/* * (C) Copyright 2011 - 2012 Samsung Electronics * EXT4 filesystem implementation in Uboot by * Uma Shankar <uma.shankar@samsung.com> * Manjunatha C Achar <a.manjunatha@samsung.com> * * ext4ls and ext4load : Based on ext2 ls load support in Uboot. * * (C) Copyright 2004 * esd gmbh <www.esd-electronics.com> * Reinhard Arlt <reinhard.arlt@esd-electronics.com> * * based on code from grub2 fs/ext2.c and fs/fshelp.c by * GRUB -- GRand Unified Bootloader * Copyright (C) 2003, 2004 Free Software Foundation, Inc. * * ext4write : Based on generic ext4 protocol. * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <ext_common.h> #include <ext4fs.h> #include <inttypes.h> #include <malloc.h> #include <memalign.h> #include <stddef.h> #include <linux/stat.h> #include <linux/time.h> #include <asm/byteorder.h> #include "ext4_common.h" struct ext2_data *ext4fs_root; struct ext2fs_node *ext4fs_file; __le32 *ext4fs_indir1_block; int ext4fs_indir1_size; int ext4fs_indir1_blkno = -1; __le32 *ext4fs_indir2_block; int ext4fs_indir2_size; int ext4fs_indir2_blkno = -1; __le32 *ext4fs_indir3_block; int ext4fs_indir3_size; int ext4fs_indir3_blkno = -1; struct ext2_inode *g_parent_inode; static int symlinknest; #if defined(CONFIG_EXT4_WRITE) struct ext2_block_group *ext4fs_get_group_descriptor (const struct ext_filesystem *fs, uint32_t bg_idx) { return (struct ext2_block_group *)(fs->gdtable + (bg_idx * fs->gdsize)); } static inline void ext4fs_sb_free_inodes_dec(struct ext2_sblock *sb) { sb->free_inodes = cpu_to_le32(le32_to_cpu(sb->free_inodes) - 1); } static inline void ext4fs_sb_free_blocks_dec(struct ext2_sblock *sb) { uint64_t free_blocks = le32_to_cpu(sb->free_blocks); free_blocks += (uint64_t)le32_to_cpu(sb->free_blocks_high) << 32; free_blocks--; sb->free_blocks = cpu_to_le32(free_blocks & 0xffffffff); sb->free_blocks_high = cpu_to_le16(free_blocks >> 32); } static inline void ext4fs_bg_free_inodes_dec (struct ext2_block_group *bg, const struct ext_filesystem *fs) { uint32_t free_inodes = le16_to_cpu(bg->free_inodes); if (fs->gdsize == 64) free_inodes += le16_to_cpu(bg->free_inodes_high) << 16; free_inodes--; bg->free_inodes = cpu_to_le16(free_inodes & 0xffff); if (fs->gdsize == 64) bg->free_inodes_high = cpu_to_le16(free_inodes >> 16); } static inline void ext4fs_bg_free_blocks_dec (struct ext2_block_group *bg, const struct ext_filesystem *fs) { uint32_t free_blocks = le16_to_cpu(bg->free_blocks); if (fs->gdsize == 64) free_blocks += le16_to_cpu(bg->free_blocks_high) << 16; free_blocks--; bg->free_blocks = cpu_to_le16(free_blocks & 0xffff); if (fs->gdsize == 64) bg->free_blocks_high = cpu_to_le16(free_blocks >> 16); } static inline void ext4fs_bg_itable_unused_dec (struct ext2_block_group *bg, const struct ext_filesystem *fs) { uint32_t free_inodes = le16_to_cpu(bg->bg_itable_unused); if (fs->gdsize == 64) free_inodes += le16_to_cpu(bg->bg_itable_unused_high) << 16; free_inodes--; bg->bg_itable_unused = cpu_to_le16(free_inodes & 0xffff); if (fs->gdsize == 64) bg->bg_itable_unused_high = cpu_to_le16(free_inodes >> 16); } uint64_t ext4fs_sb_get_free_blocks(const struct ext2_sblock *sb) { uint64_t free_blocks = le32_to_cpu(sb->free_blocks); free_blocks += (uint64_t)le32_to_cpu(sb->free_blocks_high) << 32; return free_blocks; } void ext4fs_sb_set_free_blocks(struct ext2_sblock *sb, uint64_t free_blocks) { sb->free_blocks = cpu_to_le32(free_blocks & 0xffffffff); sb->free_blocks_high = cpu_to_le16(free_blocks >> 32); } uint32_t ext4fs_bg_get_free_blocks(const struct ext2_block_group *bg, const struct ext_filesystem *fs) { uint32_t free_blocks = le16_to_cpu(bg->free_blocks); if (fs->gdsize == 64) free_blocks += le16_to_cpu(bg->free_blocks_high) << 