .oversampling_press_avail = bmp280_oversampling_avail,
865 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
866 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
867
868 .oversampling_humid_avail = bmp280_oversampling_avail,
869 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
870 .oversampling_humid_default = BME280_OSRS_HUMIDITY_16X - 1,
871
872 .chip_config = bme280_chip_config,
873 .read_temp = bmp280_read_temp,
874 .read_press = bmp280_read_press,
875 .read_humid = bme280_read_humid,
876 .read_calib = bme280_read_calib,
877 };
878 EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280);
879
880 /*
881 * Helper function to send a command to BMP3XX sensors.
882 *
883 * Sensor processes commands written to the CMD register and signals
884 * execution result through "cmd_rdy" and "cmd_error" flags available on
885 * STATUS and ERROR registers.
886 */
bmp380_cmd(struct bmp280_data * data,u8 cmd)887 static int bmp380_cmd(struct bmp280_data *data, u8 cmd)
888 {
889 unsigned int reg;
890 int ret;
891
892 /* Check if device is ready to process a command */
893 ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®);
894 if (ret) {
895 dev_err(data->dev, "failed to read error register\n");
896 return ret;
897 }
898 if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) {
899 dev_err(data->dev, "device is not ready to accept commands\n");
900 return -EBUSY;
901 }
902
903 /* Send command to process */
904 ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd);
905 if (ret) {
906 dev_err(data->dev, "failed to send command to device\n");
907 return ret;
908 }
909 /* Wait for 2ms for command to be processed */
910 usleep_range(data->start_up_time, data->start_up_time + 100);
911 /* Check for command processing error */
912 ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®);
913 if (ret) {
914 dev_err(data->dev, "error reading ERROR reg\n");
915 return ret;
916 }
917 if (reg & BMP380_ERR_CMD_MASK) {
918 dev_err(data->dev, "error processing command 0x%X\n", cmd);
919 return -EINVAL;
920 }
921
922 return 0;
923 }
924
925 /*
926 * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value
927 * of "5123" equals 51.2º C. t_fine carries fine temperature as global value.
928 *
929 * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo
930 * https://github.com/BoschSensortec/BMP3-Sensor-API.
931 */
bmp380_compensate_temp(struct bmp280_data * data,u32 adc_temp)932 static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp)
933 {
934 s64 var1, var2, var3, var4, var5, var6, comp_temp;
935 struct bmp380_calib *calib = &data->calib.bmp380;
936
937 var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8);
938 var2 = var1 * ((s64) calib->T2);
939 var3 = var1 * var1;
940 var4 = var3 * ((s64) calib->T3);
941 var5 = (var2 << 18) + var4;
942 var6 = var5 >> 32;
943 data->t_fine = (s32) var6;
944 comp_temp = (var6 * 25) >> 14;
945
946 comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP);
947 return (s32) comp_temp;
948 }
949
950 /*
951 * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal.
952 * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa.
953 *
954 * Taken from datasheet, Section 9.3. "Pressure compensation" and repository
955 * https://github.com/BoschSensortec/BMP3-Sensor-API.
956 */
bmp380_compensate_press(struct bmp280_data * data,u32 adc_press)957 static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press)
958 {
959 s64 var1, var2, var3, var4, var5, var6, offset, sensitivity;
960 struct bmp380_calib *calib = &data->calib.bmp380;
961 u32 comp_press;
962
963 var1 = (s64)data->t_fine * (s64)data->t_fine;
964 var2 = var1 >> 6;
965 var3 = (var2 * ((s64) data->t_fine)) >> 8;
966 var4 = ((s64)calib->P8 * var3) >> 5;
967 var5 = ((s64)calib->P7 * var1) << 4;
968 var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22;
969 offset = ((s64)calib->P5 << 47) + var4 + var5 + var6;
970 var2 = ((s64)calib->P4 * var3) >> 5;
971 var4 = ((s64)calib->P3 * var1) << 2;
972 var5 = ((s64)calib->P2 - ((s64)1 << 14)) *
973 ((s64)data->t_fine << 21);
974 sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) +
975 var2 + var4 + var5;
976 var1 = (sensitivity >> 24) * (s64)adc_press;
977 var2 = (s64)calib->P10 * (s64)data->t_fine;
978 var3 = var2 + ((s64)calib->P9 << 16);
979 var4 = (var3 * (s64)adc_press) >> 13;
980
981 /*
982 * Dividing by 10 followed by multiplying by 10 to avoid
983 * possible overflow caused by (uncomp_data->pressure * partial_data4).
984 */
985 var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9;
986 var5 *= 10;
987 var6 = (s64)adc_press * (s64)adc_press;
988 var2 = ((s64)calib->P11 * var6) >> 16;
989 var3 = (var2 * (s64)adc_press) >> 7;
990 var4 = (offset >> 2) + var1 + var5 + var3;
991 comp_press = ((u64)var4 * 25) >> 40;
992
993 comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES);
994 return comp_press;
995 }
996
bmp380_read_temp(struct bmp280_data * data,int * val,int * val2)997 static int bmp380_read_temp(struct bmp280_data *data, int *val, int *val2)
998 {
999 s32 comp_temp;
1000 u32 adc_temp;
1001 int ret;
1002
1003 ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB,
1004 data->buf, sizeof(data->buf));
1005 if (ret) {
1006 dev_err(data->dev, "failed to read temperature\n");
1007 return ret;
1008 }
1009
1010 adc_temp = get_unaligned_le24(data->buf);
1011 if (adc_temp == BMP380_TEMP_SKIPPED) {
1012 dev_err(data->dev, "reading temperature skipped\n");
1013 return -EIO;
1014 }
1015 comp_temp = bmp380_compensate_temp(data, adc_temp);
1016
1017 /*
1018 * Val might be NULL if we're called by the read_press routine,
1019 * who only cares about the carry over t_fine value.
