xref: /openbmc/linux/drivers/net/phy/bcm54140.c (revision 211f70be)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Broadcom BCM54140 Quad SGMII/QSGMII Copper/Fiber Gigabit PHY
3  *
4  * Copyright (c) 2020 Michael Walle <michael@walle.cc>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/brcmphy.h>
9 #include <linux/hwmon.h>
10 #include <linux/module.h>
11 #include <linux/phy.h>
12 
13 #include "bcm-phy-lib.h"
14 
15 /* RDB per-port registers
16  */
17 #define BCM54140_RDB_ISR		0x00a	/* interrupt status */
18 #define BCM54140_RDB_IMR		0x00b	/* interrupt mask */
19 #define  BCM54140_RDB_INT_LINK		BIT(1)	/* link status changed */
20 #define  BCM54140_RDB_INT_SPEED		BIT(2)	/* link speed change */
21 #define  BCM54140_RDB_INT_DUPLEX	BIT(3)	/* duplex mode changed */
22 #define BCM54140_RDB_SPARE1		0x012	/* spare control 1 */
23 #define  BCM54140_RDB_SPARE1_LSLM	BIT(2)	/* link speed LED mode */
24 #define BCM54140_RDB_SPARE2		0x014	/* spare control 2 */
25 #define  BCM54140_RDB_SPARE2_WS_RTRY_DIS BIT(8) /* wirespeed retry disable */
26 #define  BCM54140_RDB_SPARE2_WS_RTRY_LIMIT GENMASK(4, 2) /* retry limit */
27 #define BCM54140_RDB_SPARE3		0x015	/* spare control 3 */
28 #define  BCM54140_RDB_SPARE3_BIT0	BIT(0)
29 #define BCM54140_RDB_LED_CTRL		0x019	/* LED control */
30 #define  BCM54140_RDB_LED_CTRL_ACTLINK0	BIT(4)
31 #define  BCM54140_RDB_LED_CTRL_ACTLINK1	BIT(8)
32 #define BCM54140_RDB_C_APWR		0x01a	/* auto power down control */
33 #define  BCM54140_RDB_C_APWR_SINGLE_PULSE	BIT(8)	/* single pulse */
34 #define  BCM54140_RDB_C_APWR_APD_MODE_DIS	0 /* ADP disable */
35 #define  BCM54140_RDB_C_APWR_APD_MODE_EN	1 /* ADP enable */
36 #define  BCM54140_RDB_C_APWR_APD_MODE_DIS2	2 /* ADP disable */
37 #define  BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG	3 /* ADP enable w/ aneg */
38 #define  BCM54140_RDB_C_APWR_APD_MODE_MASK	GENMASK(6, 5)
39 #define  BCM54140_RDB_C_APWR_SLP_TIM_MASK BIT(4)/* sleep timer */
40 #define  BCM54140_RDB_C_APWR_SLP_TIM_2_7 0	/* 2.7s */
41 #define  BCM54140_RDB_C_APWR_SLP_TIM_5_4 1	/* 5.4s */
42 #define BCM54140_RDB_C_PWR		0x02a	/* copper power control */
43 #define  BCM54140_RDB_C_PWR_ISOLATE	BIT(5)	/* super isolate mode */
44 #define BCM54140_RDB_C_MISC_CTRL	0x02f	/* misc copper control */
45 #define  BCM54140_RDB_C_MISC_CTRL_WS_EN BIT(4)	/* wirespeed enable */
46 
47 /* RDB global registers
48  */
49 #define BCM54140_RDB_TOP_IMR		0x82d	/* interrupt mask */
50 #define  BCM54140_RDB_TOP_IMR_PORT0	BIT(4)
51 #define  BCM54140_RDB_TOP_IMR_PORT1	BIT(5)
52 #define  BCM54140_RDB_TOP_IMR_PORT2	BIT(6)
53 #define  BCM54140_RDB_TOP_IMR_PORT3	BIT(7)
54 #define BCM54140_RDB_MON_CTRL		0x831	/* monitor control */
55 #define  BCM54140_RDB_MON_CTRL_V_MODE	BIT(3)	/* voltage mode */
56 #define  BCM54140_RDB_MON_CTRL_SEL_MASK	GENMASK(2, 1)
57 #define  BCM54140_RDB_MON_CTRL_SEL_TEMP	0	/* meassure temperature */
58 #define  BCM54140_RDB_MON_CTRL_SEL_1V0	1	/* meassure AVDDL 1.0V */
59 #define  BCM54140_RDB_MON_CTRL_SEL_3V3	2	/* meassure AVDDH 3.3V */
60 #define  BCM54140_RDB_MON_CTRL_SEL_RR	3	/* meassure all round-robin */
61 #define  BCM54140_RDB_MON_CTRL_PWR_DOWN	BIT(0)	/* power-down monitor */
62 #define BCM54140_RDB_MON_TEMP_VAL	0x832	/* temperature value */
63 #define BCM54140_RDB_MON_TEMP_MAX	0x833	/* temperature high thresh */
64 #define BCM54140_RDB_MON_TEMP_MIN	0x834	/* temperature low thresh */
65 #define  BCM54140_RDB_MON_TEMP_DATA_MASK GENMASK(9, 0)
66 #define BCM54140_RDB_MON_1V0_VAL	0x835	/* AVDDL 1.0V value */
67 #define BCM54140_RDB_MON_1V0_MAX	0x836	/* AVDDL 1.0V high thresh */
