1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 /*
13  * Since we're dealing with identity mappings, physical and virtual
14  * addresses are the same, so override these defines which are ultimately
15  * used by the headers in misc.h.
16  */
17 #define __pa(x)  ((unsigned long)(x))
18 #define __va(x)  ((void *)((unsigned long)(x)))
19 
20 /*
21  * Special hack: we have to be careful, because no indirections are
22  * allowed here, and paravirt_ops is a kind of one. As it will only run in
23  * baremetal anyway, we just keep it from happening. (This list needs to
24  * be extended when new paravirt and debugging variants are added.)
25  */
26 #undef CONFIG_PARAVIRT
27 #undef CONFIG_PARAVIRT_XXL
28 #undef CONFIG_PARAVIRT_SPINLOCKS
29 
30 /*
31  * This code runs before CPU feature bits are set. By default, the
32  * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
33  * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
34  * is provided to handle this situation and, instead, use a variable that
35  * has been set by the early boot code.
36  */
37 #define USE_EARLY_PGTABLE_L5
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/mem_encrypt.h>
42 #include <linux/cc_platform.h>
43 
44 #include <asm/init.h>
45 #include <asm/setup.h>
46 #include <asm/sections.h>
47 #include <asm/coco.h>
48 #include <asm/sev.h>
49 
50 #include "mm_internal.h"
51 
52 #define PGD_FLAGS		_KERNPG_TABLE_NOENC
53 #define P4D_FLAGS		_KERNPG_TABLE_NOENC
54 #define PUD_FLAGS		_KERNPG_TABLE_NOENC
55 #define PMD_FLAGS		_KERNPG_TABLE_NOENC
56 
57 #define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
58 
59 #define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
60 #define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
61 				 (_PAGE_PAT_LARGE | _PAGE_PWT))
62 
63 #define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
64 
65 #define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
66 
67 #define PTE_FLAGS_DEC		PTE_FLAGS
68 #define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
69 				 (_PAGE_PAT | _PAGE_PWT))
70 
71 #define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
72 
73 struct sme_populate_pgd_data {
74 	void    *pgtable_area;
75 	pgd_t   *pgd;
76 
77 	pmdval_t pmd_flags;
78 	pteval_t pte_flags;
79 	unsigned long paddr;
80 
81 	unsigned long vaddr;
82 	unsigned long vaddr_end;
83 };
84 
85 /*
86  * This work area lives in the .init.scratch section, which lives outside of
87  * the kernel proper. It is sized to hold the intermediate copy buffer and
88  * more than enough pagetable pages.
89  *
90  * By using this section, the kernel can be encrypted in place and it
91  * avoids any possibility of boot parameters or initramfs images being
92  * placed such that the in-place encryption logic overwrites them.  This
93  * section is 2MB aligned to allow for simple pagetable setup using only
94  * PMD entries (see vmlinux.lds.S).
