1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "transaction.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "tree-mod-log.h"
16 #include "fs.h"
17
18 struct kmem_cache *btrfs_delayed_ref_head_cachep;
19 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
20 struct kmem_cache *btrfs_delayed_data_ref_cachep;
21 struct kmem_cache *btrfs_delayed_extent_op_cachep;
22 /*
23 * delayed back reference update tracking. For subvolume trees
24 * we queue up extent allocations and backref maintenance for
25 * delayed processing. This avoids deep call chains where we
26 * add extents in the middle of btrfs_search_slot, and it allows
27 * us to buffer up frequently modified backrefs in an rb tree instead
28 * of hammering updates on the extent allocation tree.
29 */
30
btrfs_check_space_for_delayed_refs(struct btrfs_fs_info * fs_info)31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32 {
33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35 bool ret = false;
36 u64 reserved;
37
38 spin_lock(&global_rsv->lock);
39 reserved = global_rsv->reserved;
40 spin_unlock(&global_rsv->lock);
41
42 /*
43 * Since the global reserve is just kind of magic we don't really want
44 * to rely on it to save our bacon, so if our size is more than the
45 * delayed_refs_rsv and the global rsv then it's time to think about
46 * bailing.
47 */
48 spin_lock(&delayed_refs_rsv->lock);
49 reserved += delayed_refs_rsv->reserved;
50 if (delayed_refs_rsv->size >= reserved)
51 ret = true;
52 spin_unlock(&delayed_refs_rsv->lock);
53 return ret;
54 }
55
56 /*
57 * Release a ref head's reservation.
58 *
59 * @fs_info: the filesystem
60 * @nr: number of items to drop
61 *
62 * Drops the delayed ref head's count from the delayed refs rsv and free any
63 * excess reservation we had.
64 */
btrfs_delayed_refs_rsv_release(struct btrfs_fs_info * fs_info,int nr)65 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
66 {
67 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
68 const u64 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr);
69 u64 released = 0;
70
71 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
72 if (released)
73 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
74 0, released, 0);
75 }
76
77 /*
78 * Adjust the size of the delayed refs rsv.
79 *
80 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
81 * it'll calculate the additional size and add it to the delayed_refs_rsv.
82 */
btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle * trans)83 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
84 {
85 struct btrfs_fs_info *fs_info = trans->fs_info;
86 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
87 u64 num_bytes;
88
89 if (!trans->delayed_ref_updates)
90 return;
91
92 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
93 trans->delayed_ref_updates);
94
95 spin_lock(&delayed_rsv->lock);
96 delayed_rsv->size += num_bytes;
97 delayed_rsv->full = false;
98 spin_unlock(&delayed_rsv->lock);
99 trans->delayed_ref_updates = 0;
100 }
101
102 /*
103 * Transfer bytes to our delayed refs rsv.
104 *
105 * @fs_info: the filesystem
106 * @num_bytes: number of bytes to transfer
107 *
108 * This transfers up to the num_bytes amount, previously reserved, to the
109 * delayed_refs_rsv. Any extra bytes are returned to the space info.
110 */
btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info * fs_info,u64 num_bytes)111 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
112 u64 num_bytes)
113 {
114 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
115 u64 to_free = 0;
116
117 spin_lock(&delayed_refs_rsv->lock);
118 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
119 u64 delta = delayed_refs_rsv->size -
120 delayed_refs_rsv->reserved;
121 if (num_bytes > delta) {
122 to_free = num_bytes - delta;
123 num_bytes = delta;
124 }
125 } else {
126 to_free = num_bytes;
127 num_bytes = 0;
128 }
129
130 if (num_bytes)
131 delayed_refs_rsv->reserved += num_bytes;
132 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
133 delayed_refs_rsv->full = true;
134 spin_unlock(&delayed_refs_rsv->lock);
135
136 if (num_bytes)
137 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
138 0, num_bytes, 1);
139 if (to_free)
140 btrfs_space_info_free_bytes_may_use(fs_info,
141 delayed_refs_rsv->space_info, to_free);
142 }
143
144 /*
145 * Refill based on our delayed refs usage.
146 *
147 * @fs_info: the filesystem
148 * @flush: control how we can flush for this reservation.
149 *
150 * This will refill the delayed block_rsv up to 1 items size worth of space and
151 * will return -ENOSPC if we can't make the reservation.