68 #define BCM54140_RDB_MON_1V0_MIN	0x837	/* AVDDL 1.0V low thresh */
69 #define  BCM54140_RDB_MON_1V0_DATA_MASK	GENMASK(10, 0)
70 #define BCM54140_RDB_MON_3V3_VAL	0x838	/* AVDDH 3.3V value */
71 #define BCM54140_RDB_MON_3V3_MAX	0x839	/* AVDDH 3.3V high thresh */
72 #define BCM54140_RDB_MON_3V3_MIN	0x83a	/* AVDDH 3.3V low thresh */
73 #define  BCM54140_RDB_MON_3V3_DATA_MASK	GENMASK(11, 0)
74 #define BCM54140_RDB_MON_ISR		0x83b	/* interrupt status */
75 #define  BCM54140_RDB_MON_ISR_3V3	BIT(2)	/* AVDDH 3.3V alarm */
76 #define  BCM54140_RDB_MON_ISR_1V0	BIT(1)	/* AVDDL 1.0V alarm */
77 #define  BCM54140_RDB_MON_ISR_TEMP	BIT(0)	/* temperature alarm */
78 
79 /* According to the datasheet the formula is:
80  *   T = 413.35 - (0.49055 * bits[9:0])
81  */
82 #define BCM54140_HWMON_TO_TEMP(v) (413350L - (v) * 491)
83 #define BCM54140_HWMON_FROM_TEMP(v) DIV_ROUND_CLOSEST_ULL(413350L - (v), 491)
84 
85 /* According to the datasheet the formula is:
86  *   U = bits[11:0] / 1024 * 220 / 0.2
87  *
88  * Normalized:
89  *   U = bits[11:0] / 4096 * 2514
90  */
91 #define BCM54140_HWMON_TO_IN_1V0(v) ((v) * 2514 >> 11)
92 #define BCM54140_HWMON_FROM_IN_1V0(v) DIV_ROUND_CLOSEST_ULL(((v) << 11), 2514)
93 
94 /* According to the datasheet the formula is:
95  *   U = bits[10:0] / 1024 * 880 / 0.7
96  *
97  * Normalized:
98  *   U = bits[10:0] / 2048 * 4400
99  */
100 #define BCM54140_HWMON_TO_IN_3V3(v) ((v) * 4400 >> 12)
101 #define BCM54140_HWMON_FROM_IN_3V3(v) DIV_ROUND_CLOSEST_ULL(((v) << 12), 4400)
102 
103 #define BCM54140_HWMON_TO_IN(ch, v) ((ch) ? BCM54140_HWMON_TO_IN_3V3(v) \
104 					  : BCM54140_HWMON_TO_IN_1V0(v))
105 #define BCM54140_HWMON_FROM_IN(ch, v) ((ch) ? BCM54140_HWMON_FROM_IN_3V3(v) \
106 					    : BCM54140_HWMON_FROM_IN_1V0(v))
107 #define BCM54140_HWMON_IN_MASK(ch) ((ch) ? BCM54140_RDB_MON_3V3_DATA_MASK \
108 					 : BCM54140_RDB_MON_1V0_DATA_MASK)
109 #define BCM54140_HWMON_IN_VAL_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_VAL \
110 					    : BCM54140_RDB_MON_1V0_VAL)
111 #define BCM54140_HWMON_IN_MIN_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MIN \
112 					    : BCM54140_RDB_MON_1V0_MIN)
113 #define BCM54140_HWMON_IN_MAX_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MAX \
114 					    : BCM54140_RDB_MON_1V0_MAX)
115 #define BCM54140_HWMON_IN_ALARM_BIT(ch) ((ch) ? BCM54140_RDB_MON_ISR_3V3 \
116 					      : BCM54140_RDB_MON_ISR_1V0)
117 
118 /* This PHY has two different PHY IDs depening on its MODE_SEL pin. This
119  * pin choses between 4x SGMII and QSGMII mode:
120  *   AE02_5009 4x SGMII
121  *   AE02_5019 QSGMII
122  */
123 #define BCM54140_PHY_ID_MASK	0xffffffe8
124 
125 #define BCM54140_PHY_ID_REV(phy_id)	((phy_id) & 0x7)
126 #define BCM54140_REV_B0			1
127 
128 #define BCM54140_DEFAULT_DOWNSHIFT 5
129 #define BCM54140_MAX_DOWNSHIFT 9
130 
131 struct bcm54140_priv {
132 	int port;
133 	int base_addr;
134 #if IS_ENABLED(CONFIG_HWMON)
135 	/* protect the alarm bits */
136 	struct mutex alarm_lock;
137 	u16 alarm;
138 #endif
139 };
140 
141 #if IS_ENABLED(CONFIG_HWMON)
bcm54140_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)142 static umode_t bcm54140_hwmon_is_visible(const void *data,
143 					 enum hwmon_sensor_types type,
144 					 u32 attr, int channel)
145 {
146 	switch (type) {
147 	case hwmon_in:
148 		switch (attr) {
149 		case hwmon_in_min:
150 		case hwmon_in_max:
151 			return 0644;
152 		case hwmon_in_label:
153 		case hwmon_in_input:
154 		case hwmon_in_alarm:
155 			return 0444;