95  */
96 static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
97 
sme_clear_pgd(struct sme_populate_pgd_data * ppd)98 static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd)
99 {
100 	unsigned long pgd_start, pgd_end, pgd_size;
101 	pgd_t *pgd_p;
102 
103 	pgd_start = ppd->vaddr & PGDIR_MASK;
104 	pgd_end = ppd->vaddr_end & PGDIR_MASK;
105 
106 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
107 
108 	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
109 
110 	memset(pgd_p, 0, pgd_size);
111 }
112 
sme_prepare_pgd(struct sme_populate_pgd_data * ppd)113 static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
114 {
115 	pgd_t *pgd;
116 	p4d_t *p4d;
117 	pud_t *pud;
118 	pmd_t *pmd;
119 
120 	pgd = ppd->pgd + pgd_index(ppd->vaddr);
121 	if (pgd_none(*pgd)) {
122 		p4d = ppd->pgtable_area;
123 		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
124 		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
125 		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
126 	}
127 
128 	p4d = p4d_offset(pgd, ppd->vaddr);
129 	if (p4d_none(*p4d)) {
130 		pud = ppd->pgtable_area;
131 		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
132 		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
133 		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
134 	}
135 
136 	pud = pud_offset(p4d, ppd->vaddr);
137 	if (pud_none(*pud)) {
138 		pmd = ppd->pgtable_area;
139 		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
140 		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
141 		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
142 	}
143 
144 	if (pud_leaf(*pud))
145 		return NULL;
146 
147 	return pud;
148 }
149 
sme_populate_pgd_large(struct sme_populate_pgd_data * ppd)150 static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
151 {
152 	pud_t *pud;
153 	pmd_t *pmd;
154 
155 	pud = sme_prepare_pgd(ppd);
156 	if (!pud)
157 		return;
158 
159 	pmd = pmd_offset(pud, ppd->vaddr);
160 	if (pmd_large(*pmd))
161 		return;
162 
163 	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
164 }
165 
sme_populate_pgd(struct sme_populate_pgd_data * ppd)166 static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd)
167 {
168 	pud_t *pud;
169 	pmd_t *pmd;
170 	pte_t *pte;
171 
172 	pud = sme_prepare_pgd(ppd);
173 	if (!pud)
174 		return;
175 
176 	pmd = pmd_offset(pud, ppd->vaddr);
177 	if (pmd_none(*pmd)) {
178 		pte = ppd->pgtable_area;
179 		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
180 		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
181 		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
182 	}
183 
184 	if (pmd_large(*pmd))
185 		return;
186 
187 	pte = pte_offset_kernel(pmd, ppd->vaddr);
188 	if (pte_none(*pte))
189 		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
190 }
191 
__sme_map_range_pmd(struct sme_populate_pgd_data * ppd)192 static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
193 {
194 	while (ppd->vaddr < ppd->vaddr_end) {
195 		sme_populate_pgd_large(ppd);
196 
197 		ppd->vaddr += PMD_SIZE;
198 		ppd->paddr += PMD_SIZE;
199 	}
200 }
201 
__sme_map_range_pte(struct sme_populate_pgd_data * ppd)202 static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
203 {
204 	while (ppd->vaddr < ppd->vaddr_end) {
205 		sme_populate_pgd(ppd);
206 
207 		ppd->vaddr += PAGE_SIZE;
208 		ppd->paddr += PAGE_SIZE;
209 	}
210 }
211 
__sme_map_range(struct sme_populate_pgd_data * ppd,pmdval_t pmd_flags,pteval_t pte_flags)212 static void __head __sme_map_range(struct sme_populate_pgd_data *ppd,
213 				   pmdval_t pmd_flags, pteval_t pte_flags)
214 {
215 	unsigned long vaddr_end;
216 
217 	ppd->pmd_flags = pmd_flags;
218 	ppd->pte_flags = pte_flags;
219 
220 	/* Save original end value since we modify the struct value */
221 	vaddr_end = ppd->vaddr_end;
222 
223 	/* If start is not 2MB aligned, create PTE entries */
224 	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
225 	__sme_map_range_pte(ppd);
226 
227 	/* Create PMD entries */
228 	ppd->vaddr_end = vaddr_end & PMD_MASK;
229 	__sme_map_range_pmd(ppd);
230 
231 	/* If end is not 2MB aligned, create PTE entries */
232 	ppd->vaddr_end = vaddr_end;
233 	__sme_map_range_pte(ppd);
234 }
235 
sme_map_range_encrypted(struct sme_populate_pgd_data * ppd)236 static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
237 {
238 	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
239 }
240 
sme_map_range_decrypted(struct sme_populate_pgd_data * ppd)241 static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
242 {
243 	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
244 }
245 
sme_map_range_decrypted_wp(struct sme_populate_pgd_data * ppd)246 static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
247 {
248 	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
249 }
250 
sme_pgtable_calc(unsigned long len)251 static unsigned long __head sme_pgtable_calc(unsigned long len)
252 {
253 	unsigned long entries = 0, tables = 0;
254 
255 	/*
256 	 * Perform a relatively simplistic calculation of the pagetable
257 	 * entries that are needed. Those mappings will be covered mostly
258 	 * by 2MB PMD entries so we can conservatively calculate the required
259 	 * number of P4D, PUD and PMD structures needed to perform the
260 	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
261 	 * would be needed for the start and end portion of the address range
262 	 * that fall outside of the 2MB alignment.  This results in, at most,
263 	 * two extra pages to hold PTE entries for each range that is mapped.