152 */
btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush)153 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
154 enum btrfs_reserve_flush_enum flush)
155 {
156 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
157 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
158 u64 num_bytes = 0;
159 u64 refilled_bytes;
160 u64 to_free;
161 int ret = -ENOSPC;
162
163 spin_lock(&block_rsv->lock);
164 if (block_rsv->reserved < block_rsv->size) {
165 num_bytes = block_rsv->size - block_rsv->reserved;
166 num_bytes = min(num_bytes, limit);
167 }
168 spin_unlock(&block_rsv->lock);
169
170 if (!num_bytes)
171 return 0;
172
173 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
174 if (ret)
175 return ret;
176
177 /*
178 * We may have raced with someone else, so check again if we the block
179 * reserve is still not full and release any excess space.
180 */
181 spin_lock(&block_rsv->lock);
182 if (block_rsv->reserved < block_rsv->size) {
183 u64 needed = block_rsv->size - block_rsv->reserved;
184
185 if (num_bytes >= needed) {
186 block_rsv->reserved += needed;
187 block_rsv->full = true;
188 to_free = num_bytes - needed;
189 refilled_bytes = needed;
190 } else {
191 block_rsv->reserved += num_bytes;
192 to_free = 0;
193 refilled_bytes = num_bytes;
194 }
195 } else {
196 to_free = num_bytes;
197 refilled_bytes = 0;
198 }
199 spin_unlock(&block_rsv->lock);
200
201 if (to_free > 0)
202 btrfs_space_info_free_bytes_may_use(fs_info, block_rsv->space_info,
203 to_free);
204
205 if (refilled_bytes > 0)
206 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
207 refilled_bytes, 1);
208 return 0;
209 }
210
211 /*
212 * compare two delayed tree backrefs with same bytenr and type
213 */
comp_tree_refs(struct btrfs_delayed_tree_ref * ref1,struct btrfs_delayed_tree_ref * ref2)214 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
215 struct btrfs_delayed_tree_ref *ref2)
216 {
217 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
218 if (ref1->root < ref2->root)
219 return -1;
220 if (ref1->root > ref2->root)
221 return 1;
222 } else {
223 if (ref1->parent < ref2->parent)
224 return -1;
225 if (ref1->parent > ref2->parent)
226 return 1;
227 }
228 return 0;
229 }
230
231 /*
232 * compare two delayed data backrefs with same bytenr and type
233 */
comp_data_refs(struct btrfs_delayed_data_ref * ref1,struct btrfs_delayed_data_ref * ref2)234 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
235 struct btrfs_delayed_data_ref *ref2)
236 {
237 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
238 if (ref1->root < ref2->root)
239 return -1;
240 if (ref1->root > ref2->root)
241 return 1;
242 if (ref1->objectid < ref2->objectid)
243 return -1;
244 if (ref1->objectid > ref2->objectid)
245 return 1;
246 if (ref1->offset < ref2->offset)
247 return -1;
248 if (ref1->offset > ref2->offset)
249 return 1;
250 } else {
251 if (ref1->parent < ref2->parent)
252 return -1;
253 if (ref1->parent > ref2->parent)
254 return 1;
255 }
256 return 0;
257 }
258
comp_refs(struct btrfs_delayed_ref_node * ref1,struct btrfs_delayed_ref_node * ref2,bool check_seq)259 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
260 struct btrfs_delayed_ref_node *ref2,
261 bool check_seq)
262 {
263 int ret = 0;
264
265 if (ref1->type < ref2->type)
266 return -1;
267 if (ref1->type > ref2->type)
268 return 1;
269 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
270 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
271 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
272 btrfs_delayed_node_to_tree_ref(ref2));
273 else
274 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
275 btrfs_delayed_node_to_data_ref(ref2));
276 if (ret)
277 return ret;
278 if (check_seq) {
279 if (ref1->seq < ref2->seq)
280 return -1;
281 if (ref1->seq > ref2->seq)
282 return 1;
283 }
284 return 0;
285 }
286
287 /* insert a new ref to head ref rbtree */
htree_insert(struct rb_root_cached * root,struct rb_node * node)288 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
289 struct rb_node *node)
290 {
291 struct rb_node **p = &root->rb_root.rb_node;
292 struct rb_node *parent_node = NULL;
293 struct btrfs_delayed_ref_head *entry;
294 struct btrfs_delayed_ref_head *ins;
295 u64 bytenr;
296 bool leftmost = true;
297
298 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
299 bytenr = ins->bytenr;
300 while (*p) {
301 parent_node = *p;
302 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
303 href_node);
304
305 if (bytenr < entry->bytenr) {
306 p = &(*p)->rb_left;
307 } else if (bytenr > entry->bytenr) {
308 p = &(*p)->rb_right;
309 leftmost = false;
310 } else {
311 return entry;
312 }