156 		default:
157 			return 0;
158 		}
159 	case hwmon_temp:
160 		switch (attr) {
161 		case hwmon_temp_min:
162 		case hwmon_temp_max:
163 			return 0644;
164 		case hwmon_temp_input:
165 		case hwmon_temp_alarm:
166 			return 0444;
167 		default:
168 			return 0;
169 		}
170 	default:
171 		return 0;
172 	}
173 }
174 
bcm54140_hwmon_read_alarm(struct device * dev,unsigned int bit,long * val)175 static int bcm54140_hwmon_read_alarm(struct device *dev, unsigned int bit,
176 				     long *val)
177 {
178 	struct phy_device *phydev = dev_get_drvdata(dev);
179 	struct bcm54140_priv *priv = phydev->priv;
180 	int tmp, ret = 0;
181 
182 	mutex_lock(&priv->alarm_lock);
183 
184 	/* latch any alarm bits */
185 	tmp = bcm_phy_read_rdb(phydev, BCM54140_RDB_MON_ISR);
186 	if (tmp < 0) {
187 		ret = tmp;
188 		goto out;
189 	}
190 	priv->alarm |= tmp;
191 
192 	*val = !!(priv->alarm & bit);
193 	priv->alarm &= ~bit;
194 
195 out:
196 	mutex_unlock(&priv->alarm_lock);
197 	return ret;
198 }
199 
bcm54140_hwmon_read_temp(struct device * dev,u32 attr,long * val)200 static int bcm54140_hwmon_read_temp(struct device *dev, u32 attr, long *val)
201 {
202 	struct phy_device *phydev = dev_get_drvdata(dev);
203 	u16 reg;
204 	int tmp;
205 
206 	switch (attr) {
207 	case hwmon_temp_input:
208 		reg = BCM54140_RDB_MON_TEMP_VAL;
209 		break;
210 	case hwmon_temp_min:
211 		reg = BCM54140_RDB_MON_TEMP_MIN;
212 		break;
213 	case hwmon_temp_max:
214 		reg = BCM54140_RDB_MON_TEMP_MAX;
215 		break;
216 	case hwmon_temp_alarm:
217 		return bcm54140_hwmon_read_alarm(dev,
218 						 BCM54140_RDB_MON_ISR_TEMP,
219 						 val);
220 	default:
221 		return -EOPNOTSUPP;
222 	}
223 
224 	tmp = bcm_phy_read_rdb(phydev, reg);
225 	if (tmp < 0)
226 		return tmp;
227 
228 	*val = BCM54140_HWMON_TO_TEMP(tmp & BCM54140_RDB_MON_TEMP_DATA_MASK);
229 
230 	return 0;
231 }
232 
bcm54140_hwmon_read_in(struct device * dev,u32 attr,int channel,long * val)233 static int bcm54140_hwmon_read_in(struct device *dev, u32 attr,
234 				  int channel, long *val)
235 {
236 	struct phy_device *phydev = dev_get_drvdata(dev);
237 	u16 bit, reg;
238 	int tmp;
239 
240 	switch (attr) {
241 	case hwmon_in_input:
242 		reg = BCM54140_HWMON_IN_VAL_REG(channel);
243 		break;
244 	case hwmon_in_min:
245 		reg = BCM54140_HWMON_IN_MIN_REG(channel);
246 		break;
247 	case hwmon_in_max:
248 		reg = BCM54140_HWMON_IN_MAX_REG(channel);
249 		break;
250 	case hwmon_in_alarm:
251 		bit = BCM54140_HWMON_IN_ALARM_BIT(channel);
252 		return bcm54140_hwmon_read_alarm(dev, bit, val);
253 	default:
254 		return -EOPNOTSUPP;
255 	}
256 
257 	tmp = bcm_phy_read_rdb(phydev, reg);
258 	if (tmp < 0)
259 		return tmp;
260 
261 	tmp &= BCM54140_HWMON_IN_MASK(channel);
262 	*val = BCM54140_HWMON_TO_IN(channel, tmp);
263 
264 	return 0;
265 }
266 
bcm54140_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)267 static int bcm54140_hwmon_read(struct device *dev,
268 			       enum hwmon_sensor_types type, u32 attr,
269 			       int channel, long *val)
270 {
271 	switch (type) {
272 	case hwmon_temp:
273 		return bcm54140_hwmon_read_temp(dev, attr, val);
274 	case hwmon_in:
275 		return bcm54140_hwmon_read_in(dev, attr, channel, val);
276 	default:
277 		return -EOPNOTSUPP;
278 	}
279 }
280 
281 static const char *const bcm54140_hwmon_in_labels[] = {
282 	"AVDDL",
283 	"AVDDH",
284 };
285 
bcm54140_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)286 static int bcm54140_hwmon_read_string(struct device *dev,
287 				      enum hwmon_sensor_types type, u32 attr,