264 	 * Incrementing the count for each covers the case where the addresses
265 	 * cross entries.
266 	 */
267 
268 	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
269 	if (PTRS_PER_P4D > 1)
270 		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
271 	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
272 	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
273 	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
274 
275 	/*
276 	 * Now calculate the added pagetable structures needed to populate
277 	 * the new pagetables.
278 	 */
279 
280 	if (PTRS_PER_P4D > 1)
281 		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
282 	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
283 	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
284 
285 	return entries + tables;
286 }
287 
sme_encrypt_kernel(struct boot_params * bp)288 void __head sme_encrypt_kernel(struct boot_params *bp)
289 {
290 	unsigned long workarea_start, workarea_end, workarea_len;
291 	unsigned long execute_start, execute_end, execute_len;
292 	unsigned long kernel_start, kernel_end, kernel_len;
293 	unsigned long initrd_start, initrd_end, initrd_len;
294 	struct sme_populate_pgd_data ppd;
295 	unsigned long pgtable_area_len;
296 	unsigned long decrypted_base;
297 
298 	/*
299 	 * This is early code, use an open coded check for SME instead of
300 	 * using cc_platform_has(). This eliminates worries about removing
301 	 * instrumentation or checking boot_cpu_data in the cc_platform_has()
302 	 * function.
303 	 */
304 	if (!sme_get_me_mask() ||
305 	    RIP_REL_REF(sev_status) & MSR_AMD64_SEV_ENABLED)
306 		return;
307 
308 	/*
309 	 * Prepare for encrypting the kernel and initrd by building new
310 	 * pagetables with the necessary attributes needed to encrypt the
311 	 * kernel in place.
312 	 *
313 	 *   One range of virtual addresses will map the memory occupied
314 	 *   by the kernel and initrd as encrypted.
315 	 *
316 	 *   Another range of virtual addresses will map the memory occupied
317 	 *   by the kernel and initrd as decrypted and write-protected.
318 	 *
319 	 *     The use of write-protect attribute will prevent any of the
320 	 *     memory from being cached.
321 	 */
322 
323 	kernel_start = (unsigned long)RIP_REL_REF(_text);
324 	kernel_end = ALIGN((unsigned long)RIP_REL_REF(_end), PMD_SIZE);
325 	kernel_len = kernel_end - kernel_start;
326 
327 	initrd_start = 0;
328 	initrd_end = 0;
329 	initrd_len = 0;
330 #ifdef CONFIG_BLK_DEV_INITRD
331 	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
332 		     ((unsigned long)bp->ext_ramdisk_size << 32);
333 	if (initrd_len) {
334 		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
335 			       ((unsigned long)bp->ext_ramdisk_image << 32);
336 		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
337 		initrd_len = initrd_end - initrd_start;
338 	}
339 #endif
340 
341 	/*
342 	 * Calculate required number of workarea bytes needed:
343 	 *   executable encryption area size:
344 	 *     stack page (PAGE_SIZE)
345 	 *     encryption routine page (PAGE_SIZE)
346 	 *     intermediate copy buffer (PMD_SIZE)
347 	 *   pagetable structures for the encryption of the kernel
348 	 *   pagetable structures for workarea (in case not currently mapped)
349 	 */
350 	execute_start = workarea_start = (unsigned long)RIP_REL_REF(sme_workarea);
351 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
352 	execute_len = execute_end - execute_start;
353 
354 	/*
355 	 * One PGD for both encrypted and decrypted mappings and a set of
356 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
357 	 */
358 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
359 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
360 	if (initrd_len)
361 		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
362 
363 	/* PUDs and PMDs needed in the current pagetables for the workarea */
364 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
365 
366 	/*
367 	 * The total workarea includes the executable encryption area and
368 	 * the pagetable area. The start of the workarea is already 2MB
369 	 * aligned, align the end of the workarea on a 2MB boundary so that
370 	 * we don't try to create/allocate PTE entries from the workarea
371 	 * before it is mapped.
