1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * atlas-sensor.c - Support for Atlas Scientific OEM SM sensors
4 *
5 * Copyright (C) 2015-2019 Konsulko Group
6 * Author: Matt Ranostay <matt.ranostay@konsulko.com>
7 */
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/delay.h>
13 #include <linux/mutex.h>
14 #include <linux/err.h>
15 #include <linux/irq.h>
16 #include <linux/irq_work.h>
17 #include <linux/i2c.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/regmap.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/trigger.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/triggered_buffer.h>
25 #include <linux/pm_runtime.h>
26
27 #define ATLAS_REGMAP_NAME "atlas_regmap"
28 #define ATLAS_DRV_NAME "atlas"
29
30 #define ATLAS_REG_DEV_TYPE 0x00
31 #define ATLAS_REG_DEV_VERSION 0x01
32
33 #define ATLAS_REG_INT_CONTROL 0x04
34 #define ATLAS_REG_INT_CONTROL_EN BIT(3)
35
36 #define ATLAS_REG_PWR_CONTROL 0x06
37
38 #define ATLAS_REG_PH_CALIB_STATUS 0x0d
39 #define ATLAS_REG_PH_CALIB_STATUS_MASK 0x07
40 #define ATLAS_REG_PH_CALIB_STATUS_LOW BIT(0)
41 #define ATLAS_REG_PH_CALIB_STATUS_MID BIT(1)
42 #define ATLAS_REG_PH_CALIB_STATUS_HIGH BIT(2)
43
44 #define ATLAS_REG_EC_CALIB_STATUS 0x0f
45 #define ATLAS_REG_EC_CALIB_STATUS_MASK 0x0f
46 #define ATLAS_REG_EC_CALIB_STATUS_DRY BIT(0)
47 #define ATLAS_REG_EC_CALIB_STATUS_SINGLE BIT(1)
48 #define ATLAS_REG_EC_CALIB_STATUS_LOW BIT(2)
49 #define ATLAS_REG_EC_CALIB_STATUS_HIGH BIT(3)
50
51 #define ATLAS_REG_DO_CALIB_STATUS 0x09
52 #define ATLAS_REG_DO_CALIB_STATUS_MASK 0x03
53 #define ATLAS_REG_DO_CALIB_STATUS_PRESSURE BIT(0)
54 #define ATLAS_REG_DO_CALIB_STATUS_DO BIT(1)
55
56 #define ATLAS_REG_RTD_DATA 0x0e
57
58 #define ATLAS_REG_PH_TEMP_DATA 0x0e
59 #define ATLAS_REG_PH_DATA 0x16
60
61 #define ATLAS_REG_EC_PROBE 0x08
62 #define ATLAS_REG_EC_TEMP_DATA 0x10
63 #define ATLAS_REG_EC_DATA 0x18
64 #define ATLAS_REG_TDS_DATA 0x1c
65 #define ATLAS_REG_PSS_DATA 0x20
66
67 #define ATLAS_REG_ORP_CALIB_STATUS 0x0d
68 #define ATLAS_REG_ORP_DATA 0x0e
69
70 #define ATLAS_REG_DO_TEMP_DATA 0x12
71 #define ATLAS_REG_DO_DATA 0x22
72
73 #define ATLAS_PH_INT_TIME_IN_MS 450
74 #define ATLAS_EC_INT_TIME_IN_MS 650
75 #define ATLAS_ORP_INT_TIME_IN_MS 450
76 #define ATLAS_DO_INT_TIME_IN_MS 450
77 #define ATLAS_RTD_INT_TIME_IN_MS 450
78
79 enum {
80 ATLAS_PH_SM,
81 ATLAS_EC_SM,
82 ATLAS_ORP_SM,
83 ATLAS_DO_SM,
84 ATLAS_RTD_SM,
85 };
86
87 struct atlas_data {
88 struct i2c_client *client;
89 struct iio_trigger *trig;
90 struct atlas_device *chip;
91 struct regmap *regmap;
92 struct irq_work work;
93 unsigned int interrupt_enabled;
94 /* 96-bit data + 32-bit pad + 64-bit timestamp */
95 __be32 buffer[6] __aligned(8);
96 };
97
98 static const struct regmap_config atlas_regmap_config = {
99 .name = ATLAS_REGMAP_NAME,
100 .reg_bits = 8,
101 .val_bits = 8,
102 };
103
atlas_buffer_num_channels(const struct iio_chan_spec * spec)104 static int atlas_buffer_num_channels(const struct iio_chan_spec *spec)
105 {
106 int idx = 0;
107
108 for (; spec->type != IIO_TIMESTAMP; spec++)
109 idx++;