16; return free_blocks; } static inline uint32_t ext4fs_bg_get_free_inodes(const struct ext2_block_group *bg, const struct ext_filesystem *fs) { uint32_t free_inodes = le16_to_cpu(bg->free_inodes); if (fs->gdsize == 64) free_inodes += le16_to_cpu(bg->free_inodes_high) << 16; return free_inodes; } static inline uint16_t ext4fs_bg_get_flags(const struct ext2_block_group *bg) { return le16_to_cpu(bg->bg_flags); } static inline void ext4fs_bg_set_flags(struct ext2_block_group *bg, uint16_t flags) { bg->bg_flags = cpu_to_le16(flags); } /* Block number of the block bitmap */ uint64_t ext4fs_bg_get_block_id(const struct ext2_block_group *bg, const struct ext_filesystem *fs) { uint64_t block_nr = le32_to_cpu(bg->block_id); if (fs->gdsize == 64) block_nr += (uint64_t)le32_to_cpu(bg->block_id_high) << 32; return block_nr; } /* Block number of the inode bitmap */ uint64_t ext4fs_bg_get_inode_id(const struct ext2_block_group *bg, const struct ext_filesystem *fs) { uint64_t block_nr = le32_to_cpu(bg->inode_id); if (fs->gdsize == 64) block_nr += (uint64_t)le32_to_cpu(bg->inode_id_high) << 32; return block_nr; } #endif /* Block number of the inode table */ uint64_t ext4fs_bg_get_inode_table_id(const struct ext2_block_group *bg, const struct ext_filesystem *fs) { uint64_t block_nr = le32_to_cpu(bg->inode_table_id); if (fs->gdsize == 64) block_nr += (uint64_t)le32_to_cpu(bg->inode_table_id_high) << 32; return block_nr; } #if defined(CONFIG_EXT4_WRITE) uint32_t ext4fs_div_roundup(uint32_t size, uint32_t n) { uint32_t res = size / n; if (res * n != size) res++; return res; } void put_ext4(uint64_t off, void *buf, uint32_t size) { uint64_t startblock; uint64_t remainder; unsigned char *temp_ptr = NULL; struct ext_filesystem *fs = get_fs(); int log2blksz = fs->dev_desc->log2blksz; ALLOC_CACHE_ALIGN_BUFFER(unsigned char, sec_buf, fs->dev_desc->blksz); startblock = off >> log2blksz; startblock += part_offset; remainder = off & (uint64_t)(fs->dev_desc->blksz - 1); if (fs->dev_desc == NULL) return; if ((startblock + (size >> log2blksz)) > (part_offset + fs->total_sect)) { printf("part_offset is " LBAFU "\n", part_offset); printf("total_sector is %" PRIu64 "\n", fs->total_sect); printf("error: overflow occurs\n"); return; } if (remainder) { blk_dread(fs->dev_desc, startblock, 1, sec_buf); temp_ptr = sec_buf; memcpy((temp_ptr + remainder), (unsigned char *)buf, size); blk_dwrite(fs->dev_desc, startblock, 1, sec_buf); } else { if (size >> log2blksz != 0) { blk_dwrite(fs->dev_desc, startblock, size >> log2blksz, (unsigned long *)buf); } else { blk_dread(fs->dev_desc, startblock, 1, sec_buf); temp_ptr = sec_buf; memcpy(temp_ptr, buf, size); blk_dwrite(fs->dev_desc, startblock, 1, (unsigned long *)sec_buf); } } } static int _get_new_inode_no(unsigned char *buffer) { struct ext_filesystem *fs = get_fs(); unsigned char input; int operand, status; int count = 1; int j = 0; /* get the blocksize of the filesystem */ unsigned char *ptr = buffer; while (*ptr == 255) { ptr++; count += 8; if (count > le32_to_cpu(ext4fs_root->sblock.inodes_per_group)) return -1; } for (j = 0; j < fs->blksz; j++) { input = *ptr; int i = 0; while (i <= 7) { operand = 1 << i; status = input & operand; if (status) { i++; count++; } else { *ptr |= operand; return count; } } ptr = ptr + 1; } return -1; } static int _get_new_blk_no(unsigned char *buffer) { int operand; int count = 0; int i; unsigned char *ptr = buffer; struct ext_filesystem *fs = get_fs(); while (*ptr == 255) { ptr++; count += 8; if (count == (fs->blksz * 8)) return -1; } if (fs->blksz == 1024) count += 1; for (i = 0; i <= 7; i++) { operand = 1 << i; if (*ptr & operand) { count++; } else { *ptr |= operand; return count; } } return -1; } int ext4fs_set_block_bmap(long int blockno, unsigned char *buffer, int index) { int i, remainder, status; unsigned char *ptr = buffer; unsigned char operand; i = blockno / 8; remainder = blockno % 8; int blocksize = EXT2_BLOCK_SIZE(ext4fs_root); i = i - (index * blocksize); if (blocksize != 1024) { ptr = ptr + i; operand = 1 << remainder; status = *ptr & operand; if (status) return -1; *ptr = *ptr | operand; return 0; } else { if (remainder == 0) { ptr = ptr + i - 1; operand = (1 << 7); } else { ptr = ptr + i; operand = (1 << (remainder - 1)); } status = *ptr & operand; if (status) return -1; *ptr = *ptr | operand; return 0; } } void ext4fs_reset_block_bmap(long int blockno, unsigned char *buffer, int index) { int i, remainder, status; unsigned char *ptr = buffer; unsigned char operand; i = blockno / 8; remainder = blockno % 8; int blocksize = EXT2_BLOCK_SIZE(ext4fs_root); i = i - (index * blocksize); if (blocksize != 1024) { ptr = ptr + i; operand = (1 << remainder); status = *ptr & operand; if (status) *ptr = *ptr & ~(operand); } else { if (remainder == 0) { ptr = ptr + i - 1; operand = (1 << 7); } else { ptr = ptr + i; operand = (1 << (remainder - 1)); } status = *ptr & operand; if (status) *ptr = *ptr & ~(operand); } } int ext4fs_set_inode_bmap(int inode_no, unsigned char *buffer, int index) { int i, remainder, status; unsigned char *ptr = buffer; unsigned char operand; inode_no -= (index * le32_to_cpu(ext4fs_root->sblock.inodes_per_group)); i = inode_no / 8; remainder = inode_no % 8; if (remainder == 0) { ptr = ptr + i - 1; operand = (1 << 7); } else { ptr = ptr + i; operand = (1 << (remainder - 1)); } status = *ptr & operand; if (status) return -1; *ptr = *ptr | operand; return 0; } void ext4fs_reset_inode_bmap(int inode_no, unsigned char *buffer, int index) { int i, remainder, status; unsigned char *ptr = buffer; unsigned char operand; inode_no -= (index * le32_to_cpu(ext4fs_root->sblock.inodes_per_group)); i = inode_no / 8; remainder = inode_no % 8; if (remainder == 0) { ptr = ptr + i - 1; operand = (1 << 7); } else { ptr = ptr + i; operand = (1 << (remainder - 1)); } status = *ptr & operand; if (status) *ptr = *ptr & ~(operand); } uint16_t ext4fs_checksum_update(uint32_t i) { struct ext2_block_group *desc; struct ext_filesystem *fs = get_fs(); uint16_t crc = 0; __le32 le32_i = cpu_to_le32(i); desc = ext4fs_get_group_descriptor(fs, i); if (le32_to_cpu(fs->sb->feature_ro_compat) & EXT4_FEATURE_RO_COMPAT_GDT_CSUM) { int offset = offsetof(struct ext2_block_group, bg_checksum); crc = ext2fs_crc16(~0, fs->sb->unique_id, sizeof(fs->sb->unique_id)); crc = ext2fs_crc16(crc, &le32_i, sizeof(le32_i)); crc = ext2fs_crc16(crc, desc, offset); offset += sizeof(desc->bg_checksum); /* skip checksum */ assert(offset == sizeof(*desc)); if (offset < fs->gdsize) { crc = ext2fs_crc16(crc, (__u8 *)desc + offset, fs->gdsize - offset); } } return crc; } static int check_void_in_dentry(struct ext2_dirent *dir, char *filename) { int dentry_length; int sizeof_void_space; int new_entry_byte_reqd; short padding_factor = 0; if (dir->namelen % 4 != 0) padding_factor = 4 - (dir->namelen % 4); dentry_length = sizeof(struct ext2_dirent) + dir->namelen + padding_factor; sizeof_void_space = le16_to_cpu(dir->direntlen) - dentry_length; if (sizeof_void_space == 0) return 0; padding_factor = 0; if (strlen(filename) % 4 != 0) padding_factor = 4 - (strlen(filename) % 4); new_entry_byte_reqd = strlen(filename) + sizeof(struct ext2_dirent) + padding_factor; if (sizeof_void_space >= new_entry_byte_reqd) { dir->direntlen = cpu_to_le16(dentry_length); return sizeof_void_space; } return 0; } int ext4fs_update_parent_dentry(char *filename, int file_type) { unsigned int *zero_buffer = NULL; char *root_first_block_buffer = NULL; int blk_idx; long int first_block_no_of_root = 0; int totalbytes = 0; unsigned int new_entry_byte_reqd; int sizeof_void_space = 0; int templength = 0; int inodeno = -1; int status; struct ext_filesystem *fs = get_fs(); /* directory entry */ struct ext2_dirent *dir; char *temp_dir = NULL; uint32_t new_blk_no; uint32_t new_size; uint32_t new_blockcnt; uint32_t directory_blocks; zero_buffer = zalloc(fs->blksz); if (!zero_buffer) { printf("No Memory\n"); return -1; } root_first_block_buffer = zalloc(fs->blksz); if (!root_first_block_buffer) { free(zero_buffer); printf("No Memory\n"); return -1; } new_entry_byte_reqd = ROUND(strlen(filename) + sizeof(struct ext2_dirent), 4); restart: directory_blocks = le32_to_cpu(g_parent_inode->size) >> LOG2_BLOCK_SIZE(ext4fs_root); blk_idx = directory_blocks - 1; restart_read: /* read the block no allocated to a file */ first_block_no_of_root = read_allocated_block(g_parent_inode, blk_idx); if (first_block_no_of_root <= 0) goto fail; status = ext4fs_devread((lbaint_t)first_block_no_of_root * fs->sect_perblk, 0, fs->blksz, root_first_block_buffer); if (status == 0) goto fail; if (ext4fs_log_journal(root_first_block_buffer, first_block_no_of_root)) goto fail; dir = (struct ext2_dirent *)root_first_block_buffer; totalbytes = 0; while (le16_to_cpu(dir->direntlen) > 0) { unsigned short used_len = ROUND(dir->namelen + sizeof(struct ext2_dirent), 4); /* last entry of block */ if (fs->blksz - totalbytes == le16_to_cpu(dir->direntlen)) { /* check if new entry fits */ if ((used_len + new_entry_byte_reqd) <= le16_to_cpu(dir->direntlen)) { dir->direntlen = cpu_to_le16(used_len); break; } else { if (blk_idx > 0) { printf("Block full, trying previous\n"); blk_idx--; goto restart_read; } printf("All blocks full: Allocate new\n"); if (le32_to_cpu(g_parent_inode->flags) & EXT4_EXTENTS_FL) { printf("Directory uses extents\n"); goto fail; } if (directory_blocks >= INDIRECT_BLOCKS) { printf("Directory exceeds limit\n"); goto fail; } new_blk_no = ext4fs_get_new_blk_no(); if (new_blk_no == -1) { printf("no block left to assign\n"); goto fail; } put_ext4((uint64_t)new_blk_no * fs->blksz, zero_buffer, fs->blksz); g_parent_inode->b.blocks. dir_blocks[directory_blocks] = cpu_to_le32(new_blk_no); new_size = le32_to_cpu(g_parent_inode->size); new_size += fs->blksz; g_parent_inode->size = cpu_to_le32(new_size); new_blockcnt = le32_to_cpu(g_parent_inode->blockcnt); new_blockcnt += fs->sect_perblk; g_parent_inode->blockcnt = cpu_to_le32(new_blockcnt); if (ext4fs_put_metadata (root_first_block_buffer, first_block_no_of_root)) goto fail; goto restart; } } templength = le16_to_cpu(dir->direntlen); totalbytes = totalbytes + templength; sizeof_void_space = check_void_in_dentry(dir, filename); if (sizeof_void_space) break; dir = (struct ext2_dirent *)((char *)dir + templength); } /* make a pointer ready for creating next directory entry */ templength = le16_to_cpu(dir->direntlen); totalbytes = totalbytes + templength; dir = (struct ext2_dirent *)((char *)dir + templength); /* get the next available inode number */ inodeno = ext4fs_get_new_inode_no(); if (inodeno == -1) { printf("no inode left to assign\n"); goto fail; } dir->inode = cpu_to_le32(inodeno); if (sizeof_void_space) dir->direntlen = cpu_to_le16(sizeof_void_space); else dir->direntlen = cpu_to_le16(fs->blksz - totalbytes); dir->namelen = strlen(filename); dir->filetype = FILETYPE_REG; /* regular file */ temp_dir = (char *)dir; temp_dir = temp_dir + sizeof(struct ext2_dirent); memcpy(temp_dir, filename, strlen(filename)); /* update or write the 1st block of