372 	 */
373 	workarea_len = execute_len + pgtable_area_len;
374 	workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
375 
376 	/*
377 	 * Set the address to the start of where newly created pagetable
378 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
379 	 * structures are created when the workarea is added to the current
380 	 * pagetables and when the new encrypted and decrypted kernel
381 	 * mappings are populated.
382 	 */
383 	ppd.pgtable_area = (void *)execute_end;
384 
385 	/*
386 	 * Make sure the current pagetable structure has entries for
387 	 * addressing the workarea.
388 	 */
389 	ppd.pgd = (pgd_t *)native_read_cr3_pa();
390 	ppd.paddr = workarea_start;
391 	ppd.vaddr = workarea_start;
392 	ppd.vaddr_end = workarea_end;
393 	sme_map_range_decrypted(&ppd);
394 
395 	/* Flush the TLB - no globals so cr3 is enough */
396 	native_write_cr3(__native_read_cr3());
397 
398 	/*
399 	 * A new pagetable structure is being built to allow for the kernel
400 	 * and initrd to be encrypted. It starts with an empty PGD that will
401 	 * then be populated with new PUDs and PMDs as the encrypted and
402 	 * decrypted kernel mappings are created.
403 	 */
404 	ppd.pgd = ppd.pgtable_area;
405 	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
406 	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
407 
408 	/*
409 	 * A different PGD index/entry must be used to get different
410 	 * pagetable entries for the decrypted mapping. Choose the next
411 	 * PGD index and convert it to a virtual address to be used as
412 	 * the base of the mapping.
413 	 */
414 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
415 	if (initrd_len) {
416 		unsigned long check_base;
417 
418 		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
419 		decrypted_base = max(decrypted_base, check_base);
420 	}
421 	decrypted_base <<= PGDIR_SHIFT;
422 
423 	/* Add encrypted kernel (identity) mappings */
424 	ppd.paddr = kernel_start;
425 	ppd.vaddr = kernel_start;
426 	ppd.vaddr_end = kernel_end;
427 	sme_map_range_encrypted(&ppd);
428 
429 	/* Add decrypted, write-protected kernel (non-identity) mappings */
430 	ppd.paddr = kernel_start;
431 	ppd.vaddr = kernel_start + decrypted_base;
432 	ppd.vaddr_end = kernel_end + decrypted_base;
433 	sme_map_range_decrypted_wp(&ppd);
434 
435 	if (initrd_len) {
436 		/* Add encrypted initrd (identity) mappings */
437 		ppd.paddr = initrd_start;
438 		ppd.vaddr = initrd_start;
439 		ppd.vaddr_end = initrd_end;
440 		sme_map_range_encrypted(&ppd);
441 		/*
442 		 * Add decrypted, write-protected initrd (non-identity) mappings
443 		 */
444 		ppd.paddr = initrd_start;
445 		ppd.vaddr = initrd_start + decrypted_base;
446 		ppd.vaddr_end = initrd_end + decrypted_base;
447 		sme_map_range_decrypted_wp(&ppd);
448 	}
449 
450 	/* Add decrypted workarea mappings to both kernel mappings */
451 	ppd.paddr = workarea_start;
452 	ppd.vaddr = workarea_start;
453 	ppd.vaddr_end = workarea_end;
454 	sme_map_range_decrypted(&ppd);
455 
456 	ppd.paddr = workarea_start;
457 	ppd.vaddr = workarea_start + decrypted_base;
458 	ppd.vaddr_end = workarea_end + decrypted_base;
459 	sme_map_range_decrypted(&ppd);
460 
461 	/* Perform the encryption */
462 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
463 			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
464 
465 	if (initrd_len)
466 		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
467 				    initrd_len, workarea_start,
468 				    (unsigned long)ppd.pgd);
469 
470 	/*
471 	 * At this point we are running encrypted.  Remove the mappings for
472 	 * the decrypted areas - all that is needed for this is to remove
473 	 * the PGD entry/entries.