110
111 return idx;
112 };
113
114 static const struct iio_chan_spec atlas_ph_channels[] = {
115 {
116 .type = IIO_PH,
117 .address = ATLAS_REG_PH_DATA,
118 .info_mask_separate =
119 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
120 .scan_index = 0,
121 .scan_type = {
122 .sign = 'u',
123 .realbits = 32,
124 .storagebits = 32,
125 .endianness = IIO_BE,
126 },
127 },
128 IIO_CHAN_SOFT_TIMESTAMP(1),
129 {
130 .type = IIO_TEMP,
131 .address = ATLAS_REG_PH_TEMP_DATA,
132 .info_mask_separate =
133 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
134 .output = 1,
135 .scan_index = -1
136 },
137 };
138
139 #define ATLAS_CONCENTRATION_CHANNEL(_idx, _addr) \
140 {\
141 .type = IIO_CONCENTRATION, \
142 .indexed = 1, \
143 .channel = _idx, \
144 .address = _addr, \
145 .info_mask_separate = \
146 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \
147 .scan_index = _idx + 1, \
148 .scan_type = { \
149 .sign = 'u', \
150 .realbits = 32, \
151 .storagebits = 32, \
152 .endianness = IIO_BE, \
153 }, \
154 }
155
156 static const struct iio_chan_spec atlas_ec_channels[] = {
157 {
158 .type = IIO_ELECTRICALCONDUCTIVITY,
159 .address = ATLAS_REG_EC_DATA,
160 .info_mask_separate =
161 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
162 .scan_index = 0,
163 .scan_type = {
164 .sign = 'u',
165 .realbits = 32,
166 .storagebits = 32,
167 .endianness = IIO_BE,
168 },
169 },
170 ATLAS_CONCENTRATION_CHANNEL(0, ATLAS_REG_TDS_DATA),
171 ATLAS_CONCENTRATION_CHANNEL(1, ATLAS_REG_PSS_DATA),
172 IIO_CHAN_SOFT_TIMESTAMP(3),
173 {
174 .type = IIO_TEMP,
175 .address = ATLAS_REG_EC_TEMP_DATA,
176 .info_mask_separate =
177 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
178 .output = 1,
179 .scan_index = -1
180 },
181 };
182
183 static const struct iio_chan_spec atlas_orp_channels[] = {
184 {
185 .type = IIO_VOLTAGE,
186 .address = ATLAS_REG_ORP_DATA,
187 .info_mask_separate =
188 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
189 .scan_index = 0,
190 .scan_type = {
191 .sign = 's',
192 .realbits = 32,
193 .storagebits = 32,
194 .endianness = IIO_BE,
195 },
196 },
197 IIO_CHAN_SOFT_TIMESTAMP(1),
198 };
199
200 static const struct iio_chan_spec atlas_do_channels[] = {
201 {
202 .type = IIO_CONCENTRATION,
203 .address = ATLAS_REG_DO_DATA,
204 .info_mask_separate =
205 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
206 .scan_index = 0,
207 .scan_type = {
208 .sign = 'u',
209 .realbits = 32,
210 .storagebits = 32,
211 .endianness = IIO_BE,
212 },
213 },
214 IIO_CHAN_SOFT_TIMESTAMP(1),
215 {
216 .type = IIO_TEMP,
217 .address = ATLAS_REG_DO_TEMP_DATA,
218 .info_mask_separate =
219 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
220 .output = 1,
221 .scan_index = -1
222 },
223 };
224
225 static const struct iio_chan_spec atlas_rtd_channels[] = {
226 {
227 .type = IIO_TEMP,
228 .address = ATLAS_REG_RTD_DATA,
229 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
230 .scan_index = 0,
231 .scan_type = {
232 .sign = 's',
233 .realbits = 32,
234 .storagebits = 32,
235 .endianness = IIO_BE,
236 },
237 },