313 }
314
315 rb_link_node(node, parent_node, p);
316 rb_insert_color_cached(node, root, leftmost);
317 return NULL;
318 }
319
tree_insert(struct rb_root_cached * root,struct btrfs_delayed_ref_node * ins)320 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
321 struct btrfs_delayed_ref_node *ins)
322 {
323 struct rb_node **p = &root->rb_root.rb_node;
324 struct rb_node *node = &ins->ref_node;
325 struct rb_node *parent_node = NULL;
326 struct btrfs_delayed_ref_node *entry;
327 bool leftmost = true;
328
329 while (*p) {
330 int comp;
331
332 parent_node = *p;
333 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
334 ref_node);
335 comp = comp_refs(ins, entry, true);
336 if (comp < 0) {
337 p = &(*p)->rb_left;
338 } else if (comp > 0) {
339 p = &(*p)->rb_right;
340 leftmost = false;
341 } else {
342 return entry;
343 }
344 }
345
346 rb_link_node(node, parent_node, p);
347 rb_insert_color_cached(node, root, leftmost);
348 return NULL;
349 }
350
find_first_ref_head(struct btrfs_delayed_ref_root * dr)351 static struct btrfs_delayed_ref_head *find_first_ref_head(
352 struct btrfs_delayed_ref_root *dr)
353 {
354 struct rb_node *n;
355 struct btrfs_delayed_ref_head *entry;
356
357 n = rb_first_cached(&dr->href_root);
358 if (!n)
359 return NULL;
360
361 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
362
363 return entry;
364 }
365
366 /*
367 * Find a head entry based on bytenr. This returns the delayed ref head if it
368 * was able to find one, or NULL if nothing was in that spot. If return_bigger
369 * is given, the next bigger entry is returned if no exact match is found.
370 */
find_ref_head(struct btrfs_delayed_ref_root * dr,u64 bytenr,bool return_bigger)371 static struct btrfs_delayed_ref_head *find_ref_head(
372 struct btrfs_delayed_ref_root *dr, u64 bytenr,
373 bool return_bigger)
374 {
375 struct rb_root *root = &dr->href_root.rb_root;
376 struct rb_node *n;
377 struct btrfs_delayed_ref_head *entry;
378
379 n = root->rb_node;
380 entry = NULL;
381 while (n) {
382 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
383
384 if (bytenr < entry->bytenr)
385 n = n->rb_left;
386 else if (bytenr > entry->bytenr)
387 n = n->rb_right;
388 else
389 return entry;
390 }
391 if (entry && return_bigger) {
392 if (bytenr > entry->bytenr) {
393 n = rb_next(&entry->href_node);
394 if (!n)
395 return NULL;
396 entry = rb_entry(n, struct btrfs_delayed_ref_head,
397 href_node);
398 }
399 return entry;
400 }
401 return NULL;
402 }
403
btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)404 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
405 struct btrfs_delayed_ref_head *head)
406 {
407 lockdep_assert_held(&delayed_refs->lock);
408 if (mutex_trylock(&head->mutex))
409 return 0;
410
411 refcount_inc(&head->refs);
412 spin_unlock(&delayed_refs->lock);
413
414 mutex_lock(&head->mutex);
415 spin_lock(&delayed_refs->lock);
416 if (RB_EMPTY_NODE(&head->href_node)) {
417 mutex_unlock(&head->mutex);
418 btrfs_put_delayed_ref_head(head);
419 return -EAGAIN;
420 }
421 btrfs_put_delayed_ref_head(head);
422 return 0;
423 }
424
drop_delayed_ref(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref)425 static inline void drop_delayed_ref(struct btrfs_delayed_ref_root *delayed_refs,
426 struct btrfs_delayed_ref_head *head,
427 struct btrfs_delayed_ref_node *ref)
428 {
429 lockdep_assert_held(&head->lock);
430 rb_erase_cached(&ref->ref_node, &head->ref_tree);
431 RB_CLEAR_NODE(&ref->ref_node);
432 if (!list_empty(&ref->add_list))
433 list_del(&ref->add_list);
434 btrfs_put_delayed_ref(ref);
435 atomic_dec(&delayed_refs->num_entries);
436 }
437
merge_ref(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref,u64 seq)438 static bool merge_ref(struct btrfs_delayed_ref_root *delayed_refs,
439 struct btrfs_delayed_ref_head *head,
440 struct btrfs_delayed_ref_node *ref,
441 u64 seq)
442 {
443 struct btrfs_delayed_ref_node *next;
444 struct rb_node *node = rb_next(&ref->ref_node);
445 bool done = false;
446
447 while (!done && node) {
448 int mod;
449
450 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
451 node = rb_next(node);
452 if (seq && next->seq >= seq)
453 break;
454 if (comp_refs(ref, next, false))
455 break;
456
457 if (ref->action == next->action) {
458 mod = next->ref_mod;
459 } else {
460 if (ref->ref_mod < next->ref_mod) {
461 swap(ref, next);
462 done = true;
463 }
464 mod = -next->ref_mod;
465 }
466
467 drop_delayed_ref(delayed_refs, head, next);
468 ref->ref_mod += mod;
469 if (ref->ref_mod == 0) {
470 drop_delayed_ref(delayed_refs, head, ref);
471 done = true;
472 } else {
473 /*
474 * Can't have multiples of the same ref on a tree block.