1020 */
1021 if (val) {
1022 /* IIO reports temperatures in milli Celsius */
1023 *val = comp_temp * 10;
1024 return IIO_VAL_INT;
1025 }
1026
1027 return 0;
1028 }
1029
bmp380_read_press(struct bmp280_data * data,int * val,int * val2)1030 static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2)
1031 {
1032 s32 comp_press;
1033 u32 adc_press;
1034 int ret;
1035
1036 /* Read and compensate for temperature so we get a reading of t_fine */
1037 ret = bmp380_read_temp(data, NULL, NULL);
1038 if (ret)
1039 return ret;
1040
1041 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB,
1042 data->buf, sizeof(data->buf));
1043 if (ret) {
1044 dev_err(data->dev, "failed to read pressure\n");
1045 return ret;
1046 }
1047
1048 adc_press = get_unaligned_le24(data->buf);
1049 if (adc_press == BMP380_PRESS_SKIPPED) {
1050 dev_err(data->dev, "reading pressure skipped\n");
1051 return -EIO;
1052 }
1053 comp_press = bmp380_compensate_press(data, adc_press);
1054
1055 *val = comp_press;
1056 /* Compensated pressure is in cPa (centipascals) */
1057 *val2 = 100000;
1058
1059 return IIO_VAL_FRACTIONAL;
1060 }
1061
bmp380_read_calib(struct bmp280_data * data)1062 static int bmp380_read_calib(struct bmp280_data *data)
1063 {
1064 struct bmp380_calib *calib = &data->calib.bmp380;
1065 int ret;
1066
1067 /* Read temperature and pressure calibration data */
1068 ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START,
1069 data->bmp380_cal_buf,
1070 sizeof(data->bmp380_cal_buf));
1071 if (ret) {
1072 dev_err(data->dev,
1073 "failed to read temperature calibration parameters\n");
1074 return ret;
1075 }
1076
1077 /* Toss the temperature calibration data into the entropy pool */
1078 add_device_randomness(data->bmp380_cal_buf,
1079 sizeof(data->bmp380_cal_buf));
1080
1081 /* Parse calibration values */
1082 calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]);
1083 calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]);
1084 calib->T3 = data->bmp380_cal_buf[BMP380_T3];
1085 calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]);
1086 calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]);
1087 calib->P3 = data->bmp380_cal_buf[BMP380_P3];
1088 calib->P4 = data->bmp380_cal_buf[BMP380_P4];
1089 calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]);
1090 calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]);
1091 calib->P7 = data->bmp380_cal_buf[BMP380_P7];
1092 calib->P8 = data->bmp380_cal_buf[BMP380_P8];
1093 calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]);
1094 calib->P10 = data->bmp380_cal_buf[BMP380_P10];
1095 calib->P11 = data->bmp380_cal_buf[BMP380_P11];
1096
1097 return 0;
1098 }
1099
1100 static const int bmp380_odr_table[][2] = {
1101 [BMP380_ODR_200HZ] = {200, 0},
1102 [BMP380_ODR_100HZ] = {100, 0},
1103 [BMP380_ODR_50HZ] = {50, 0},
1104 [BMP380_ODR_25HZ] = {25, 0},
1105 [BMP380_ODR_12_5HZ] = {12, 500000},
1106 [BMP380_ODR_6_25HZ] = {6, 250000},
1107 [BMP380_ODR_3_125HZ] = {3, 125000},
1108 [BMP380_ODR_1_5625HZ] = {1, 562500},
1109 [BMP380_ODR_0_78HZ] = {0, 781250},
1110 [BMP380_ODR_0_39HZ] = {0, 390625},
1111 [BMP380_ODR_0_2HZ] = {0, 195313},
1112 [BMP380_ODR_0_1HZ] = {0, 97656},
1113 [BMP380_ODR_0_05HZ] = {0, 48828},
1114 [BMP380_ODR_0_02HZ] = {0, 24414},
1115 [BMP380_ODR_0_01HZ] = {0, 12207},
1116 [BMP380_ODR_0_006HZ] = {0, 6104},
1117 [BMP380_ODR_0_003HZ] = {0, 3052},
1118 [BMP380_ODR_0_0015HZ] = {0, 1526},
1119 };
1120
bmp380_preinit(struct bmp280_data * data)1121 static int bmp380_preinit(struct bmp280_data *data)
1122 {
1123 /* BMP3xx requires soft-reset as part of initialization */
1124 return bmp380_cmd(data, BMP380_CMD_SOFT_RESET);
1125 }
1126
bmp380_chip_config(struct bmp280_data * data)1127 static int bmp380_chip_config(struct bmp280_data *data)
1128 {
1129 bool change = false, aux;
1130 unsigned int tmp;
1131 u8 osrs;
1132 int ret;
1133
1134 /* Configure power control register */
1135 ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1136 BMP380_CTRL_SENSORS_MASK,
1137 BMP380_CTRL_SENSORS_PRESS_EN |
1138 BMP380_CTRL_SENSORS_TEMP_EN);
1139 if (ret) {
1140 dev_err(data->dev,
1141 "failed to write operation control register\n");
1142 return ret;
1143 }
1144
1145 /* Configure oversampling */
1146 osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) |
1147 FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press);
1148
1149 ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR,
1150 BMP380_OSRS_TEMP_MASK |
1151 BMP380_OSRS_PRESS_MASK,
1152 osrs, &aux);
1153 if (ret) {
1154 dev_err(data->dev, "failed to write oversampling register\n");
1155 return ret;
1156 }
1157 change = change || aux;
1158
1159 /* Configure output data rate */
1160 ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR,
1161 BMP380_ODRS_MASK, data->sampling_freq,
1162 &aux);
1163 if (ret) {
1164 dev_err(data->dev, "failed to write ODR selection register\n");
1165 return ret;
1166 }
1167 change = change || aux;
1168
1169 /* Set filter data */
1170 ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK,
1171 FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff),
1172 &aux);
1173 if (ret) {
1174 dev_err(data->dev, "failed to write config register\n");
1175 return ret;
1176 }
1177 change = change || aux;
1178
1179 if (change) {
1180 /*
1181 * The configurations errors are detected on the fly during a
1182 * measurement cycle. If the sampling frequency is too low, it's
1183 * faster to reset the measurement loop than wait until the next
1184 * measurement is due.