288 				      int channel, const char **str)
289 {
290 	switch (type) {
291 	case hwmon_in:
292 		switch (attr) {
293 		case hwmon_in_label:
294 			*str = bcm54140_hwmon_in_labels[channel];
295 			return 0;
296 		default:
297 			return -EOPNOTSUPP;
298 		}
299 	default:
300 		return -EOPNOTSUPP;
301 	}
302 }
303 
bcm54140_hwmon_write_temp(struct device * dev,u32 attr,int channel,long val)304 static int bcm54140_hwmon_write_temp(struct device *dev, u32 attr,
305 				     int channel, long val)
306 {
307 	struct phy_device *phydev = dev_get_drvdata(dev);
308 	u16 mask = BCM54140_RDB_MON_TEMP_DATA_MASK;
309 	u16 reg;
310 
311 	val = clamp_val(val, BCM54140_HWMON_TO_TEMP(mask),
312 			BCM54140_HWMON_TO_TEMP(0));
313 
314 	switch (attr) {
315 	case hwmon_temp_min:
316 		reg = BCM54140_RDB_MON_TEMP_MIN;
317 		break;
318 	case hwmon_temp_max:
319 		reg = BCM54140_RDB_MON_TEMP_MAX;
320 		break;
321 	default:
322 		return -EOPNOTSUPP;
323 	}
324 
325 	return bcm_phy_modify_rdb(phydev, reg, mask,
326 				  BCM54140_HWMON_FROM_TEMP(val));
327 }
328 
bcm54140_hwmon_write_in(struct device * dev,u32 attr,int channel,long val)329 static int bcm54140_hwmon_write_in(struct device *dev, u32 attr,
330 				   int channel, long val)
331 {
332 	struct phy_device *phydev = dev_get_drvdata(dev);
333 	u16 mask = BCM54140_HWMON_IN_MASK(channel);
334 	u16 reg;
335 
336 	val = clamp_val(val, 0, BCM54140_HWMON_TO_IN(channel, mask));
337 
338 	switch (attr) {
339 	case hwmon_in_min:
340 		reg = BCM54140_HWMON_IN_MIN_REG(channel);
341 		break;
342 	case hwmon_in_max:
343 		reg = BCM54140_HWMON_IN_MAX_REG(channel);
344 		break;
345 	default:
346 		return -EOPNOTSUPP;
347 	}
348 
349 	return bcm_phy_modify_rdb(phydev, reg, mask,
350 				  BCM54140_HWMON_FROM_IN(channel, val));
351 }
352 
bcm54140_hwmon_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)353 static int bcm54140_hwmon_write(struct device *dev,
354 				enum hwmon_sensor_types type, u32 attr,
355 				int channel, long val)
356 {
357 	switch (type) {
358 	case hwmon_temp:
359 		return bcm54140_hwmon_write_temp(dev, attr, channel, val);
360 	case hwmon_in:
361 		return bcm54140_hwmon_write_in(dev, attr, channel, val);
362 	default:
363 		return -EOPNOTSUPP;
364 	}
365 }
366 
367 static const struct hwmon_channel_info * const bcm54140_hwmon_info[] = {
368 	HWMON_CHANNEL_INFO(temp,
369 			   HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
370 			   HWMON_T_ALARM),
371 	HWMON_CHANNEL_INFO(in,
372 			   HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
373 			   HWMON_I_ALARM | HWMON_I_LABEL,
374 			   HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
375 			   HWMON_I_ALARM | HWMON_I_LABEL),
376 	NULL
377 };
378 
379 static const struct hwmon_ops bcm54140_hwmon_ops = {
380 	.is_visible = bcm54140_hwmon_is_visible,
381 	.read = bcm54140_hwmon_read,
382 	.read_string = bcm54140_hwmon_read_string,
383 	.write = bcm54140_hwmon_write,
384 };
385 
386 static const struct hwmon_chip_info bcm54140_chip_info = {
387 	.ops = &bcm54140_hwmon_ops,
388 	.info = bcm54140_hwmon_info,
389 };
390 
bcm54140_enable_monitoring(struct phy_device * phydev)391 static int bcm54140_enable_monitoring(struct phy_device *phydev)
392 {
393 	u16 mask, set;
394 
395 	/* 3.3V voltage mode */
396 	set = BCM54140_RDB_MON_CTRL_V_MODE;
397 
398 	/* select round-robin */
399 	mask = BCM54140_RDB_MON_CTRL_SEL_MASK;
400 	set |= FIELD_PREP(BCM54140_RDB_MON_CTRL_SEL_MASK,
401 			  BCM54140_RDB_MON_CTRL_SEL_RR);
402 
403 	/* remove power-down bit */