238 IIO_CHAN_SOFT_TIMESTAMP(1),
239 };
240
atlas_check_ph_calibration(struct atlas_data * data)241 static int atlas_check_ph_calibration(struct atlas_data *data)
242 {
243 struct device *dev = &data->client->dev;
244 int ret;
245 unsigned int val;
246
247 ret = regmap_read(data->regmap, ATLAS_REG_PH_CALIB_STATUS, &val);
248 if (ret)
249 return ret;
250
251 if (!(val & ATLAS_REG_PH_CALIB_STATUS_MASK)) {
252 dev_warn(dev, "device has not been calibrated\n");
253 return 0;
254 }
255
256 if (!(val & ATLAS_REG_PH_CALIB_STATUS_LOW))
257 dev_warn(dev, "device missing low point calibration\n");
258
259 if (!(val & ATLAS_REG_PH_CALIB_STATUS_MID))
260 dev_warn(dev, "device missing mid point calibration\n");
261
262 if (!(val & ATLAS_REG_PH_CALIB_STATUS_HIGH))
263 dev_warn(dev, "device missing high point calibration\n");
264
265 return 0;
266 }
267
atlas_check_ec_calibration(struct atlas_data * data)268 static int atlas_check_ec_calibration(struct atlas_data *data)
269 {
270 struct device *dev = &data->client->dev;
271 int ret;
272 unsigned int val;
273 __be16 rval;
274
275 ret = regmap_bulk_read(data->regmap, ATLAS_REG_EC_PROBE, &rval, 2);
276 if (ret)
277 return ret;
278
279 val = be16_to_cpu(rval);
280 dev_info(dev, "probe set to K = %d.%.2d", val / 100, val % 100);
281
282 ret = regmap_read(data->regmap, ATLAS_REG_EC_CALIB_STATUS, &val);
283 if (ret)
284 return ret;
285
286 if (!(val & ATLAS_REG_EC_CALIB_STATUS_MASK)) {
287 dev_warn(dev, "device has not been calibrated\n");
288 return 0;
289 }
290
291 if (!(val & ATLAS_REG_EC_CALIB_STATUS_DRY))
292 dev_warn(dev, "device missing dry point calibration\n");
293
294 if (val & ATLAS_REG_EC_CALIB_STATUS_SINGLE) {
295 dev_warn(dev, "device using single point calibration\n");
296 } else {
297 if (!(val & ATLAS_REG_EC_CALIB_STATUS_LOW))
298 dev_warn(dev, "device missing low point calibration\n");
299
300 if (!(val & ATLAS_REG_EC_CALIB_STATUS_HIGH))
301 dev_warn(dev, "device missing high point calibration\n");
302 }
303
304 return 0;
305 }
306
atlas_check_orp_calibration(struct atlas_data * data)307 static int atlas_check_orp_calibration(struct atlas_data *data)
308 {
309 struct device *dev = &data->client->dev;
310 int ret;
311 unsigned int val;
312
313 ret = regmap_read(data->regmap, ATLAS_REG_ORP_CALIB_STATUS, &val);
314 if (ret)
315 return ret;
316
317 if (!val)
318 dev_warn(dev, "device has not been calibrated\n");
319
320 return 0;
321 }
322
atlas_check_do_calibration(struct atlas_data * data)323 static int atlas_check_do_calibration(struct atlas_data *data)
324 {
325 struct device *dev = &data->client->dev;
326 int ret;
327 unsigned int val;
328
329 ret = regmap_read(data->regmap, ATLAS_REG_DO_CALIB_STATUS, &val);
330 if (ret)
331 return ret;
332
333 if (!(val & ATLAS_REG_DO_CALIB_STATUS_MASK)) {
334 dev_warn(dev, "device has not been calibrated\n");
335 return 0;
336 }
337
338 if (!(val & ATLAS_REG_DO_CALIB_STATUS_PRESSURE))
339 dev_warn(dev, "device missing atmospheric pressure calibration\n");
340
341 if (!(val & ATLAS_REG_DO_CALIB_STATUS_DO))