1185 *
1186 * Resets sensor measurement loop toggling between sleep and
1187 * normal operating modes.
1188 */
1189 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1190 BMP380_MODE_MASK,
1191 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP));
1192 if (ret) {
1193 dev_err(data->dev, "failed to set sleep mode\n");
1194 return ret;
1195 }
1196 usleep_range(2000, 2500);
1197 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1198 BMP380_MODE_MASK,
1199 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL));
1200 if (ret) {
1201 dev_err(data->dev, "failed to set normal mode\n");
1202 return ret;
1203 }
1204 /*
1205 * Waits for measurement before checking configuration error
1206 * flag. Selected longest measurement time, calculated from
1207 * formula in datasheet section 3.9.2 with an offset of ~+15%
1208 * as it seen as well in table 3.9.1.
1209 */
1210 msleep(150);
1211
1212 /* Check config error flag */
1213 ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp);
1214 if (ret) {
1215 dev_err(data->dev, "failed to read error register\n");
1216 return ret;
1217 }
1218 if (tmp & BMP380_ERR_CONF_MASK) {
1219 dev_warn(data->dev,
1220 "sensor flagged configuration as incompatible\n");
1221 return -EINVAL;
1222 }
1223 }
1224
1225 return 0;
1226 }
1227
1228 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 };
1229 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128};
1230 static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID };
1231
1232 const struct bmp280_chip_info bmp380_chip_info = {
1233 .id_reg = BMP380_REG_ID,
1234 .chip_id = bmp380_chip_ids,
1235 .num_chip_id = ARRAY_SIZE(bmp380_chip_ids),
1236 .regmap_config = &bmp380_regmap_config,
1237 .start_up_time = 2000,
1238 .channels = bmp380_channels,
1239 .num_channels = 2,
1240
1241 .oversampling_temp_avail = bmp380_oversampling_avail,
1242 .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1243 .oversampling_temp_default = ilog2(1),
1244
1245 .oversampling_press_avail = bmp380_oversampling_avail,
1246 .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1247 .oversampling_press_default = ilog2(4),
1248
1249 .sampling_freq_avail = bmp380_odr_table,
1250 .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2,
1251 .sampling_freq_default = BMP380_ODR_50HZ,
1252
1253 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1254 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1255 .iir_filter_coeff_default = 2,
1256
1257 .chip_config = bmp380_chip_config,
1258 .read_temp = bmp380_read_temp,
1259 .read_press = bmp380_read_press,
1260 .read_calib = bmp380_read_calib,
1261 .preinit = bmp380_preinit,
1262 };
1263 EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280);
1264
bmp580_soft_reset(struct bmp280_data * data)1265 static int bmp580_soft_reset(struct bmp280_data *data)
1266 {
1267 unsigned int reg;
1268 int ret;
1269
1270 ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET);
1271 if (ret) {
1272 dev_err(data->dev, "failed to send reset command to device\n");
1273 return ret;
1274 }
1275 usleep_range(2000, 2500);
1276
1277 /* Dummy read of chip_id */
1278 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®);
1279 if (ret) {
1280 dev_err(data->dev, "failed to reestablish comms after reset\n");
1281 return ret;
1282 }
1283
1284 ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, ®);
1285 if (ret) {
1286 dev_err(data->dev, "error reading interrupt status register\n");
1287 return ret;
1288 }
1289 if (!(reg & BMP580_INT_STATUS_POR_MASK)) {
1290 dev_err(data->dev, "error resetting sensor\n");
1291 return -EINVAL;
1292 }
1293
1294 return 0;
1295 }
1296
1297 /**
1298 * bmp580_nvm_operation() - Helper function to commit NVM memory operations
1299 * @data: sensor data struct
1300 * @is_write: flag to signal write operation
1301 */
bmp580_nvm_operation(struct bmp280_data * data,bool is_write)1302 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write)
1303 {
1304 unsigned long timeout, poll;
1305 unsigned int reg;
1306 int ret;
1307
1308 /* Check NVM ready flag */
1309 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®);
1310 if (ret) {
1311 dev_err(data->dev, "failed to check nvm status\n");
1312 return ret;
1313 }
1314 if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) {
1315 dev_err(data->dev, "sensor's nvm is not ready\n");
1316 return -EIO;
1317 }
1318
1319 /* Start NVM operation sequence */
1320 ret = regmap_write(data->regmap, BMP580_REG_CMD,
1321 BMP580_CMD_NVM_OP_SEQ_0);
1322 if (ret) {
1323 dev_err(data->dev,
1324 "failed to send nvm operation's first sequence\n");
1325 return ret;
1326 }
1327 if (is_write) {
1328 /* Send NVM write sequence */
1329 ret = regmap_write(data->regmap, BMP580_REG_CMD,
1330 BMP580_CMD_NVM_WRITE_SEQ_1);
1331 if (ret) {
1332 dev_err(data->dev,
1333 "failed to send nvm write sequence\n");
1334 return ret;
1335 }
1336 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */
1337 poll = 2000;
1338 timeout = 12000;
1339 } else {
1340 /* Send NVM read sequence */
1341 ret = regmap_write(data->regmap, BMP580_REG_CMD,
1342 BMP580_CMD_NVM_READ_SEQ_1);
1343 if (ret) {
1344 dev_err(data->dev,
1345 "failed to send nvm read sequence\n");
1346 return ret;
1347 }
1348 /* Datasheet says on 4.8.1.1 it takes approximately 200us */
1349 poll = 50;
1350 timeout = 400;
1351 }
1352 if (ret) {
1353 dev_err(data->dev, "failed to write command sequence\n");
1354 return -EIO;
1355 }
1356
1357 /* Wait until NVM is ready again */
1358 ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg,
1359 (reg & BMP580_STATUS_NVM_RDY_MASK),
1360 poll, timeout);
1361 if (ret) {
1362 dev_err(data->dev, "error checking nvm operation status\n");
1363 return ret;
1364 }
1365
1366 /* Check NVM error flags */
1367 if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) {
1368 dev_err(data->dev, "error processing nvm operation\n");
1369 return -EIO;
1370 }
1371
1372 return 0;
1373 }
1374
1375 /*
1376 * Contrary to previous sensors families, compensation algorithm is builtin.