404 	mask |= BCM54140_RDB_MON_CTRL_PWR_DOWN;
405 
406 	return bcm_phy_modify_rdb(phydev, BCM54140_RDB_MON_CTRL, mask, set);
407 }
408 
bcm54140_probe_once(struct phy_device * phydev)409 static int bcm54140_probe_once(struct phy_device *phydev)
410 {
411 	struct device *hwmon;
412 	int ret;
413 
414 	/* enable hardware monitoring */
415 	ret = bcm54140_enable_monitoring(phydev);
416 	if (ret)
417 		return ret;
418 
419 	hwmon = devm_hwmon_device_register_with_info(&phydev->mdio.dev,
420 						     "BCM54140", phydev,
421 						     &bcm54140_chip_info,
422 						     NULL);
423 	return PTR_ERR_OR_ZERO(hwmon);
424 }
425 #endif
426 
bcm54140_base_read_rdb(struct phy_device * phydev,u16 rdb)427 static int bcm54140_base_read_rdb(struct phy_device *phydev, u16 rdb)
428 {
429 	int ret;
430 
431 	phy_lock_mdio_bus(phydev);
432 	ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
433 	if (ret < 0)
434 		goto out;
435 
436 	ret = __phy_package_read(phydev, MII_BCM54XX_RDB_DATA);
437 
438 out:
439 	phy_unlock_mdio_bus(phydev);
440 	return ret;
441 }
442 
bcm54140_base_write_rdb(struct phy_device * phydev,u16 rdb,u16 val)443 static int bcm54140_base_write_rdb(struct phy_device *phydev,
444 				   u16 rdb, u16 val)
445 {
446 	int ret;
447 
448 	phy_lock_mdio_bus(phydev);
449 	ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
450 	if (ret < 0)
451 		goto out;
452 
453 	ret = __phy_package_write(phydev, MII_BCM54XX_RDB_DATA, val);
454 
455 out:
456 	phy_unlock_mdio_bus(phydev);
457 	return ret;
458 }
459 
460 /* Under some circumstances a core PLL may not lock, this will then prevent
461  * a successful link establishment. Restart the PLL after the voltages are
462  * stable to workaround this issue.
463  */
bcm54140_b0_workaround(struct phy_device * phydev)464 static int bcm54140_b0_workaround(struct phy_device *phydev)
465 {
466 	int spare3;
467 	int ret;
468 
469 	spare3 = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE3);
470 	if (spare3 < 0)
471 		return spare3;
472 
473 	spare3 &= ~BCM54140_RDB_SPARE3_BIT0;
474 
475 	ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
476 	if (ret)
477 		return ret;
478 
479 	ret = phy_modify(phydev, MII_BMCR, 0, BMCR_PDOWN);
480 	if (ret)
481 		return ret;
482 
483 	ret = phy_modify(phydev, MII_BMCR, BMCR_PDOWN, 0);
484 	if (ret)
485 		return ret;
486 
487 	spare3 |= BCM54140_RDB_SPARE3_BIT0;
488 
489 	return bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
490 }
491 
492 /* The BCM54140 is a quad PHY where only the first port has access to the
493  * global register. Thus we need to find out its PHY address.
494  *
495  */
bcm54140_get_base_addr_and_port(struct phy_device * phydev)496 static int bcm54140_get_base_addr_and_port(struct phy_device *phydev)
497 {
498 	struct bcm54140_priv *priv = phydev->priv;
499 	struct mii_bus *bus = phydev->mdio.bus;
500 	int addr, min_addr, max_addr;
501 	int step = 1;
502 	u32 phy_id;
503 	int tmp;
504 
505 	min_addr = phydev->mdio.addr;
506 	max_addr = phydev->mdio.addr;
507 	addr = phydev->mdio.addr;
508 
509 	/* We scan forward and backwards and look for PHYs which have the
510 	 * same phy_id like we do. Step 1 will scan forward, step 2
511 	 * backwards. Once we are finished, we have a min_addr and
512 	 * max_addr which resembles the range of PHY addresses of the same
513 	 * type of PHY. There is one caveat; there may be many PHYs of
514 	 * the same type, but we know that each PHY takes exactly 4
515 	 * consecutive addresses. Therefore we can deduce our offset
516 	 * to the base address of this quad PHY.