475 */
476 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
477 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
478 }
479 }
480
481 return done;
482 }
483
btrfs_merge_delayed_refs(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)484 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
485 struct btrfs_delayed_ref_root *delayed_refs,
486 struct btrfs_delayed_ref_head *head)
487 {
488 struct btrfs_delayed_ref_node *ref;
489 struct rb_node *node;
490 u64 seq = 0;
491
492 lockdep_assert_held(&head->lock);
493
494 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
495 return;
496
497 /* We don't have too many refs to merge for data. */
498 if (head->is_data)
499 return;
500
501 seq = btrfs_tree_mod_log_lowest_seq(fs_info);
502 again:
503 for (node = rb_first_cached(&head->ref_tree); node;
504 node = rb_next(node)) {
505 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
506 if (seq && ref->seq >= seq)
507 continue;
508 if (merge_ref(delayed_refs, head, ref, seq))
509 goto again;
510 }
511 }
512
btrfs_check_delayed_seq(struct btrfs_fs_info * fs_info,u64 seq)513 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
514 {
515 int ret = 0;
516 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
517
518 if (min_seq != 0 && seq >= min_seq) {
519 btrfs_debug(fs_info,
520 "holding back delayed_ref %llu, lowest is %llu",
521 seq, min_seq);
522 ret = 1;
523 }
524
525 return ret;
526 }
527
btrfs_select_ref_head(struct btrfs_delayed_ref_root * delayed_refs)528 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
529 struct btrfs_delayed_ref_root *delayed_refs)
530 {
531 struct btrfs_delayed_ref_head *head;
532
533 lockdep_assert_held(&delayed_refs->lock);
534 again:
535 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
536 true);
537 if (!head && delayed_refs->run_delayed_start != 0) {
538 delayed_refs->run_delayed_start = 0;
539 head = find_first_ref_head(delayed_refs);
540 }
541 if (!head)
542 return NULL;
543
544 while (head->processing) {
545 struct rb_node *node;
546
547 node = rb_next(&head->href_node);
548 if (!node) {
549 if (delayed_refs->run_delayed_start == 0)
550 return NULL;
551 delayed_refs->run_delayed_start = 0;
552 goto again;
553 }
554 head = rb_entry(node, struct btrfs_delayed_ref_head,
555 href_node);
556 }
557
558 head->processing = true;
559 WARN_ON(delayed_refs->num_heads_ready == 0);
560 delayed_refs->num_heads_ready--;
561 delayed_refs->run_delayed_start = head->bytenr +
562 head->num_bytes;
563 return head;
564 }
565
btrfs_delete_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)566 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
567 struct btrfs_delayed_ref_head *head)
568 {
569 lockdep_assert_held(&delayed_refs->lock);
570 lockdep_assert_held(&head->lock);
571
572 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
573 RB_CLEAR_NODE(&head->href_node);
574 atomic_dec(&delayed_refs->num_entries);
575 delayed_refs->num_heads--;
576 if (!head->processing)
577 delayed_refs->num_heads_ready--;
578 }
579
580 /*
581 * Helper to insert the ref_node to the tail or merge with tail.
582 *
583 * Return false if the ref was inserted.
584 * Return true if the ref was merged into an existing one (and therefore can be
585 * freed by the caller).