1377 * We are only required to read the register raw data and adapt the ranges
1378 * for what is expected on IIO ABI.
1379 */
1380
bmp580_read_temp(struct bmp280_data * data,int * val,int * val2)1381 static int bmp580_read_temp(struct bmp280_data *data, int *val, int *val2)
1382 {
1383 s32 raw_temp;
1384 int ret;
1385
1386 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, data->buf,
1387 sizeof(data->buf));
1388 if (ret) {
1389 dev_err(data->dev, "failed to read temperature\n");
1390 return ret;
1391 }
1392
1393 raw_temp = get_unaligned_le24(data->buf);
1394 if (raw_temp == BMP580_TEMP_SKIPPED) {
1395 dev_err(data->dev, "reading temperature skipped\n");
1396 return -EIO;
1397 }
1398
1399 /*
1400 * Temperature is returned in Celsius degrees in fractional
1401 * form down 2^16. We rescale by x1000 to return millidegrees
1402 * Celsius to respect IIO ABI.
1403 */
1404 raw_temp = sign_extend32(raw_temp, 23);
1405 *val = ((s64)raw_temp * 1000) / (1 << 16);
1406 return IIO_VAL_INT;
1407 }
1408
bmp580_read_press(struct bmp280_data * data,int * val,int * val2)1409 static int bmp580_read_press(struct bmp280_data *data, int *val, int *val2)
1410 {
1411 u32 raw_press;
1412 int ret;
1413
1414 ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB, data->buf,
1415 sizeof(data->buf));
1416 if (ret) {
1417 dev_err(data->dev, "failed to read pressure\n");
1418 return ret;
1419 }
1420
1421 raw_press = get_unaligned_le24(data->buf);
1422 if (raw_press == BMP580_PRESS_SKIPPED) {
1423 dev_err(data->dev, "reading pressure skipped\n");
1424 return -EIO;
1425 }
1426 /*
1427 * Pressure is returned in Pascals in fractional form down 2^16.
1428 * We rescale /1000 to convert to kilopascal to respect IIO ABI.
1429 */
1430 *val = raw_press;
1431 *val2 = 64000; /* 2^6 * 1000 */
1432 return IIO_VAL_FRACTIONAL;
1433 }
1434
1435 static const int bmp580_odr_table[][2] = {
1436 [BMP580_ODR_240HZ] = {240, 0},
1437 [BMP580_ODR_218HZ] = {218, 0},
1438 [BMP580_ODR_199HZ] = {199, 0},
1439 [BMP580_ODR_179HZ] = {179, 0},
1440 [BMP580_ODR_160HZ] = {160, 0},
1441 [BMP580_ODR_149HZ] = {149, 0},
1442 [BMP580_ODR_140HZ] = {140, 0},
1443 [BMP580_ODR_129HZ] = {129, 0},
1444 [BMP580_ODR_120HZ] = {120, 0},
1445 [BMP580_ODR_110HZ] = {110, 0},
1446 [BMP580_ODR_100HZ] = {100, 0},
1447 [BMP580_ODR_89HZ] = {89, 0},
1448 [BMP580_ODR_80HZ] = {80, 0},
1449 [BMP580_ODR_70HZ] = {70, 0},
1450 [BMP580_ODR_60HZ] = {60, 0},
1451 [BMP580_ODR_50HZ] = {50, 0},
1452 [BMP580_ODR_45HZ] = {45, 0},
1453 [BMP580_ODR_40HZ] = {40, 0},
1454 [BMP580_ODR_35HZ] = {35, 0},
1455 [BMP580_ODR_30HZ] = {30, 0},
1456 [BMP580_ODR_25HZ] = {25, 0},
1457 [BMP580_ODR_20HZ] = {20, 0},
1458 [BMP580_ODR_15HZ] = {15, 0},
1459 [BMP580_ODR_10HZ] = {10, 0},
1460 [BMP580_ODR_5HZ] = {5, 0},
1461 [BMP580_ODR_4HZ] = {4, 0},
1462 [BMP580_ODR_3HZ] = {3, 0},
1463 [BMP580_ODR_2HZ] = {2, 0},
1464 [BMP580_ODR_1HZ] = {1, 0},
1465 [BMP580_ODR_0_5HZ] = {0, 500000},
1466 [BMP580_ODR_0_25HZ] = {0, 250000},
1467 [BMP580_ODR_0_125HZ] = {0, 125000},
1468 };
1469
1470 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 };
1471
bmp580_nvmem_read(void * priv,unsigned int offset,void * val,size_t bytes)1472 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val,
1473 size_t bytes)
1474 {
1475 struct bmp280_data *data = priv;
1476 u16 *dst = val;
1477 int ret, addr;
1478
1479 pm_runtime_get_sync(data->dev);
1480 mutex_lock(&data->lock);
1481
1482 /* Set sensor in standby mode */
1483 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1484 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1485 BMP580_ODR_DEEPSLEEP_DIS |
1486 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1487 if (ret) {
1488 dev_err(data->dev, "failed to change sensor to standby mode\n");
1489 goto exit;
1490 }
1491 /* Wait standby transition time */
1492 usleep_range(2500, 3000);
1493
1494 while (bytes >= sizeof(*dst)) {
1495 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)];
1496
1497 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR,
1498 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1499 if (ret) {
1500 dev_err(data->dev, "error writing nvm address\n");
1501 goto exit;
1502 }
1503
1504 ret = bmp580_nvm_operation(data, false);
1505 if (ret)
1506 goto exit;
1507
1508 ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB,
1509 &data->le16, sizeof(data->le16));
1510 if (ret) {
1511 dev_err(data->dev, "error reading nvm data regs\n");
1512 goto exit;
1513 }
1514
1515 *dst++ = le16_to_cpu(data->le16);
1516 bytes -= sizeof(*dst);
1517 offset += sizeof(*dst);
1518 }
1519 exit:
1520 /* Restore chip config */
1521 data->chip_info->chip_config(data);
1522 mutex_unlock(&data->lock);
1523 pm_runtime_mark_last_busy(data->dev);
1524 pm_runtime_put_autosuspend(data->dev);
1525 return ret;
1526 }
1527
bmp580_nvmem_write(void * priv,unsigned int offset,void * val,size_t bytes)1528 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val,
1529 size_t bytes)
1530 {
1531 struct bmp280_data *data = priv;
1532 u16 *buf = val;
1533 int ret, addr;
1534
1535 pm_runtime_get_sync(data->dev);
1536 mutex_lock(&data->lock);
1537
1538 /* Set sensor in standby mode */
1539 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1540 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1541 BMP580_ODR_DEEPSLEEP_DIS |
1542 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1543 if (ret) {
1544 dev_err(data->dev, "failed to change sensor to standby mode\n");