342 dev_warn(dev, "device missing dissolved oxygen calibration\n");
343
344 return 0;
345 }
346
347 struct atlas_device {
348 const struct iio_chan_spec *channels;
349 int num_channels;
350 int data_reg;
351
352 int (*calibration)(struct atlas_data *data);
353 int delay;
354 };
355
356 static struct atlas_device atlas_devices[] = {
357 [ATLAS_PH_SM] = {
358 .channels = atlas_ph_channels,
359 .num_channels = 3,
360 .data_reg = ATLAS_REG_PH_DATA,
361 .calibration = &atlas_check_ph_calibration,
362 .delay = ATLAS_PH_INT_TIME_IN_MS,
363 },
364 [ATLAS_EC_SM] = {
365 .channels = atlas_ec_channels,
366 .num_channels = 5,
367 .data_reg = ATLAS_REG_EC_DATA,
368 .calibration = &atlas_check_ec_calibration,
369 .delay = ATLAS_EC_INT_TIME_IN_MS,
370 },
371 [ATLAS_ORP_SM] = {
372 .channels = atlas_orp_channels,
373 .num_channels = 2,
374 .data_reg = ATLAS_REG_ORP_DATA,
375 .calibration = &atlas_check_orp_calibration,
376 .delay = ATLAS_ORP_INT_TIME_IN_MS,
377 },
378 [ATLAS_DO_SM] = {
379 .channels = atlas_do_channels,
380 .num_channels = 3,
381 .data_reg = ATLAS_REG_DO_DATA,
382 .calibration = &atlas_check_do_calibration,
383 .delay = ATLAS_DO_INT_TIME_IN_MS,
384 },
385 [ATLAS_RTD_SM] = {
386 .channels = atlas_rtd_channels,
387 .num_channels = 2,
388 .data_reg = ATLAS_REG_RTD_DATA,
389 .delay = ATLAS_RTD_INT_TIME_IN_MS,
390 },
391 };
392
atlas_set_powermode(struct atlas_data * data,int on)393 static int atlas_set_powermode(struct atlas_data *data, int on)
394 {
395 return regmap_write(data->regmap, ATLAS_REG_PWR_CONTROL, on);
396 }
397
atlas_set_interrupt(struct atlas_data * data,bool state)398 static int atlas_set_interrupt(struct atlas_data *data, bool state)
399 {
400 if (!data->interrupt_enabled)
401 return 0;
402
403 return regmap_update_bits(data->regmap, ATLAS_REG_INT_CONTROL,
404 ATLAS_REG_INT_CONTROL_EN,
405 state ? ATLAS_REG_INT_CONTROL_EN : 0);
406 }
407
atlas_buffer_postenable(struct iio_dev * indio_dev)408 static int atlas_buffer_postenable(struct iio_dev *indio_dev)
409 {
410 struct atlas_data *data = iio_priv(indio_dev);
411 int ret;
412
413 ret = pm_runtime_resume_and_get(&data->client->dev);
414 if (ret)
415 return ret;
416
417 return atlas_set_interrupt(data, true);
418 }
419
atlas_buffer_predisable(struct iio_dev * indio_dev)420 static int atlas_buffer_predisable(struct iio_dev *indio_dev)
421 {
422 struct atlas_data *data = iio_priv(indio_dev);
423 int ret;
424
425 ret = atlas_set_interrupt(data, false);
426 if (ret)
427 return ret;
428
429 pm_runtime_mark_last_busy(&data->client->dev);
430 ret = pm_runtime_put_autosuspend(&data->client->dev);
431 if (ret)
432 return ret;
433
434 return 0;
435 }
436
437 static const struct iio_buffer_setup_ops atlas_buffer_setup_ops = {
438 .postenable = atlas_buffer_postenable,
439 .predisable = atlas_buffer_predisable,
440 };
441
atlas_work_handler(struct irq_work * work)442 static void atlas_work_handler(struct irq_work *work)
443 {
444 struct atlas_data *data = container_of(work, struct atlas_data, work);
445
446 iio_trigger_poll(data->trig);
447 }
448