586 */
insert_delayed_ref(struct btrfs_delayed_ref_root * root,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * ref)587 static bool insert_delayed_ref(struct btrfs_delayed_ref_root *root,
588 struct btrfs_delayed_ref_head *href,
589 struct btrfs_delayed_ref_node *ref)
590 {
591 struct btrfs_delayed_ref_node *exist;
592 int mod;
593
594 spin_lock(&href->lock);
595 exist = tree_insert(&href->ref_tree, ref);
596 if (!exist) {
597 if (ref->action == BTRFS_ADD_DELAYED_REF)
598 list_add_tail(&ref->add_list, &href->ref_add_list);
599 atomic_inc(&root->num_entries);
600 spin_unlock(&href->lock);
601 return false;
602 }
603
604 /* Now we are sure we can merge */
605 if (exist->action == ref->action) {
606 mod = ref->ref_mod;
607 } else {
608 /* Need to change action */
609 if (exist->ref_mod < ref->ref_mod) {
610 exist->action = ref->action;
611 mod = -exist->ref_mod;
612 exist->ref_mod = ref->ref_mod;
613 if (ref->action == BTRFS_ADD_DELAYED_REF)
614 list_add_tail(&exist->add_list,
615 &href->ref_add_list);
616 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
617 ASSERT(!list_empty(&exist->add_list));
618 list_del_init(&exist->add_list);
619 } else {
620 ASSERT(0);
621 }
622 } else
623 mod = -ref->ref_mod;
624 }
625 exist->ref_mod += mod;
626
627 /* remove existing tail if its ref_mod is zero */
628 if (exist->ref_mod == 0)
629 drop_delayed_ref(root, href, exist);
630 spin_unlock(&href->lock);
631 return true;
632 }
633
634 /*
635 * helper function to update the accounting in the head ref
636 * existing and update must have the same bytenr
637 */
update_existing_head_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * existing,struct btrfs_delayed_ref_head * update)638 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
639 struct btrfs_delayed_ref_head *existing,
640 struct btrfs_delayed_ref_head *update)
641 {
642 struct btrfs_delayed_ref_root *delayed_refs =
643 &trans->transaction->delayed_refs;
644 struct btrfs_fs_info *fs_info = trans->fs_info;
645 int old_ref_mod;
646
647 BUG_ON(existing->is_data != update->is_data);
648
649 spin_lock(&existing->lock);
650 if (update->must_insert_reserved) {
651 /* if the extent was freed and then
652 * reallocated before the delayed ref
653 * entries were processed, we can end up
654 * with an existing head ref without
655 * the must_insert_reserved flag set.
656 * Set it again here
657 */
658 existing->must_insert_reserved = update->must_insert_reserved;
659
660 /*
661 * update the num_bytes so we make sure the accounting
662 * is done correctly
663 */
664 existing->num_bytes = update->num_bytes;
665
666 }
667
668 if (update->extent_op) {
669 if (!existing->extent_op) {
670 existing->extent_op = update->extent_op;
671 } else {
672 if (update->extent_op->update_key) {
673 memcpy(&existing->extent_op->key,
674 &update->extent_op->key,
675 sizeof(update->extent_op->key));
676 existing->extent_op->update_key = true;
677 }
678 if (update->extent_op->update_flags) {
679 existing->extent_op->flags_to_set |=
680 update->extent_op->flags_to_set;
681 existing->extent_op->update_flags = true;
682 }
683 btrfs_free_delayed_extent_op(update->extent_op);
684 }
685 }
686 /*
687 * update the reference mod on the head to reflect this new operation,
688 * only need the lock for this case cause we could be processing it
689 * currently, for refs we just added we know we're a-ok.
690 */
691 old_ref_mod = existing->total_ref_mod;
692 existing->ref_mod += update->ref_mod;
693 existing->total_ref_mod += update->ref_mod;
694
695 /*
696 * If we are going to from a positive ref mod to a negative or vice
697 * versa we need to make sure to adjust pending_csums accordingly.
698 */
699 if (existing->is_data) {
700 u64 csum_leaves =
701 btrfs_csum_bytes_to_leaves(fs_info,
702 existing->num_bytes);
703
704 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
705 delayed_refs->pending_csums -= existing->num_bytes;
706 btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
707 }
708 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
709 delayed_refs->pending_csums += existing->num_bytes;
710 trans->delayed_ref_updates += csum_leaves;
711 }
712 }
713
714 spin_unlock(&existing->lock);
715 }
716
init_delayed_ref_head(struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,u64 bytenr,u64 num_bytes,u64 ref_root,u64 reserved,int action,bool is_data,bool is_system)717 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
718 struct btrfs_qgroup_extent_record *qrecord,
719 u64 bytenr, u64 num_bytes, u64 ref_root,
720 u64 reserved, int action, bool is_data,
721 bool is_system)
722 {
723 int count_mod = 1;
724 bool must_insert_reserved = false;
725
726 /* If reserved is provided, it must be a data extent. */
727 BUG_ON(!is_data && reserved);
728
729 switch (action) {
730 case BTRFS_UPDATE_DELAYED_HEAD:
731 count_mod = 0;
732 break;
733 case BTRFS_DROP_DELAYED_REF:
734 /*
735 * The head node stores the sum of all the mods, so dropping a ref
736 * should drop the sum in the head node by one.
737 */
738 count_mod = -1;
739 break;
740 case BTRFS_ADD_DELAYED_EXTENT:
741 /*
742 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
743 * reserved accounting when the extent is finally added, or if a
744 * later modification deletes the delayed ref without ever
745 * inserting the extent into the extent allocation tree.