1545 goto exit;
1546 }
1547 /* Wait standby transition time */
1548 usleep_range(2500, 3000);
1549
1550 while (bytes >= sizeof(*buf)) {
1551 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)];
1552
1553 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR,
1554 BMP580_NVM_PROG_EN |
1555 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1556 if (ret) {
1557 dev_err(data->dev, "error writing nvm address\n");
1558 goto exit;
1559 }
1560 data->le16 = cpu_to_le16(*buf++);
1561
1562 ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB,
1563 &data->le16, sizeof(data->le16));
1564 if (ret) {
1565 dev_err(data->dev, "error writing LSB NVM data regs\n");
1566 goto exit;
1567 }
1568
1569 ret = bmp580_nvm_operation(data, true);
1570 if (ret)
1571 goto exit;
1572
1573 /* Disable programming mode bit */
1574 ret = regmap_update_bits(data->regmap, BMP580_REG_NVM_ADDR,
1575 BMP580_NVM_PROG_EN, 0);
1576 if (ret) {
1577 dev_err(data->dev, "error resetting nvm write\n");
1578 goto exit;
1579 }
1580
1581 bytes -= sizeof(*buf);
1582 offset += sizeof(*buf);
1583 }
1584 exit:
1585 /* Restore chip config */
1586 data->chip_info->chip_config(data);
1587 mutex_unlock(&data->lock);
1588 pm_runtime_mark_last_busy(data->dev);
1589 pm_runtime_put_autosuspend(data->dev);
1590 return ret;
1591 }
1592
bmp580_preinit(struct bmp280_data * data)1593 static int bmp580_preinit(struct bmp280_data *data)
1594 {
1595 struct nvmem_config config = {
1596 .dev = data->dev,
1597 .priv = data,
1598 .name = "bmp580_nvmem",
1599 .word_size = sizeof(u16),
1600 .stride = sizeof(u16),
1601 .size = 3 * sizeof(u16),
1602 .reg_read = bmp580_nvmem_read,
1603 .reg_write = bmp580_nvmem_write,
1604 };
1605 unsigned int reg;
1606 int ret;
1607
1608 /* Issue soft-reset command */
1609 ret = bmp580_soft_reset(data);
1610 if (ret)
1611 return ret;
1612
1613 /* Post powerup sequence */
1614 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®);
1615 if (ret)
1616 return ret;
1617
1618 /* Print warn message if we don't know the chip id */
1619 if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT)
1620 dev_warn(data->dev, "preinit: unexpected chip_id\n");
1621
1622 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®);
1623 if (ret)
1624 return ret;
1625
1626 /* Check nvm status */
1627 if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) {
1628 dev_err(data->dev, "preinit: nvm error on powerup sequence\n");
1629 return -EIO;
1630 }
1631
1632 /* Register nvmem device */
1633 return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config));
1634 }
1635
bmp580_chip_config(struct bmp280_data * data)1636 static int bmp580_chip_config(struct bmp280_data *data)
1637 {
1638 bool change = false, aux;
1639 unsigned int tmp;
1640 u8 reg_val;
1641 int ret;
1642
1643 /* Sets sensor in standby mode */
1644 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1645 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1646 BMP580_ODR_DEEPSLEEP_DIS |
1647 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1648 if (ret) {
1649 dev_err(data->dev, "failed to change sensor to standby mode\n");
1650 return ret;
1651 }
1652 /* From datasheet's table 4: electrical characteristics */
1653 usleep_range(2500, 3000);
1654
1655 /* Set default DSP mode settings */
1656 reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) |
1657 BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN;
1658
1659 ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG,
1660 BMP580_DSP_COMP_MASK |
1661 BMP580_DSP_SHDW_IIR_TEMP_EN |
1662 BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val);
1663
1664 /* Configure oversampling */
1665 reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) |
1666 FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) |
1667 BMP580_OSR_PRESS_EN;
1668
1669 ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG,
1670 BMP580_OSR_TEMP_MASK |
1671 BMP580_OSR_PRESS_MASK |
1672 BMP580_OSR_PRESS_EN,
1673 reg_val, &aux);
1674 if (ret) {
1675 dev_err(data->dev, "failed to write oversampling register\n");
1676 return ret;
1677 }
1678 change = change || aux;
1679
1680 /* Configure output data rate */
1681 ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK,
1682 FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq),
1683 &aux);
1684 if (ret) {
1685 dev_err(data->dev, "failed to write ODR configuration register\n");
1686 return ret;
1687 }
1688 change = change || aux;
1689
1690 /* Set filter data */
1691 reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) |
1692 FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff);
1693
1694 ret = regmap_update_bits_check(data->regmap, BMP580_REG_DSP_IIR,
1695 BMP580_DSP_IIR_PRESS_MASK |
1696 BMP580_DSP_IIR_TEMP_MASK,
1697 reg_val, &aux);
1698 if (ret) {
1699 dev_err(data->dev, "failed to write config register\n");
1700 return ret;
1701 }
1702 change = change || aux;
1703
1704 /* Restore sensor to normal operation mode */
1705 ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1706 BMP580_MODE_MASK,
1707 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL));
1708 if (ret) {
1709 dev_err(data->dev, "failed to set normal mode\n");
1710 return ret;
1711 }
1712 /* From datasheet's table 4: electrical characteristics */
1713 usleep_range(3000, 3500);
1714
1715 if (change) {
1716 /*
1717 * Check if ODR and OSR settings are valid or we are
1718 * operating in a degraded mode.