517 	 */
518 
519 	while (1) {
520 		if (step == 3) {
521 			break;
522 		} else if (step == 1) {
523 			max_addr = addr;
524 			addr++;
525 		} else {
526 			min_addr = addr;
527 			addr--;
528 		}
529 
530 		if (addr < 0 || addr >= PHY_MAX_ADDR) {
531 			addr = phydev->mdio.addr;
532 			step++;
533 			continue;
534 		}
535 
536 		/* read the PHY id */
537 		tmp = mdiobus_read(bus, addr, MII_PHYSID1);
538 		if (tmp < 0)
539 			return tmp;
540 		phy_id = tmp << 16;
541 		tmp = mdiobus_read(bus, addr, MII_PHYSID2);
542 		if (tmp < 0)
543 			return tmp;
544 		phy_id |= tmp;
545 
546 		/* see if it is still the same PHY */
547 		if ((phy_id & phydev->drv->phy_id_mask) !=
548 		    (phydev->drv->phy_id & phydev->drv->phy_id_mask)) {
549 			addr = phydev->mdio.addr;
550 			step++;
551 		}
552 	}
553 
554 	/* The range we get should be a multiple of four. Please note that both
555 	 * the min_addr and max_addr are inclusive. So we have to add one if we
556 	 * subtract them.
557 	 */
558 	if ((max_addr - min_addr + 1) % 4) {
559 		dev_err(&phydev->mdio.dev,
560 			"Detected Quad PHY IDs %d..%d doesn't make sense.\n",
561 			min_addr, max_addr);
562 		return -EINVAL;
563 	}
564 
565 	priv->port = (phydev->mdio.addr - min_addr) % 4;
566 	priv->base_addr = phydev->mdio.addr - priv->port;
567 
568 	return 0;
569 }
570 
bcm54140_probe(struct phy_device * phydev)571 static int bcm54140_probe(struct phy_device *phydev)
572 {
573 	struct bcm54140_priv *priv;
574 	int ret;
575 
576 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
577 	if (!priv)
578 		return -ENOMEM;
579 
580 	phydev->priv = priv;
581 
582 	ret = bcm54140_get_base_addr_and_port(phydev);
583 	if (ret)
584 		return ret;
585 
586 	devm_phy_package_join(&phydev->mdio.dev, phydev, priv->base_addr, 0);
587 
588 #if IS_ENABLED(CONFIG_HWMON)
589 	mutex_init(&priv->alarm_lock);
590 
591 	if (phy_package_init_once(phydev)) {
592 		ret = bcm54140_probe_once(phydev);
593 		if (ret)
594 			return ret;
595 	}
596 #endif
597 
598 	phydev_dbg(phydev, "probed (port %d, base PHY address %d)\n",
599 		   priv->port, priv->base_addr);
600 
601 	return 0;
602 }
603 
bcm54140_config_init(struct phy_device * phydev)604 static int bcm54140_config_init(struct phy_device *phydev)
605 {
606 	u16 reg = 0xffff;
607 	int ret;
608 
609 	/* Apply hardware errata */
610 	if (BCM54140_PHY_ID_REV(phydev->phy_id) == BCM54140_REV_B0) {
611 		ret = bcm54140_b0_workaround(phydev);
612 		if (ret)
613 			return ret;
614 	}
615 
616 	/* Unmask events we are interested in. */
617 	reg &= ~(BCM54140_RDB_INT_DUPLEX |
618 		 BCM54140_RDB_INT_SPEED |
619 		 BCM54140_RDB_INT_LINK);
620 	ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_IMR, reg);
621 	if (ret)
622 		return ret;
623 
624 	/* LED1=LINKSPD[1], LED2=LINKSPD[2], LED3=LINK/ACTIVITY */
625 	ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE1,
626 				 0, BCM54140_RDB_SPARE1_LSLM);
627 	if (ret)
628 		return ret;
629 
630 	ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_LED_CTRL,
631 				 0, BCM54140_RDB_LED_CTRL_ACTLINK0);
632 	if (ret)
633 		return ret;
634 
635 	/* disable super isolate mode */
636 	return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_PWR,
637 				  BCM54140_RDB_C_PWR_ISOLATE, 0);
638 }
639 
bcm54140_handle_interrupt(struct phy_device * phydev)640 static irqreturn_t bcm54140_handle_interrupt(struct phy_device *phydev)
641 {
642 	int irq_status, irq_mask;
643 
644 	irq_status = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
645 	if (irq_status < 0) {
646 		phy_error(phydev);
647 		return IRQ_NONE;
648 	}
649 
650 	irq_mask = bcm_phy_read_rdb(phydev, BCM54140_RDB_IMR);
651 	if (irq_mask < 0) {