root inode */ if (ext4fs_put_metadata(root_first_block_buffer, first_block_no_of_root)) goto fail; fail: free(zero_buffer); free(root_first_block_buffer); return inodeno; } static int search_dir(struct ext2_inode *parent_inode, char *dirname) { int status; int inodeno = 0; int offset; int blk_idx; long int blknr; char *block_buffer = NULL; struct ext2_dirent *dir = NULL; struct ext_filesystem *fs = get_fs(); uint32_t directory_blocks; char *direntname; directory_blocks = le32_to_cpu(parent_inode->size) >> LOG2_BLOCK_SIZE(ext4fs_root); block_buffer = zalloc(fs->blksz); if (!block_buffer) goto fail; /* get the block no allocated to a file */ for (blk_idx = 0; blk_idx < directory_blocks; blk_idx++) { blknr = read_allocated_block(parent_inode, blk_idx); if (blknr <= 0) goto fail; /* read the directory block */ status = ext4fs_devread((lbaint_t)blknr * fs->sect_perblk, 0, fs->blksz, (char *)block_buffer); if (status == 0) goto fail; offset = 0; do { if (offset & 3) { printf("Badly aligned ext2_dirent\n"); break; } dir = (struct ext2_dirent *)(block_buffer + offset); direntname = (char*)(dir) + sizeof(struct ext2_dirent); int direntlen = le16_to_cpu(dir->direntlen); if (direntlen < sizeof(struct ext2_dirent)) break; if (dir->inode && (strlen(dirname) == dir->namelen) && (strncmp(dirname, direntname, dir->namelen) == 0)) { inodeno = le32_to_cpu(dir->inode); break; } offset += direntlen; } while (offset < fs->blksz); if (inodeno > 0) { free(block_buffer); return inodeno; } } fail: free(block_buffer); return -1; } static int find_dir_depth(char *dirname) { char *token = strtok(dirname, "/"); int count = 0; while (token != NULL) { token = strtok(NULL, "/"); count++; } return count + 1 + 1; /* * for example for string /home/temp * depth=home(1)+temp(1)+1 extra for NULL; * so count is 4; */ } static int parse_path(char **arr, char *dirname) { char *token = strtok(dirname, "/"); int i = 0; /* add root */ arr[i] = zalloc(strlen("/") + 1); if (!arr[i]) return -ENOMEM; memcpy(arr[i++], "/", strlen("/")); /* add each path entry after root */ while (token != NULL) { arr[i] = zalloc(strlen(token) + 1); if (!arr[i]) return -ENOMEM; memcpy(arr[i++], token, strlen(token)); token = strtok(NULL, "/"); } arr[i] = NULL; return 0; } int ext4fs_iget(int inode_no, struct ext2_inode *inode) { if (ext4fs_read_inode(ext4fs_root, inode_no, inode) == 0) return -1; return 0; } /* * Function: ext4fs_get_parent_inode_num * Return Value: inode Number of the parent directory of file/Directory to be * created * dirname : Input parmater, input path name of the file/directory to be created * dname : Output parameter, to be filled with the name of the directory * extracted from dirname */ int ext4fs_get_parent_inode_num(const char *dirname, char *dname, int flags) { int i; int depth = 0; int matched_inode_no; int result_inode_no = -1; char **ptr = NULL; char *depth_dirname = NULL; char *parse_dirname = NULL; struct ext2_inode *parent_inode = NULL; struct ext2_inode *first_inode = NULL; struct ext2_inode temp_inode; if (*dirname != '/') { printf("Please supply Absolute path\n"); return -1; } /* TODO: input validation make equivalent to linux */ depth_dirname = zalloc(strlen(dirname) + 1); if (!depth_dirname) return -ENOMEM; memcpy(depth_dirname, dirname, strlen(dirname)); depth = find_dir_depth(depth_dirname); parse_dirname = zalloc(strlen(dirname) + 1); if (!parse_dirname) goto fail; memcpy(parse_dirname, dirname, strlen(dirname)); /* allocate memory for each directory level */ ptr = zalloc((depth) * sizeof(char *)); if (!ptr) goto fail; if (parse_path(ptr, parse_dirname)) goto fail; parent_inode = zalloc(sizeof(struct ext2_inode)); if (!parent_inode) goto