1719 */
1720 ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp);
1721 if (ret) {
1722 dev_err(data->dev,
1723 "error reading effective OSR register\n");
1724 return ret;
1725 }
1726 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) {
1727 dev_warn(data->dev, "OSR and ODR incompatible settings detected\n");
1728 /* Set current OSR settings from data on effective OSR */
1729 data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp);
1730 data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp);
1731 return -EINVAL;
1732 }
1733 }
1734
1735 return 0;
1736 }
1737
1738 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 };
1739 static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT };
1740
1741 const struct bmp280_chip_info bmp580_chip_info = {
1742 .id_reg = BMP580_REG_CHIP_ID,
1743 .chip_id = bmp580_chip_ids,
1744 .num_chip_id = ARRAY_SIZE(bmp580_chip_ids),
1745 .regmap_config = &bmp580_regmap_config,
1746 .start_up_time = 2000,
1747 .channels = bmp380_channels,
1748 .num_channels = 2,
1749
1750 .oversampling_temp_avail = bmp580_oversampling_avail,
1751 .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1752 .oversampling_temp_default = ilog2(1),
1753
1754 .oversampling_press_avail = bmp580_oversampling_avail,
1755 .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1756 .oversampling_press_default = ilog2(4),
1757
1758 .sampling_freq_avail = bmp580_odr_table,
1759 .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2,
1760 .sampling_freq_default = BMP580_ODR_50HZ,
1761
1762 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1763 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1764 .iir_filter_coeff_default = 2,
1765
1766 .chip_config = bmp580_chip_config,
1767 .read_temp = bmp580_read_temp,
1768 .read_press = bmp580_read_press,
1769 .preinit = bmp580_preinit,
1770 };
1771 EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280);
1772
bmp180_measure(struct bmp280_data * data,u8 ctrl_meas)1773 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
1774 {
1775 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
1776 unsigned int delay_us;
1777 unsigned int ctrl;
1778 int ret;
1779
1780 if (data->use_eoc)
1781 reinit_completion(&data->done);
1782
1783 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
1784 if (ret)
1785 return ret;
1786
1787 if (data->use_eoc) {
1788 /*
1789 * If we have a completion interrupt, use it, wait up to
1790 * 100ms. The longest conversion time listed is 76.5 ms for
1791 * advanced resolution mode.
1792 */
1793 ret = wait_for_completion_timeout(&data->done,
1794 1 + msecs_to_jiffies(100));
1795 if (!ret)
1796 dev_err(data->dev, "timeout waiting for completion\n");
1797 } else {
1798 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP)
1799 delay_us = 4500;
1800 else
1801 delay_us =
1802 conversion_time_max[data->oversampling_press];
1803
1804 usleep_range(delay_us, delay_us + 1000);
1805 }
1806
1807 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
1808 if (ret)
1809 return ret;
1810
1811 /* The value of this bit reset to "0" after conversion is complete */
1812 if (ctrl & BMP180_MEAS_SCO)
1813 return -EIO;
1814
1815 return 0;
1816 }
1817
bmp180_read_adc_temp(struct bmp280_data * data,int * val)1818 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
1819 {
1820 int ret;
1821
1822 ret = bmp180_measure(data,
1823 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) |
1824 BMP180_MEAS_SCO);
1825 if (ret)
1826 return ret;
1827
1828 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
1829 &data->be16, sizeof(data->be16));
1830 if (ret)
1831 return ret;
1832
1833 *val = be16_to_cpu(data->be16);
1834
1835 return 0;
1836 }
1837
bmp180_read_calib(struct bmp280_data * data)1838 static int bmp180_read_calib(struct bmp280_data *data)
1839 {
1840 struct bmp180_calib *calib = &data->calib.bmp180;
1841 int ret;
1842 int i;
1843
1844 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START,
1845 data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf));
1846
1847 if (ret < 0)
1848 return ret;
1849
1850 /* None of the words has the value 0 or 0xFFFF */
1851 for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) {
1852 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) ||
1853 data->bmp180_cal_buf[i] == cpu_to_be16(0xffff))
1854 return -EIO;
1855 }
1856
1857 /* Toss the calibration data into the entropy pool */
1858 add_device_randomness(data->bmp180_cal_buf,
1859 sizeof(data->bmp180_cal_buf));
1860
1861 calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]);
1862 calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]);
1863 calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]);
1864 calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]);
1865 calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]);
1866 calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]);
1867 calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]);
1868 calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]);
1869 calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]);
1870 calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]);
1871 calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]);
1872
1873 return 0;
1874 }
1875
1876 /*
1877 * Returns temperature in DegC, resolution is 0.1 DegC.
1878 * t_fine carries fine temperature as global value.
1879 *
1880 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1881 */
bmp180_compensate_temp(struct bmp280_data * data,s32 adc_temp)1882 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
1883 {
1884 struct bmp180_calib *calib = &data->calib.bmp180;
1885 s32 x1, x2;
1886
1887 x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
1888 x2 = (calib->MC << 11) / (x1 + calib->MD);
1889 data->t_fine = x1 + x2;
1890
1891 return (data->t_fine + 8) >> 4;
1892 }
1893
bmp180_read_temp(struct bmp280_data * data,int * val,int * val2)1894 static int bmp180_read_temp(struct bmp280_data *data, int *val, int *val2)
1895 {
1896 s32 adc_temp, comp_temp;
1897 int ret;
1898
1899 ret = bmp180_read_adc_temp(data, &adc_temp);
1900 if (ret)
1901 return ret;
1902
1903 comp_temp = bmp180_compensate_temp(data, adc_temp);
1904
1905 /*
1906 * val might be NULL if we're called by the read_press routine,
1907 * who only cares about the carry over t_fine value.