746 * ref->must_insert_reserved is the flag used to record that
747 * accounting mods are required.
748 *
749 * Once we record must_insert_reserved, switch the action to
750 * BTRFS_ADD_DELAYED_REF because other special casing is not
751 * required.
752 */
753 must_insert_reserved = true;
754 break;
755 }
756
757 refcount_set(&head_ref->refs, 1);
758 head_ref->bytenr = bytenr;
759 head_ref->num_bytes = num_bytes;
760 head_ref->ref_mod = count_mod;
761 head_ref->must_insert_reserved = must_insert_reserved;
762 head_ref->is_data = is_data;
763 head_ref->is_system = is_system;
764 head_ref->ref_tree = RB_ROOT_CACHED;
765 INIT_LIST_HEAD(&head_ref->ref_add_list);
766 RB_CLEAR_NODE(&head_ref->href_node);
767 head_ref->processing = false;
768 head_ref->total_ref_mod = count_mod;
769 spin_lock_init(&head_ref->lock);
770 mutex_init(&head_ref->mutex);
771
772 if (qrecord) {
773 if (ref_root && reserved) {
774 qrecord->data_rsv = reserved;
775 qrecord->data_rsv_refroot = ref_root;
776 }
777 qrecord->bytenr = bytenr;
778 qrecord->num_bytes = num_bytes;
779 qrecord->old_roots = NULL;
780 }
781 }
782
783 /*
784 * helper function to actually insert a head node into the rbtree.
785 * this does all the dirty work in terms of maintaining the correct
786 * overall modification count.
787 */
788 static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,int action,bool * qrecord_inserted_ret)789 add_delayed_ref_head(struct btrfs_trans_handle *trans,
790 struct btrfs_delayed_ref_head *head_ref,
791 struct btrfs_qgroup_extent_record *qrecord,
792 int action, bool *qrecord_inserted_ret)
793 {
794 struct btrfs_delayed_ref_head *existing;
795 struct btrfs_delayed_ref_root *delayed_refs;
796 bool qrecord_inserted = false;
797
798 delayed_refs = &trans->transaction->delayed_refs;
799
800 /* Record qgroup extent info if provided */
801 if (qrecord) {
802 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
803 delayed_refs, qrecord))
804 kfree(qrecord);
805 else
806 qrecord_inserted = true;
807 }
808
809 trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
810
811 existing = htree_insert(&delayed_refs->href_root,
812 &head_ref->href_node);
813 if (existing) {
814 update_existing_head_ref(trans, existing, head_ref);
815 /*
816 * we've updated the existing ref, free the newly
817 * allocated ref
818 */
819 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
820 head_ref = existing;
821 } else {
822 if (head_ref->is_data && head_ref->ref_mod < 0) {
823 delayed_refs->pending_csums += head_ref->num_bytes;
824 trans->delayed_ref_updates +=
825 btrfs_csum_bytes_to_leaves(trans->fs_info,
826 head_ref->num_bytes);
827 }
828 delayed_refs->num_heads++;
829 delayed_refs->num_heads_ready++;
830 atomic_inc(&delayed_refs->num_entries);
831 trans->delayed_ref_updates++;
832 }
833 if (qrecord_inserted_ret)
834 *qrecord_inserted_ret = qrecord_inserted;
835
836 return head_ref;
837 }
838
839 /*
840 * init_delayed_ref_common - Initialize the structure which represents a
841 * modification to a an extent.
842 *
843 * @fs_info: Internal to the mounted filesystem mount structure.
844 *
845 * @ref: The structure which is going to be initialized.
846 *
847 * @bytenr: The logical address of the extent for which a modification is
848 * going to be recorded.
849 *
850 * @num_bytes: Size of the extent whose modification is being recorded.
851 *
852 * @ref_root: The id of the root where this modification has originated, this
853 * can be either one of the well-known metadata trees or the
854 * subvolume id which references this extent.
855 *
856 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
857 * BTRFS_ADD_DELAYED_EXTENT
858 *
859 * @ref_type: Holds the type of the extent which is being recorded, can be
860 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
861 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
862 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
863 */
init_delayed_ref_common(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * ref,u64 bytenr,u64 num_bytes,u64 ref_root,int action,u8 ref_type)864 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
865 struct btrfs_delayed_ref_node *ref,
866 u64 bytenr, u64 num_bytes, u64 ref_root,
867 int action, u8 ref_type)
868 {
869 u64 seq = 0;
870
871 if (action == BTRFS_ADD_DELAYED_EXTENT)
872 action = BTRFS_ADD_DELAYED_REF;
873
874 if (is_fstree(ref_root))
875 seq = atomic64_read(&fs_info->tree_mod_seq);
876
877 refcount_set(&ref->refs, 1);
878 ref->bytenr = bytenr;
879 ref->num_bytes = num_bytes;
880 ref->ref_mod = 1;
881 ref->action = action;
882 ref->seq = seq;
883 ref->type = ref_type;
884 RB_CLEAR_NODE(&ref->ref_node);
885 INIT_LIST_HEAD(&ref->add_list);
886 }
887
888 /*
889 * add a delayed tree ref. This does all of the accounting required
890 * to make sure the delayed ref is eventually processed before this
891 * transaction commits.