atlas_trigger_handler(int irq,void * private)449 static irqreturn_t atlas_trigger_handler(int irq, void *private)
450 {
451 struct iio_poll_func *pf = private;
452 struct iio_dev *indio_dev = pf->indio_dev;
453 struct atlas_data *data = iio_priv(indio_dev);
454 int channels = atlas_buffer_num_channels(data->chip->channels);
455 int ret;
456
457 ret = regmap_bulk_read(data->regmap, data->chip->data_reg,
458 &data->buffer, sizeof(__be32) * channels);
459
460 if (!ret)
461 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
462 iio_get_time_ns(indio_dev));
463
464 iio_trigger_notify_done(indio_dev->trig);
465
466 return IRQ_HANDLED;
467 }
468
atlas_interrupt_handler(int irq,void * private)469 static irqreturn_t atlas_interrupt_handler(int irq, void *private)
470 {
471 struct iio_dev *indio_dev = private;
472 struct atlas_data *data = iio_priv(indio_dev);
473
474 irq_work_queue(&data->work);
475
476 return IRQ_HANDLED;
477 }
478
atlas_read_measurement(struct atlas_data * data,int reg,__be32 * val)479 static int atlas_read_measurement(struct atlas_data *data, int reg, __be32 *val)
480 {
481 struct device *dev = &data->client->dev;
482 int suspended = pm_runtime_suspended(dev);
483 int ret;
484
485 ret = pm_runtime_resume_and_get(dev);
486 if (ret)
487 return ret;
488
489 if (suspended)
490 msleep(data->chip->delay);
491
492 ret = regmap_bulk_read(data->regmap, reg, val, sizeof(*val));
493
494 pm_runtime_mark_last_busy(dev);
495 pm_runtime_put_autosuspend(dev);
496
497 return ret;
498 }
499
atlas_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)500 static int atlas_read_raw(struct iio_dev *indio_dev,
501 struct iio_chan_spec const *chan,
502 int *val, int *val2, long mask)
503 {
504 struct atlas_data *data = iio_priv(indio_dev);
505
506 switch (mask) {
507 case IIO_CHAN_INFO_PROCESSED:
508 case IIO_CHAN_INFO_RAW: {
509 int ret;
510 __be32 reg;
511
512 switch (chan->type) {
513 case IIO_TEMP:
514 ret = regmap_bulk_read(data->regmap, chan->address,
515 ®, sizeof(reg));
516 break;
517 case IIO_PH:
518 case IIO_CONCENTRATION:
519 case IIO_ELECTRICALCONDUCTIVITY:
520 case IIO_VOLTAGE:
521 ret = iio_device_claim_direct_mode(indio_dev);
522 if (ret)
523 return ret;
524
525 ret = atlas_read_measurement(data, chan->address, ®);
526
527 iio_device_release_direct_mode(indio_dev);
528 break;
529 default:
530 ret = -EINVAL;
531 }
532
533 if (!ret) {
534 *val = be32_to_cpu(reg);
535 ret = IIO_VAL_INT;
536 }
537 return ret;
538 }
539 case IIO_CHAN_INFO_SCALE:
540 switch (chan->type) {
541 case IIO_TEMP:
542 *val = 10;
543 return IIO_VAL_INT;
544 case IIO_PH:
545 *val = 1; /* 0.001 */
546 *val2 = 1000;
547 break;
548 case IIO_ELECTRICALCONDUCTIVITY:
549 *val = 1; /* 0.00001 */
550 *val2 = 100000;
551 break;
552 case IIO_CONCENTRATION:
553 *val = 0; /* 0.000000001 */
554 *val2 = 1000;
555 return IIO_VAL_INT_PLUS_NANO;
556 case IIO_VOLTAGE:
557 *val = 1; /* 0.1 */
558 *val2 = 10;
559 break;
560 default:
561 return -EINVAL;
562 }
563 return IIO_VAL_FRACTIONAL;
564 }
565
566 return -EINVAL;
567 }
568