1908 */
1909 if (val) {
1910 *val = comp_temp * 100;
1911 return IIO_VAL_INT;
1912 }
1913
1914 return 0;
1915 }
1916
bmp180_read_adc_press(struct bmp280_data * data,int * val)1917 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
1918 {
1919 u8 oss = data->oversampling_press;
1920 int ret;
1921
1922 ret = bmp180_measure(data,
1923 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) |
1924 FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) |
1925 BMP180_MEAS_SCO);
1926 if (ret)
1927 return ret;
1928
1929 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
1930 data->buf, sizeof(data->buf));
1931 if (ret)
1932 return ret;
1933
1934 *val = get_unaligned_be24(data->buf) >> (8 - oss);
1935
1936 return 0;
1937 }
1938
1939 /*
1940 * Returns pressure in Pa, resolution is 1 Pa.
1941 *
1942 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1943 */
bmp180_compensate_press(struct bmp280_data * data,s32 adc_press)1944 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
1945 {
1946 struct bmp180_calib *calib = &data->calib.bmp180;
1947 s32 oss = data->oversampling_press;
1948 s32 x1, x2, x3, p;
1949 s32 b3, b6;
1950 u32 b4, b7;
1951
1952 b6 = data->t_fine - 4000;
1953 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
1954 x2 = calib->AC2 * b6 >> 11;
1955 x3 = x1 + x2;
1956 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
1957 x1 = calib->AC3 * b6 >> 13;
1958 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
1959 x3 = (x1 + x2 + 2) >> 2;
1960 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
1961 b7 = ((u32)adc_press - b3) * (50000 >> oss);
1962 if (b7 < 0x80000000)
1963 p = (b7 * 2) / b4;
1964 else
1965 p = (b7 / b4) * 2;
1966
1967 x1 = (p >> 8) * (p >> 8);
1968 x1 = (x1 * 3038) >> 16;
1969 x2 = (-7357 * p) >> 16;
1970
1971 return p + ((x1 + x2 + 3791) >> 4);
1972 }
1973
bmp180_read_press(struct bmp280_data * data,int * val,int * val2)1974 static int bmp180_read_press(struct bmp280_data *data, int *val, int *val2)
1975 {
1976 u32 comp_press;
1977 s32 adc_press;
1978 int ret;
1979
1980 /* Read and compensate temperature so we get a reading of t_fine. */
1981 ret = bmp180_read_temp(data, NULL, NULL);
1982 if (ret)
1983 return ret;
1984
1985 ret = bmp180_read_adc_press(data, &adc_press);
1986 if (ret)
1987 return ret;
1988
1989 comp_press = bmp180_compensate_press(data, adc_press);
1990
1991 *val = comp_press;
1992 *val2 = 1000;
1993
1994 return IIO_VAL_FRACTIONAL;
1995 }
1996
bmp180_chip_config(struct bmp280_data * data)1997 static int bmp180_chip_config(struct bmp280_data *data)
1998 {
1999 return 0;
2000 }
2001
2002 static const int bmp180_oversampling_temp_avail[] = { 1 };
2003 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
2004 static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID };
2005
2006 const struct bmp280_chip_info bmp180_chip_info = {
2007 .id_reg = BMP280_REG_ID,
2008 .chip_id = bmp180_chip_ids,
2009 .num_chip_id = ARRAY_SIZE(bmp180_chip_ids),
2010 .regmap_config = &bmp180_regmap_config,
2011 .start_up_time = 2000,
2012 .channels = bmp280_channels,
2013 .num_channels = 2,
2014
2015 .oversampling_temp_avail = bmp180_oversampling_temp_avail,
2016 .num_oversampling_temp_avail =
2017 ARRAY_SIZE(bmp180_oversampling_temp_avail),
2018 .oversampling_temp_default = 0,
2019
2020 .oversampling_press_avail = bmp180_oversampling_press_avail,
2021 .num_oversampling_press_avail =
2022 ARRAY_SIZE(bmp180_oversampling_press_avail),
2023 .oversampling_press_default = BMP180_MEAS_PRESS_8X,
2024
2025 .chip_config = bmp180_chip_config,
2026 .read_temp = bmp180_read_temp,
2027 .read_press = bmp180_read_press,
2028 .read_calib = bmp180_read_calib,
2029 };
2030 EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280);
2031
bmp085_eoc_irq(int irq,void * d)2032 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
2033 {
2034 struct bmp280_data *data = d;
2035
2036 complete(&data->done);
2037
2038 return IRQ_HANDLED;
2039 }
2040
bmp085_fetch_eoc_irq(struct device * dev,const char * name,int irq,struct bmp280_data * data)2041 static int bmp085_fetch_eoc_irq(struct device *dev,
2042 const char *name,
2043 int irq,
2044 struct bmp280_data *data)
2045 {
2046 unsigned long irq_trig;
2047 int ret;
2048
2049 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
2050 if (irq_trig != IRQF_TRIGGER_RISING) {
2051 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
2052 irq_trig = IRQF_TRIGGER_RISING;
2053 }
2054
2055 init_completion(&data->done);
2056
2057 ret = devm_request_threaded_irq(dev,
2058 irq,
2059 bmp085_eoc_irq,
2060 NULL,
2061 irq_trig,
2062 name,
2063 data);
2064 if (ret) {
2065 /* Bail out without IRQ but keep the driver in place */
2066 dev_err(dev, "unable to request DRDY IRQ\n");
2067 return 0;
2068 }
2069
2070 data->use_eoc = true;
2071 return 0;
2072 }
2073
bmp280_pm_disable(void * data)2074 static void bmp280_pm_disable(void *data)
2075 {
2076 struct device *dev = data;
2077
2078 pm_runtime_get_sync(dev);
2079 pm_runtime_put_noidle(dev);
2080 pm_runtime_disable(dev);
2081 }
2082
bmp280_regulators_disable(void * data)2083 static void bmp280_regulators_disable(void *data)
2084 {
2085 struct regulator_bulk_data *supplies = data;
2086
2087 regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
2088 }
2089
bmp280_common_probe(struct device * dev,struct regmap * regmap,const struct bmp280_chip_info * chip_info,const char * name,int irq)2090 int bmp280_common_probe(struct device *dev,