892 */
btrfs_add_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op)893 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
894 struct btrfs_ref *generic_ref,
895 struct btrfs_delayed_extent_op *extent_op)
896 {
897 struct btrfs_fs_info *fs_info = trans->fs_info;
898 struct btrfs_delayed_tree_ref *ref;
899 struct btrfs_delayed_ref_head *head_ref;
900 struct btrfs_delayed_ref_root *delayed_refs;
901 struct btrfs_qgroup_extent_record *record = NULL;
902 bool qrecord_inserted;
903 bool is_system;
904 bool merged;
905 int action = generic_ref->action;
906 int level = generic_ref->tree_ref.level;
907 u64 bytenr = generic_ref->bytenr;
908 u64 num_bytes = generic_ref->len;
909 u64 parent = generic_ref->parent;
910 u8 ref_type;
911
912 is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
913
914 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
915 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
916 if (!ref)
917 return -ENOMEM;
918
919 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
920 if (!head_ref) {
921 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
922 return -ENOMEM;
923 }
924
925 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
926 !generic_ref->skip_qgroup) {
927 record = kzalloc(sizeof(*record), GFP_NOFS);
928 if (!record) {
929 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
930 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
931 return -ENOMEM;
932 }
933 }
934
935 if (parent)
936 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
937 else
938 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
939
940 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
941 generic_ref->tree_ref.owning_root, action,
942 ref_type);
943 ref->root = generic_ref->tree_ref.owning_root;
944 ref->parent = parent;
945 ref->level = level;
946
947 init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
948 generic_ref->tree_ref.owning_root, 0, action,
949 false, is_system);
950 head_ref->extent_op = extent_op;
951
952 delayed_refs = &trans->transaction->delayed_refs;
953 spin_lock(&delayed_refs->lock);
954
955 /*
956 * insert both the head node and the new ref without dropping
957 * the spin lock
958 */
959 head_ref = add_delayed_ref_head(trans, head_ref, record,
960 action, &qrecord_inserted);
961
962 merged = insert_delayed_ref(delayed_refs, head_ref, &ref->node);
963 spin_unlock(&delayed_refs->lock);
964
965 /*
966 * Need to update the delayed_refs_rsv with any changes we may have
967 * made.
968 */
969 btrfs_update_delayed_refs_rsv(trans);
970
971 trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
972 action == BTRFS_ADD_DELAYED_EXTENT ?
973 BTRFS_ADD_DELAYED_REF : action);
974 if (merged)
975 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
976
977 if (qrecord_inserted)
978 btrfs_qgroup_trace_extent_post(trans, record);
979
980 return 0;
981 }
982
983 /*
984 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
985 */
btrfs_add_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,u64 reserved)986 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
987 struct btrfs_ref *generic_ref,
988 u64 reserved)
989 {
990 struct btrfs_fs_info *fs_info = trans->fs_info;
991 struct btrfs_delayed_data_ref *ref;
992 struct btrfs_delayed_ref_head *head_ref;
993 struct btrfs_delayed_ref_root *delayed_refs;
994 struct btrfs_qgroup_extent_record *record = NULL;
995 bool qrecord_inserted;
996 int action = generic_ref->action;
997 bool merged;
998 u64 bytenr = generic_ref->bytenr;
999 u64 num_bytes = generic_ref->len;
1000 u64 parent = generic_ref->parent;
1001 u64 ref_root = generic_ref->data_ref.owning_root;
1002 u64 owner = generic_ref->data_ref.ino;
1003 u64 offset = generic_ref->data_ref.offset;
1004 u8 ref_type;
1005
1006 ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1007 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1008 if (!ref)
1009 return -ENOMEM;
1010
1011 if (parent)
1012 ref_type = BTRFS_SHARED_DATA_REF_KEY;
1013 else
1014 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1015 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1016 ref_root, action, ref_type);
1017 ref->root = ref_root;
1018 ref->parent = parent;
1019 ref->objectid = owner;
1020 ref->offset = offset;
1021
1022
1023 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1024 if (!head_ref) {
1025 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1026 return -ENOMEM;
1027 }
1028
1029 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1030 !generic_ref->skip_qgroup) {
1031 record = kzalloc(sizeof(*record), GFP_NOFS);
1032 if (!record) {
1033 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1034 kmem_cache_free(btrfs_delayed_ref_head_cachep,
1035 head_ref);
1036 return -ENOMEM;
1037 }
1038 }
1039
1040 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1041 reserved, action, true, false);
1042 head_ref->extent_op = NULL;
1043
1044 delayed_refs = &trans->transaction->delayed_refs;
1045 spin_lock(&delayed_refs->lock);
1046
1047 /*
1048 * insert both the head node and the new ref without dropping
1049 * the spin lock
1050 */
1051 head_ref = add_delayed_ref_head(trans, head_ref, record,
1052 action, &qrecord_inserted);
1053
1054 merged = insert_delayed_ref(delayed_refs, head_ref, &ref->node);
1055 spin_unlock(&delayed_refs->lock);
1056
1057 /*
1058 * Need to update the delayed_refs_rsv with any changes we may have
1059 * made.
