/* * FIPS-180-2 compliant SHA-256 implementation * * Copyright (C) 2001-2003 Christophe Devine * * SPDX-License-Identifier: GPL-2.0+ */ #ifndef USE_HOSTCC #include <common.h> #include <linux/string.h> #else #include <string.h> #endif /* USE_HOSTCC */ #include <watchdog.h> #include <u-boot/sha256.h> const uint8_t sha256_der_prefix[SHA256_DER_LEN] = { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 }; /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i) { \ (n) = ( (unsigned long) (b)[(i) ] << 24 ) \ | ( (unsigned long) (b)[(i) + 1] << 16 ) \ | ( (unsigned long) (b)[(i) + 2] << 8 ) \ | ( (unsigned long) (b)[(i) + 3] ); \ } #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i) { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } #endif void sha256_starts(sha256_context * ctx) { ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } static void sha256_process(sha256_context *ctx, const uint8_t data[64]) { uint32_t temp1, temp2; uint32_t W[64]; uint32_t A, B, C, D, E, F, G, H; GET_UINT32_BE(W[0], data, 0); GET_UINT32_BE(W[1], data, 4); GET_UINT32_BE(W[2], data, 8); GET_UINT32_BE(W[3], data, 12); GET_UINT32_BE(W[4], data, 16); GET_UINT32_BE(W[5], data, 20); GET_UINT32_BE(W[6], data, 24); GET_UINT32_BE(W[7], data, 28); GET_UINT32_BE(W[8], data, 32); GET_UINT32_BE(W[9], data, 36); GET_UINT32_BE(W[10], data, 40); GET_UINT32_BE(W[11], data, 44); GET_UINT32_BE(W[12], data, 48); GET_UINT32_BE(W[13], data, 52); GET_UINT32_BE(W[14], data, 56); GET_UINT32_BE(W[15], data, 60); #define SHR(x,n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x,n) (SHR(x,n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25)) #define F0(x,y,z) ((x & y) | (z & (x | y))) #define F1(x,y,z) (z ^ (x & (y ^ z))) #define R(t) \ ( \ W[t] = S1(W[t - 2]) + W[t - 7] + \ S0(W[t - 15]) + W[t - 16] \ ) #define P(a,b,c,d,e,f,g,h,x,K) { \ temp1 = h + S3(e) + F1(e,f,g) + K + x; \ temp2 = S2(a) + F0(a,b,c); \ d += temp1; h = temp1 + temp2; \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98); P(H, A, B, C, D, E, F, G, W[1], 0x71374491); P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF); P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5); P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B); P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1); P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4); P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5); P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98); P(H, A, B, C, D, E, F, G, W[9], 0x12835B01); P(G, H, A, B, C, D, E, F, W[10], 0x243185BE); P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3); P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74); P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE); P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7); P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174); P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1); P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786); P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6); P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC); P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F); P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA); P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC); P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA); P(A, B, C, D, E, F, G, H, R(24), 0x983E5152); P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D); P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8); P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7); P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3); P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147); P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351); P(B, C, D, E, F, G, H, A, R(31), 0x14292967); P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85); P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138); P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC); P(F, G, H, A, B, C, D, E, R(35), 0x53380D13); P(E, F, G, H, A, B, C, D, R(36), 0x650A7354); P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB); P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E); P(B, C, D, E, F, G, H, A, R(39), 0x92722C85); P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1); P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B); P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70); P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3); P(E, F, G, H, A, B, C, D, R(44), 0xD192E819); P(D, E, F, G, H, A, B, C, R(45), 0xD6990624); P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585); P(B, C, D, E, F, G, H, A, R(47), 0x106AA070); P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116); P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08); P(G, H, A, B, C, D, E, F, R(50), 0x2748774C); P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5); P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3); P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A); P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F); P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3); P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE); P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F); P(G, H, A, B, C, D, E, F, R(58), 0x84C87814); P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208); P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA); P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB); P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7); P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2); ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } void sha256_update(sha256_context *ctx, const uint8_t *input, uint32_t length) { uint32_t left, fill; if (!length) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += length; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < length) ctx->total[1]++; if (left && length >= fill) { memcpy((void *) (ctx->buffer + left), (void *) input, fill); sha256_process(ctx, ctx->buffer); length -= fill; input += fill; left = 0; } while (length >= 64) { sha256_process(ctx, input); length -= 64; input += 64; } if (length) memcpy((void *) (ctx->buffer + left), (void *) input, length); } static uint8_t sha256_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; void sha256_finish(sha256_context * ctx, uint8_t digest[32]) { uint32_t last, padn; uint32_t high, low; uint8_t msglen[8]; high = ((ctx->total[0] >> 29) | (ctx->total[1] << 3)); low = (ctx->total[0] << 3); PUT_UINT32_BE(high, msglen, 0); PUT_UINT32_BE(low, msglen, 4); last = ctx->total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); sha256_update(ctx, sha256_padding, padn); sha256_update(ctx, msglen, 8); PUT_UINT32_BE(ctx->state[0], digest, 0); PUT_UINT32_BE(ctx->state[1], digest, 4); PUT_UINT32_BE(ctx->state[2], digest, 8); PUT_UINT32_BE(ctx->state[3], digest, 12); PUT_UINT32_BE(ctx->state[4], digest, 16); PUT_UINT32_BE(ctx->state[5], digest, 20); PUT_UINT32_BE(ctx->state[6], digest, 24); PUT_UINT32_BE(ctx->state[7], digest, 28); } /* * Output = SHA-256( input buffer ). Trigger the watchdog every 'chunk_sz' * bytes of input processed. */ void sha256_csum_wd(const unsigned char *input, unsigned int ilen, unsigned char *output, unsigned int chunk_sz) { sha256_context ctx; #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) const unsigned char *end; unsigned char *curr; int chunk; #endif sha256_starts(&ctx); #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) curr = (unsigned char *)input; end = input + ilen; while (curr < end) { chunk = end - curr; if (chunk > chunk_sz) chunk = chunk_sz; sha256_update(&ctx, curr, chunk); curr += chunk; WATCHDOG_RESET(); } #else sha256_update(&ctx, input, ilen); #endif sha256_finish(&ctx, output); }