atlas_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)569 static int atlas_write_raw(struct iio_dev *indio_dev,
570 struct iio_chan_spec const *chan,
571 int val, int val2, long mask)
572 {
573 struct atlas_data *data = iio_priv(indio_dev);
574 __be32 reg = cpu_to_be32(val / 10);
575
576 if (val2 != 0 || val < 0 || val > 20000)
577 return -EINVAL;
578
579 if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_TEMP)
580 return -EINVAL;
581
582 return regmap_bulk_write(data->regmap, chan->address,
583 ®, sizeof(reg));
584 }
585
586 static const struct iio_info atlas_info = {
587 .read_raw = atlas_read_raw,
588 .write_raw = atlas_write_raw,
589 };
590
591 static const struct i2c_device_id atlas_id[] = {
592 { "atlas-ph-sm", ATLAS_PH_SM },
593 { "atlas-ec-sm", ATLAS_EC_SM },
594 { "atlas-orp-sm", ATLAS_ORP_SM },
595 { "atlas-do-sm", ATLAS_DO_SM },
596 { "atlas-rtd-sm", ATLAS_RTD_SM },
597 {}
598 };
599 MODULE_DEVICE_TABLE(i2c, atlas_id);
600
601 static const struct of_device_id atlas_dt_ids[] = {
602 { .compatible = "atlas,ph-sm", .data = (void *)ATLAS_PH_SM, },
603 { .compatible = "atlas,ec-sm", .data = (void *)ATLAS_EC_SM, },
604 { .compatible = "atlas,orp-sm", .data = (void *)ATLAS_ORP_SM, },
605 { .compatible = "atlas,do-sm", .data = (void *)ATLAS_DO_SM, },
606 { .compatible = "atlas,rtd-sm", .data = (void *)ATLAS_RTD_SM, },
607 { }
608 };
609 MODULE_DEVICE_TABLE(of, atlas_dt_ids);
610
atlas_probe(struct i2c_client * client)611 static int atlas_probe(struct i2c_client *client)
612 {
613 const struct i2c_device_id *id = i2c_client_get_device_id(client);
614 struct atlas_data *data;
615 struct atlas_device *chip;
616 struct iio_trigger *trig;
617 struct iio_dev *indio_dev;
618 int ret;
619
620 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
621 if (!indio_dev)
622 return -ENOMEM;
623
624 if (!dev_fwnode(&client->dev))
625 chip = &atlas_devices[id->driver_data];
626 else
627 chip = &atlas_devices[(unsigned long)device_get_match_data(&client->dev)];
628
629 indio_dev->info = &atlas_info;
630 indio_dev->name = ATLAS_DRV_NAME;
631 indio_dev->channels = chip->channels;
632 indio_dev->num_channels = chip->num_channels;
633 indio_dev->modes = INDIO_BUFFER_SOFTWARE | INDIO_DIRECT_MODE;
634
635 trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d",
636 indio_dev->name, iio_device_id(indio_dev));
637
638 if (!trig)
639 return -ENOMEM;
640
641 data = iio_priv(indio_dev);
642 data->client = client;
643 data->trig = trig;
644 data->chip = chip;
645 iio_trigger_set_drvdata(trig, indio_dev);
646
647 i2c_set_clientdata(client, indio_dev);
648
649 data->regmap = devm_regmap_init_i2c(client, &atlas_regmap_config);
650 if (IS_ERR(data->regmap)) {
651 dev_err(&client->dev, "regmap initialization failed\n");
652 return PTR_ERR(data->regmap);
653 }
654
655 ret = pm_runtime_set_active(&client->dev);
656 if (ret)
657 return ret;
658
659 ret = chip->calibration(data);
660 if (ret)
661 return ret;
662
663 ret = iio_trigger_register(trig);
664 if (ret) {
665 dev_err(&client->dev, "failed to register trigger\n");
666 return ret;
667 }
668
669 ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