652 		phy_error(phydev);
653 		return IRQ_NONE;
654 	}
655 	irq_mask = ~irq_mask;
656 
657 	if (!(irq_status & irq_mask))
658 		return IRQ_NONE;
659 
660 	phy_trigger_machine(phydev);
661 
662 	return IRQ_HANDLED;
663 }
664 
bcm54140_ack_intr(struct phy_device * phydev)665 static int bcm54140_ack_intr(struct phy_device *phydev)
666 {
667 	int reg;
668 
669 	/* clear pending interrupts */
670 	reg = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
671 	if (reg < 0)
672 		return reg;
673 
674 	return 0;
675 }
676 
bcm54140_config_intr(struct phy_device * phydev)677 static int bcm54140_config_intr(struct phy_device *phydev)
678 {
679 	struct bcm54140_priv *priv = phydev->priv;
680 	static const u16 port_to_imr_bit[] = {
681 		BCM54140_RDB_TOP_IMR_PORT0, BCM54140_RDB_TOP_IMR_PORT1,
682 		BCM54140_RDB_TOP_IMR_PORT2, BCM54140_RDB_TOP_IMR_PORT3,
683 	};
684 	int reg, err;
685 
686 	if (priv->port >= ARRAY_SIZE(port_to_imr_bit))
687 		return -EINVAL;
688 
689 	reg = bcm54140_base_read_rdb(phydev, BCM54140_RDB_TOP_IMR);
690 	if (reg < 0)
691 		return reg;
692 
693 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
694 		err = bcm54140_ack_intr(phydev);
695 		if (err)
696 			return err;
697 
698 		reg &= ~port_to_imr_bit[priv->port];
699 		err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg);
700 	} else {
701 		reg |= port_to_imr_bit[priv->port];
702 		err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg);
703 		if (err)
704 			return err;
705 
706 		err = bcm54140_ack_intr(phydev);
707 	}
708 
709 	return err;
710 }
711 
bcm54140_get_downshift(struct phy_device * phydev,u8 * data)712 static int bcm54140_get_downshift(struct phy_device *phydev, u8 *data)
713 {
714 	int val;
715 
716 	val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_MISC_CTRL);
717 	if (val < 0)
718 		return val;
719 
720 	if (!(val & BCM54140_RDB_C_MISC_CTRL_WS_EN)) {
721 		*data = DOWNSHIFT_DEV_DISABLE;
722 		return 0;
723 	}
724 
725 	val = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE2);
726 	if (val < 0)
727 		return val;
728 
729 	if (val & BCM54140_RDB_SPARE2_WS_RTRY_DIS)
730 		*data = 1;
731 	else
732 		*data = FIELD_GET(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, val) + 2;
733 
734 	return 0;
735 }
736 
bcm54140_set_downshift(struct phy_device * phydev,u8 cnt)737 static int bcm54140_set_downshift(struct phy_device *phydev, u8 cnt)
738 {
739 	u16 mask, set;
740 	int ret;
741 
742 	if (cnt > BCM54140_MAX_DOWNSHIFT && cnt != DOWNSHIFT_DEV_DEFAULT_COUNT)
743 		return -EINVAL;
744 
745 	if (!cnt)
746 		return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
747 					  BCM54140_RDB_C_MISC_CTRL_WS_EN, 0);
748 
749 	if (cnt == DOWNSHIFT_DEV_DEFAULT_COUNT)
750 		cnt = BCM54140_DEFAULT_DOWNSHIFT;
751 
752 	if (cnt == 1) {
753 		mask = 0;
754 		set = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
755 	} else {
756 		mask = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
757 		mask |= BCM54140_RDB_SPARE2_WS_RTRY_LIMIT;
758 		set = FIELD_PREP(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, cnt - 2);
759 	}
760 	ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE2,
761 				 mask, set);
762 	if (ret)
763 		return ret;
764 
765 	return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
766 				  0, BCM54140_RDB_C_MISC_CTRL_WS_EN);
767 }
768 
bcm54140_get_edpd(struct phy_device * phydev,u16 * tx_interval)769 static int bcm54140_get_edpd(struct phy_device *phydev, u16 *tx_interval)
770 {
771 	int val;
772 
773 	val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_APWR);
774 	if (val < 0)
775 		return val;
776 
777 	switch (FIELD_GET(BCM54140_RDB_C_APWR_APD_MODE_MASK, val)) {