474 	 */
475 	ppd.vaddr = kernel_start + decrypted_base;
476 	ppd.vaddr_end = kernel_end + decrypted_base;
477 	sme_clear_pgd(&ppd);
478 
479 	if (initrd_len) {
480 		ppd.vaddr = initrd_start + decrypted_base;
481 		ppd.vaddr_end = initrd_end + decrypted_base;
482 		sme_clear_pgd(&ppd);
483 	}
484 
485 	ppd.vaddr = workarea_start + decrypted_base;
486 	ppd.vaddr_end = workarea_end + decrypted_base;
487 	sme_clear_pgd(&ppd);
488 
489 	/* Flush the TLB - no globals so cr3 is enough */
490 	native_write_cr3(__native_read_cr3());
491 }
492 
sme_enable(struct boot_params * bp)493 void __head sme_enable(struct boot_params *bp)
494 {
495 	unsigned int eax, ebx, ecx, edx;
496 	unsigned long feature_mask;
497 	unsigned long me_mask;
498 	bool snp;
499 	u64 msr;
500 
501 	snp = snp_init(bp);
502 
503 	/* Check for the SME/SEV support leaf */
504 	eax = 0x80000000;
505 	ecx = 0;
506 	native_cpuid(&eax, &ebx, &ecx, &edx);
507 	if (eax < 0x8000001f)
508 		return;
509 
510 #define AMD_SME_BIT	BIT(0)
511 #define AMD_SEV_BIT	BIT(1)
512 
513 	/*
514 	 * Check for the SME/SEV feature:
515 	 *   CPUID Fn8000_001F[EAX]
516 	 *   - Bit 0 - Secure Memory Encryption support
517 	 *   - Bit 1 - Secure Encrypted Virtualization support
518 	 *   CPUID Fn8000_001F[EBX]
519 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
520 	 */
521 	eax = 0x8000001f;
522 	ecx = 0;
523 	native_cpuid(&eax, &ebx, &ecx, &edx);
524 	/* Check whether SEV or SME is supported */
525 	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
526 		return;
527 
528 	me_mask = 1UL << (ebx & 0x3f);
529 
530 	/* Check the SEV MSR whether SEV or SME is enabled */
531 	RIP_REL_REF(sev_status) = msr = __rdmsr(MSR_AMD64_SEV);
532 	feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
533 
534 	/* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */
535 	if (snp && !(msr & MSR_AMD64_SEV_SNP_ENABLED))
536 		snp_abort();
537 
538 	/* Check if memory encryption is enabled */
539 	if (feature_mask == AMD_SME_BIT) {
540 		if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION))
541 			return;
542 
543 		/*
544 		 * No SME if Hypervisor bit is set. This check is here to
545 		 * prevent a guest from trying to enable SME. For running as a
546 		 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
547 		 * might be other hypervisors which emulate that MSR as non-zero
548 		 * or even pass it through to the guest.
549 		 * A malicious hypervisor can still trick a guest into this
550 		 * path, but there is no way to protect against that.
551 		 */
552 		eax = 1;
553 		ecx = 0;
554 		native_cpuid(&eax, &ebx, &ecx, &edx);
555 		if (ecx & BIT(31))
556 			return;
557 
558 		/* For SME, check the SYSCFG MSR */
559 		msr = __rdmsr(MSR_AMD64_SYSCFG);
560 		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
561 			return;
562 	}
563 
564 	RIP_REL_REF(sme_me_mask) = me_mask;
565 	physical_mask &= ~me_mask;
566 	cc_vendor = CC_VENDOR_AMD;
567 	cc_set_mask(me_mask);
568 }
569