670 &atlas_trigger_handler, &atlas_buffer_setup_ops);
671 if (ret) {
672 dev_err(&client->dev, "cannot setup iio trigger\n");
673 goto unregister_trigger;
674 }
675
676 init_irq_work(&data->work, atlas_work_handler);
677
678 if (client->irq > 0) {
679 /* interrupt pin toggles on new conversion */
680 ret = devm_request_threaded_irq(&client->dev, client->irq,
681 NULL, atlas_interrupt_handler,
682 IRQF_TRIGGER_RISING |
683 IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
684 "atlas_irq",
685 indio_dev);
686
687 if (ret)
688 dev_warn(&client->dev,
689 "request irq (%d) failed\n", client->irq);
690 else
691 data->interrupt_enabled = 1;
692 }
693
694 ret = atlas_set_powermode(data, 1);
695 if (ret) {
696 dev_err(&client->dev, "cannot power device on");
697 goto unregister_buffer;
698 }
699
700 pm_runtime_enable(&client->dev);
701 pm_runtime_set_autosuspend_delay(&client->dev, 2500);
702 pm_runtime_use_autosuspend(&client->dev);
703
704 ret = iio_device_register(indio_dev);
705 if (ret) {
706 dev_err(&client->dev, "unable to register device\n");
707 goto unregister_pm;
708 }
709
710 return 0;
711
712 unregister_pm:
713 pm_runtime_disable(&client->dev);
714 atlas_set_powermode(data, 0);
715
716 unregister_buffer:
717 iio_triggered_buffer_cleanup(indio_dev);
718
719 unregister_trigger:
720 iio_trigger_unregister(data->trig);
721
722 return ret;
723 }
724
atlas_remove(struct i2c_client * client)725 static void atlas_remove(struct i2c_client *client)
726 {
727 struct iio_dev *indio_dev = i2c_get_clientdata(client);
728 struct atlas_data *data = iio_priv(indio_dev);
729 int ret;
730
731 iio_device_unregister(indio_dev);
732 iio_triggered_buffer_cleanup(indio_dev);
733 iio_trigger_unregister(data->trig);
734
735 pm_runtime_disable(&client->dev);
736 pm_runtime_set_suspended(&client->dev);
737
738 ret = atlas_set_powermode(data, 0);
739 if (ret)
740 dev_err(&client->dev, "Failed to power down device (%pe)\n",
741 ERR_PTR(ret));
742 }
743
atlas_runtime_suspend(struct device * dev)744 static int atlas_runtime_suspend(struct device *dev)
745 {
746 struct atlas_data *data =
747 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
748
749 return atlas_set_powermode(data, 0);
750 }
751
atlas_runtime_resume(struct device * dev)752 static int atlas_runtime_resume(struct device *dev)
753 {
754 struct atlas_data *data =
755 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
756
757 return atlas_set_powermode(data, 1);
758 }
759
760 static const struct dev_pm_ops atlas_pm_ops = {
761 RUNTIME_PM_OPS(atlas_runtime_suspend, atlas_runtime_resume, NULL)
762 };
763
764 static struct i2c_driver atlas_driver = {
765 .driver = {
766 .name = ATLAS_DRV_NAME,
767 .of_match_table = atlas_dt_ids,
768 .pm = pm_ptr(&atlas_pm_ops),
769 },
770 .probe = atlas_probe,
771 .remove = atlas_remove,
772 .id_table = atlas_id,
773 };
774 module_i2c_driver(atlas_driver);
775
776 MODULE_AUTHOR("Matt Ranostay <matt.ranostay@konsulko.com>");
777 MODULE_DESCRIPTION("Atlas Scientific SM sensors");
778 MODULE_LICENSE("GPL");
779