778 	case BCM54140_RDB_C_APWR_APD_MODE_DIS:
779 	case BCM54140_RDB_C_APWR_APD_MODE_DIS2:
780 		*tx_interval = ETHTOOL_PHY_EDPD_DISABLE;
781 		break;
782 	case BCM54140_RDB_C_APWR_APD_MODE_EN:
783 	case BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG:
784 		switch (FIELD_GET(BCM54140_RDB_C_APWR_SLP_TIM_MASK, val)) {
785 		case BCM54140_RDB_C_APWR_SLP_TIM_2_7:
786 			*tx_interval = 2700;
787 			break;
788 		case BCM54140_RDB_C_APWR_SLP_TIM_5_4:
789 			*tx_interval = 5400;
790 			break;
791 		}
792 	}
793 
794 	return 0;
795 }
796 
bcm54140_set_edpd(struct phy_device * phydev,u16 tx_interval)797 static int bcm54140_set_edpd(struct phy_device *phydev, u16 tx_interval)
798 {
799 	u16 mask, set;
800 
801 	mask = BCM54140_RDB_C_APWR_APD_MODE_MASK;
802 	if (tx_interval == ETHTOOL_PHY_EDPD_DISABLE)
803 		set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
804 				 BCM54140_RDB_C_APWR_APD_MODE_DIS);
805 	else
806 		set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
807 				 BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG);
808 
809 	/* enable single pulse mode */
810 	set |= BCM54140_RDB_C_APWR_SINGLE_PULSE;
811 
812 	/* set sleep timer */
813 	mask |= BCM54140_RDB_C_APWR_SLP_TIM_MASK;
814 	switch (tx_interval) {
815 	case ETHTOOL_PHY_EDPD_DFLT_TX_MSECS:
816 	case ETHTOOL_PHY_EDPD_DISABLE:
817 	case 2700:
818 		set |= BCM54140_RDB_C_APWR_SLP_TIM_2_7;
819 		break;
820 	case 5400:
821 		set |= BCM54140_RDB_C_APWR_SLP_TIM_5_4;
822 		break;
823 	default:
824 		return -EINVAL;
825 	}
826 
827 	return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_APWR, mask, set);
828 }
829 
bcm54140_get_tunable(struct phy_device * phydev,struct ethtool_tunable * tuna,void * data)830 static int bcm54140_get_tunable(struct phy_device *phydev,
831 				struct ethtool_tunable *tuna, void *data)
832 {
833 	switch (tuna->id) {
834 	case ETHTOOL_PHY_DOWNSHIFT:
835 		return bcm54140_get_downshift(phydev, data);
836 	case ETHTOOL_PHY_EDPD:
837 		return bcm54140_get_edpd(phydev, data);
838 	default:
839 		return -EOPNOTSUPP;
840 	}
841 }
842 
bcm54140_set_tunable(struct phy_device * phydev,struct ethtool_tunable * tuna,const void * data)843 static int bcm54140_set_tunable(struct phy_device *phydev,
844 				struct ethtool_tunable *tuna, const void *data)
845 {
846 	switch (tuna->id) {
847 	case ETHTOOL_PHY_DOWNSHIFT:
848 		return bcm54140_set_downshift(phydev, *(const u8 *)data);
849 	case ETHTOOL_PHY_EDPD:
850 		return bcm54140_set_edpd(phydev, *(const u16 *)data);
851 	default:
852 		return -EOPNOTSUPP;
853 	}
854 }
855 
856 static struct phy_driver bcm54140_drivers[] = {
857 	{
858 		.phy_id         = PHY_ID_BCM54140,
859 		.phy_id_mask    = BCM54140_PHY_ID_MASK,
860 		.name           = "Broadcom BCM54140",
861 		.flags		= PHY_POLL_CABLE_TEST,
862 		.features       = PHY_GBIT_FEATURES,
863 		.config_init    = bcm54140_config_init,
864 		.handle_interrupt = bcm54140_handle_interrupt,
865 		.config_intr    = bcm54140_config_intr,
866 		.probe		= bcm54140_probe,
867 		.suspend	= genphy_suspend,
868 		.resume		= genphy_resume,
869 		.soft_reset	= genphy_soft_reset,
870 		.get_tunable	= bcm54140_get_tunable,
871 		.set_tunable	= bcm54140_set_tunable,
872 		.cable_test_start = bcm_phy_cable_test_start_rdb,
873 		.cable_test_get_status = bcm_phy_cable_test_get_status_rdb,
874 	},
875 };
876 module_phy_driver(bcm54140_drivers);
877 
878 static struct mdio_device_id __maybe_unused bcm54140_tbl[] = {
879 	{ PHY_ID_BCM54140, BCM54140_PHY_ID_MASK },
880 	{ }
881 };
882 
883 MODULE_AUTHOR("Michael Walle");
884 MODULE_DESCRIPTION("Broadcom BCM54140 PHY driver");
885 MODULE_DEVICE_TABLE(mdio, bcm54140_tbl);
886 MODULE_LICENSE("GPL");
887