2091 struct regmap *regmap,
2092 const struct bmp280_chip_info *chip_info,
2093 const char *name,
2094 int irq)
2095 {
2096 struct iio_dev *indio_dev;
2097 struct bmp280_data *data;
2098 struct gpio_desc *gpiod;
2099 unsigned int chip_id;
2100 unsigned int i;
2101 int ret;
2102
2103 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
2104 if (!indio_dev)
2105 return -ENOMEM;
2106
2107 data = iio_priv(indio_dev);
2108 mutex_init(&data->lock);
2109 data->dev = dev;
2110
2111 indio_dev->name = name;
2112 indio_dev->info = &bmp280_info;
2113 indio_dev->modes = INDIO_DIRECT_MODE;
2114
2115 data->chip_info = chip_info;
2116
2117 /* Apply initial values from chip info structure */
2118 indio_dev->channels = chip_info->channels;
2119 indio_dev->num_channels = chip_info->num_channels;
2120 data->oversampling_press = chip_info->oversampling_press_default;
2121 data->oversampling_humid = chip_info->oversampling_humid_default;
2122 data->oversampling_temp = chip_info->oversampling_temp_default;
2123 data->iir_filter_coeff = chip_info->iir_filter_coeff_default;
2124 data->sampling_freq = chip_info->sampling_freq_default;
2125 data->start_up_time = chip_info->start_up_time;
2126
2127 /* Bring up regulators */
2128 regulator_bulk_set_supply_names(data->supplies,
2129 bmp280_supply_names,
2130 BMP280_NUM_SUPPLIES);
2131
2132 ret = devm_regulator_bulk_get(dev,
2133 BMP280_NUM_SUPPLIES, data->supplies);
2134 if (ret) {
2135 dev_err(dev, "failed to get regulators\n");
2136 return ret;
2137 }
2138
2139 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
2140 if (ret) {
2141 dev_err(dev, "failed to enable regulators\n");
2142 return ret;
2143 }
2144
2145 ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
2146 data->supplies);
2147 if (ret)
2148 return ret;
2149
2150 /* Wait to make sure we started up properly */
2151 usleep_range(data->start_up_time, data->start_up_time + 100);
2152
2153 /* Bring chip out of reset if there is an assigned GPIO line */
2154 gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
2155 /* Deassert the signal */
2156 if (gpiod) {
2157 dev_info(dev, "release reset\n");
2158 gpiod_set_value(gpiod, 0);
2159 }
2160
2161 data->regmap = regmap;
2162
2163 ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id);
2164 if (ret < 0)
2165 return ret;
2166
2167 for (i = 0; i < data->chip_info->num_chip_id; i++) {
2168 if (chip_id == data->chip_info->chip_id[i]) {
2169 dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name);
2170 break;
2171 }
2172 }
2173
2174 if (i == data->chip_info->num_chip_id)
2175 dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id);
2176
2177 if (data->chip_info->preinit) {
2178 ret = data->chip_info->preinit(data);
2179 if (ret)
2180 return dev_err_probe(data->dev, ret,
2181 "error running preinit tasks\n");
2182 }
2183
2184 ret = data->chip_info->chip_config(data);
2185 if (ret < 0)
2186 return ret;
2187
2188 dev_set_drvdata(dev, indio_dev);
2189
2190 /*
2191 * Some chips have calibration parameters "programmed into the devices'
2192 * non-volatile memory during production". Let's read them out at probe
2193 * time once. They will not change.
2194 */
2195
2196 if (data->chip_info->read_calib) {
2197 ret = data->chip_info->read_calib(data);
2198 if (ret < 0)
2199 return dev_err_probe(data->dev, ret,
2200 "failed to read calibration coefficients\n");
2201 }
2202
2203 /*
2204 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
2205 * however as it happens, the BMP085 shares the chip ID of BMP180
2206 * so we look for an IRQ if we have that.
2207 */
2208 if (irq > 0 && (chip_id == BMP180_CHIP_ID)) {
2209 ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
2210 if (ret)
2211 return ret;
2212 }
2213
2214 /* Enable runtime PM */
2215 pm_runtime_get_noresume(dev);
2216 pm_runtime_set_active(dev);
2217 pm_runtime_enable(dev);
2218 /*
2219 * Set autosuspend to two orders of magnitude larger than the
2220 * start-up time.
2221 */
2222 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
2223 pm_runtime_use_autosuspend(dev);
2224 pm_runtime_put(dev);
2225
2226 ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
2227 if (ret)
2228 return ret;
2229
2230 return devm_iio_device_register(dev, indio_dev);
2231 }
2232 EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280);
2233
bmp280_runtime_suspend(struct device * dev)2234 static int bmp280_runtime_suspend(struct device *dev)
2235 {
2236 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2237 struct bmp280_data *data = iio_priv(indio_dev);
2238
2239 return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
2240 }
2241
bmp280_runtime_resume(struct device * dev)2242 static int bmp280_runtime_resume(struct device *dev)
2243 {
2244 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2245 struct bmp280_data *data = iio_priv(indio_dev);
2246 int ret;
2247
2248 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
2249 if (ret)
2250 return ret;
2251
2252 usleep_range(data->start_up_time, data->start_up_time + 100);
2253 return data->chip_info->chip_config(data);
2254 }
2255
2256 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend,
2257 bmp280_runtime_resume, NULL);
2258
2259 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
2260 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
2261 MODULE_LICENSE("GPL v2");
2262