fail; first_inode = zalloc(sizeof(struct ext2_inode)); if (!first_inode) goto fail; memcpy(parent_inode, ext4fs_root->inode, sizeof(struct ext2_inode)); memcpy(first_inode, parent_inode, sizeof(struct ext2_inode)); if (flags & F_FILE) result_inode_no = EXT2_ROOT_INO; for (i = 1; i < depth; i++) { matched_inode_no = search_dir(parent_inode, ptr[i]); if (matched_inode_no == -1) { if (ptr[i + 1] == NULL && i == 1) { result_inode_no = EXT2_ROOT_INO; goto end; } else { if (ptr[i + 1] == NULL) break; printf("Invalid path\n"); result_inode_no = -1; goto fail; } } else { if (ptr[i + 1] != NULL) { memset(parent_inode, '\0', sizeof(struct ext2_inode)); if (ext4fs_iget(matched_inode_no, parent_inode)) { result_inode_no = -1; goto fail; } result_inode_no = matched_inode_no; } else { break; } } } end: if (i == 1) matched_inode_no = search_dir(first_inode, ptr[i]); else matched_inode_no = search_dir(parent_inode, ptr[i]); if (matched_inode_no != -1) { ext4fs_iget(matched_inode_no, &temp_inode); if (le16_to_cpu(temp_inode.mode) & S_IFDIR) { printf("It is a Directory\n"); result_inode_no = -1; goto fail; } } if (strlen(ptr[i]) > 256) { result_inode_no = -1; goto fail; } memcpy(dname, ptr[i], strlen(ptr[i])); fail: free(depth_dirname); free(parse_dirname); for (i = 0; i < depth; i++) { if (!ptr[i]) break; free(ptr[i]); } free(ptr); free(parent_inode); free(first_inode); return result_inode_no; } static int unlink_filename(char *filename, unsigned int blknr) { int status; int inodeno = 0; int offset; char *block_buffer = NULL; struct ext2_dirent *dir = NULL; struct ext2_dirent *previous_dir; struct ext_filesystem *fs = get_fs(); int ret = -1; char *direntname; block_buffer = zalloc(fs->blksz); if (!block_buffer) return -ENOMEM; /* read the directory block */ status = ext4fs_devread((lbaint_t)blknr * fs->sect_perblk, 0, fs->blksz, block_buffer); if (status == 0) goto fail; offset = 0; do { if (offset & 3) { printf("Badly aligned ext2_dirent\n"); break; } previous_dir = dir; dir = (struct ext2_dirent *)(block_buffer + offset); direntname = (char *)(dir) + sizeof(struct ext2_dirent); int direntlen = le16_to_cpu(dir->direntlen); if (direntlen < sizeof(struct ext2_dirent)) break; if (dir->inode && (strlen(filename) == dir->namelen) && (strncmp(direntname, filename, dir->namelen) == 0)) { inodeno = le32_to_cpu(dir->inode); break; } offset += direntlen; } while (offset < fs->blksz); if (inodeno > 0) { printf("file found, deleting\n"); if (ext4fs_log_journal(block_buffer, blknr)) goto fail; if (previous_dir) { /* merge dir entry with predecessor */ uint16_t new_len; new_len = le16_to_cpu(previous_dir->direntlen); new_len += le16_to_cpu(dir->direntlen); previous_dir->direntlen = cpu_to_le16(new_len); } else { /* invalidate dir entry */ dir->inode = 0; } if (ext4fs_put_metadata(block_buffer, blknr)) goto fail; ret = inodeno; } fail: free(block_buffer); return ret; } int ext4fs_filename_unlink(char *filename) { int blk_idx; long int blknr = -1; int inodeno = -1; uint32_t directory_blocks; directory_blocks = le32_to_cpu(g_parent_inode->size) >> LOG2_BLOCK_SIZE(ext4fs_root); /* read the block no allocated to a file */ for (blk_idx = 0; blk_idx < directory_blocks; blk_idx++) { blknr = read_allocated_block(g_parent_inode, blk_idx); if (blknr <= 0) break; inodeno = unlink_filename(filename, blknr); if (inodeno != -1) return inodeno; } return -1; } uint32_t ext4fs_get_new_blk_no(void) { short i; short status; int remainder; unsigned int bg_idx; static int prev_bg_bitmap_index = -1; unsigned int blk_per_grp = le32_to_cpu(ext4fs_root->sblock.blocks_per_group); struct ext_filesystem *fs = get_fs(); char *journal_buffer = zalloc(fs->blksz); char *zero_buffer = zalloc(fs->blksz); if (!journal_buffer || !zero_buffer) goto fail; if (fs->first_pass_bbmap == 0) { for (i = 0; i < fs->no_blkgrp; i++) { struct ext2_block_group *bgd = NULL; bgd = ext4fs_get_group_descriptor(fs, i); if (ext4fs_bg_get_free_blocks(bgd, fs)) { uint16_t bg_flags = ext4fs_bg_get_flags(bgd); uint64_t b_bitmap_blk = ext4fs_bg_get_block_id(bgd, fs); if (bg_flags & EXT4_BG_BLOCK_UNINIT) { memcpy(fs->blk_bmaps[i], zero_buffer, fs->blksz); put_ext4(b_bitmap_blk * fs->blksz, fs->blk_bmaps[i], fs->blksz); bg_flags &= ~EXT4_BG_BLOCK_UNINIT; ext4fs_bg_set_flags(bgd, bg_flags); } fs->curr_blkno = _get_new_blk_no(fs->blk_bmaps[i]); if (fs->curr_blkno == -1) /* block bitmap is completely filled */ continue; fs->curr_blkno = fs->curr_blkno + (i * fs->blksz * 8); fs->first_pass_bbmap++; ext4fs_bg_free_blocks_dec(bgd, fs); ext4fs_sb_free_blocks_dec(fs->sb); status = ext4fs_devread(b_bitmap_blk * fs->sect_perblk, 0, fs->blksz, journal_buffer); if (status == 0) goto fail; if (ext4fs_log_journal(journal_buffer, b_bitmap_blk)) goto fail; goto success; } else { debug("no space left on block group %d\n", i); } } goto fail; } else { fs->curr_blkno++; restart: /* get the blockbitmap index respective to blockno */ bg_idx = fs->curr_blkno / blk_per_grp; if (fs->blksz == 1024) { remainder = fs->curr_blkno % blk_per_grp; if (!remainder) bg_idx--; } /* * To skip completely filled block group bitmaps * Optimize the block allocation */ if (bg_idx >= fs->no_blkgrp) goto fail; struct ext2_block_group *bgd = NULL; bgd = ext4fs_get_group_descriptor(fs, bg_idx); if (ext4fs_bg_get_free_blocks(bgd, fs) == 0) { debug("block group %u is full. Skipping\n", bg_idx); fs->curr_blkno = (bg_idx + 1) * blk_per_grp; if (fs->blksz == 1024) fs->curr_blkno += 1; goto restart; } uint16_t bg_flags = ext4fs_bg_get_flags(bgd); uint64_t b_bitmap_blk = ext4fs_bg_get_block_id(bgd, fs); if (bg_flags & EXT4_BG_BLOCK_UNINIT) { memcpy(fs->blk_bmaps[bg_idx], zero_buffer, fs->blksz); put_ext4(b_bitmap_blk * fs->blksz, zero_buffer, fs->blksz); bg_flags &= ~EXT4_BG_BLOCK_UNINIT; ext4fs_bg_set_flags(bgd, bg_flags); } if (ext4fs_set_block_bmap(fs->curr_blkno, fs->blk_bmaps[bg_idx], bg_idx) != 0) { debug("going for restart for the block no %ld %u\n", fs->curr_blkno, bg_idx); fs->curr_blkno++; goto restart; } /* journal backup */ if (prev_bg_bitmap_index != bg_idx) { status = ext4fs_devread(b_bitmap_blk * fs->sect_perblk, 0, fs->blksz, journal_buffer); if (status == 0) goto fail; if (ext4fs_log_journal(journal_buffer, b_bitmap_blk)) goto fail; prev_bg_bitmap_index = bg_idx; } ext4fs_bg_free_blocks_dec(bgd, fs); ext4fs_sb_free_blocks_dec(fs->sb); goto success; } success: free(journal_buffer); free(zero_buffer); return fs->curr_blkno; fail: free(journal_buffer); free(zero_buffer); return -1; } int ext4fs_get_new_inode_no(void) { short i; short status; unsigned int ibmap_idx; static int prev_inode_bitmap_index = -1; unsigned int inodes_per_grp = le32_to_cpu(ext4fs_root->sblock.inodes_per_group); struct ext_filesystem *fs = get_fs(); char *journal_buffer = zalloc(fs->blksz); char *zero_buffer = zalloc(fs->blksz); if (!journal_buffer || !zero_buffer) goto fail; int has_gdt_chksum = le32_to_cpu(fs->sb->feature_ro_compat) & EXT4_FEATURE_RO_COMPAT_GDT_CSUM ? 