1060 */
1061 btrfs_update_delayed_refs_rsv(trans);
1062
1063 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1064 action == BTRFS_ADD_DELAYED_EXTENT ?
1065 BTRFS_ADD_DELAYED_REF : action);
1066 if (merged)
1067 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1068
1069
1070 if (qrecord_inserted)
1071 return btrfs_qgroup_trace_extent_post(trans, record);
1072 return 0;
1073 }
1074
btrfs_add_delayed_extent_op(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,struct btrfs_delayed_extent_op * extent_op)1075 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1076 u64 bytenr, u64 num_bytes,
1077 struct btrfs_delayed_extent_op *extent_op)
1078 {
1079 struct btrfs_delayed_ref_head *head_ref;
1080 struct btrfs_delayed_ref_root *delayed_refs;
1081
1082 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1083 if (!head_ref)
1084 return -ENOMEM;
1085
1086 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1087 BTRFS_UPDATE_DELAYED_HEAD, false, false);
1088 head_ref->extent_op = extent_op;
1089
1090 delayed_refs = &trans->transaction->delayed_refs;
1091 spin_lock(&delayed_refs->lock);
1092
1093 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1094 NULL);
1095
1096 spin_unlock(&delayed_refs->lock);
1097
1098 /*
1099 * Need to update the delayed_refs_rsv with any changes we may have
1100 * made.
1101 */
1102 btrfs_update_delayed_refs_rsv(trans);
1103 return 0;
1104 }
1105
1106 /*
1107 * This does a simple search for the head node for a given extent. Returns the
1108 * head node if found, or NULL if not.
1109 */
1110 struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,u64 bytenr)1111 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1112 {
1113 lockdep_assert_held(&delayed_refs->lock);
1114
1115 return find_ref_head(delayed_refs, bytenr, false);
1116 }
1117
btrfs_delayed_ref_exit(void)1118 void __cold btrfs_delayed_ref_exit(void)
1119 {
1120 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1121 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1122 kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1123 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1124 }
1125
btrfs_delayed_ref_init(void)1126 int __init btrfs_delayed_ref_init(void)
1127 {
1128 btrfs_delayed_ref_head_cachep = kmem_cache_create(
1129 "btrfs_delayed_ref_head",
1130 sizeof(struct btrfs_delayed_ref_head), 0,
1131 SLAB_MEM_SPREAD, NULL);
1132 if (!btrfs_delayed_ref_head_cachep)
1133 goto fail;
1134
1135 btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1136 "btrfs_delayed_tree_ref",
1137 sizeof(struct btrfs_delayed_tree_ref), 0,
1138 SLAB_MEM_SPREAD, NULL);
1139 if (!btrfs_delayed_tree_ref_cachep)
1140 goto fail;
1141
1142 btrfs_delayed_data_ref_cachep = kmem_cache_create(
1143 "btrfs_delayed_data_ref",
1144 sizeof(struct btrfs_delayed_data_ref), 0,
1145 SLAB_MEM_SPREAD, NULL);
1146 if (!btrfs_delayed_data_ref_cachep)
1147 goto fail;
1148
1149 btrfs_delayed_extent_op_cachep = kmem_cache_create(
1150 "btrfs_delayed_extent_op",
1151 sizeof(struct btrfs_delayed_extent_op), 0,
1152 SLAB_MEM_SPREAD, NULL);
1153 if (!btrfs_delayed_extent_op_cachep)
1154 goto fail;
1155
1156 return 0;
1157 fail:
1158 btrfs_delayed_ref_exit();
1159 return -ENOMEM;
1160 }
1161