1 : 0; if (fs->first_pass_ibmap == 0) { for (i = 0; i < fs->no_blkgrp; i++) { uint32_t free_inodes; struct ext2_block_group *bgd = NULL; bgd = ext4fs_get_group_descriptor(fs, i); free_inodes = ext4fs_bg_get_free_inodes(bgd, fs); if (free_inodes) { uint16_t bg_flags = ext4fs_bg_get_flags(bgd); uint64_t i_bitmap_blk = ext4fs_bg_get_inode_id(bgd, fs); if (has_gdt_chksum) bgd->bg_itable_unused = free_inodes; if (bg_flags & EXT4_BG_INODE_UNINIT) { put_ext4(i_bitmap_blk * fs->blksz, zero_buffer, fs->blksz); bg_flags &= ~EXT4_BG_INODE_UNINIT; ext4fs_bg_set_flags(bgd, bg_flags); memcpy(fs->inode_bmaps[i], zero_buffer, fs->blksz); } fs->curr_inode_no = _get_new_inode_no(fs->inode_bmaps[i]); if (fs->curr_inode_no == -1) /* inode bitmap is completely filled */ continue; fs->curr_inode_no = fs->curr_inode_no + (i * inodes_per_grp); fs->first_pass_ibmap++; ext4fs_bg_free_inodes_dec(bgd, fs); if (has_gdt_chksum) ext4fs_bg_itable_unused_dec(bgd, fs); ext4fs_sb_free_inodes_dec(fs->sb); status = ext4fs_devread(i_bitmap_blk * fs->sect_perblk, 0, fs->blksz, journal_buffer); if (status == 0) goto fail; if (ext4fs_log_journal(journal_buffer, i_bitmap_blk)) goto fail; goto success; } else debug("no inode left on block group %d\n", i); } goto fail; } else { restart: fs->curr_inode_no++; /* get the blockbitmap index respective to blockno */ ibmap_idx = fs->curr_inode_no / inodes_per_grp; struct ext2_block_group *bgd = ext4fs_get_group_descriptor(fs, ibmap_idx); uint16_t bg_flags = ext4fs_bg_get_flags(bgd); uint64_t i_bitmap_blk = ext4fs_bg_get_inode_id(bgd, fs); if (bg_flags & EXT4_BG_INODE_UNINIT) { put_ext4(i_bitmap_blk * fs->blksz, zero_buffer, fs->blksz); bg_flags &= ~EXT4_BG_INODE_UNINIT; ext4fs_bg_set_flags(bgd, bg_flags); memcpy(fs->inode_bmaps[ibmap_idx], zero_buffer, fs->blksz); } if (ext4fs_set_inode_bmap(fs->curr_inode_no, fs->inode_bmaps[ibmap_idx], ibmap_idx) != 0) { debug("going for restart for the block no %d %u\n", fs->curr_inode_no, ibmap_idx); goto restart; } /* journal backup */ if (prev_inode_bitmap_index != ibmap_idx) { status = ext4fs_devread(i_bitmap_blk * fs->sect_perblk, 0, fs->blksz, journal_buffer); if (status == 0) goto fail; if (ext4fs_log_journal(journal_buffer, le32_to_cpu(bgd->inode_id))) goto fail; prev_inode_bitmap_index = ibmap_idx; } ext4fs_bg_free_inodes_dec(bgd, fs); if (has_gdt_chksum) bgd->bg_itable_unused = bgd->free_inodes; ext4fs_sb_free_inodes_dec(fs->sb); goto success; } success: free(journal_buffer); free(zero_buffer); return fs->curr_inode_no; fail: free(journal_buffer); free(zero_buffer); return -1; } static void alloc_single_indirect_block(struct ext2_inode *file_inode, unsigned int *total_remaining_blocks, unsigned int *no_blks_reqd) { short i; short status; long int actual_block_no; long int si_blockno; /* si :single indirect */ __le32 *si_buffer = NULL; __le32 *si_start_addr = NULL; struct ext_filesystem *fs = get_fs(); if (*total_remaining_blocks != 0) { si_buffer = zalloc(fs->blksz); if (!si_buffer) { printf("No Memory\n"); return; } si_start_addr = si_buffer; si_blockno = ext4fs_get_new_blk_no(); if (si_blockno == -1) { printf("no block left to assign\n"); goto fail; } (*no_blks_reqd)++; debug("SIPB %ld: %u\n", si_blockno, *total_remaining_blocks); status = ext4fs_devread((lbaint_t)si_blockno * fs->sect_perblk, 0, fs->blksz, (char *)si_buffer); memset(si_buffer, '\0', fs->blksz); if (status == 0) goto fail; for (i = 0; i < (fs->blksz / sizeof(int)); i++) { actual_block_no = ext4fs_get_new_blk_no(); if (actual_block_no == -1) { printf("no block left to assign\n"); goto fail; } *si_buffer = cpu_to_le32(actual_block_no); debug("SIAB %u: %u\n", *si_buffer, *total_remaining_blocks); si_buffer++; (*total_remaining_blocks)--; if (*total_remaining_blocks == 0) break; } /* write the block to disk */ put_ext4(((uint64_t) ((uint64_t)si_blockno * (uint64_t)fs->blksz)), si_start_addr, fs->blksz); file_inode->b.blocks.indir_block = cpu_to_le32(si_blockno); } fail: free(si_start_addr); } static void alloc_double_indirect_block(struct ext2_inode *file_inode, unsigned int *total_remaining_blocks, unsigned int *no_blks_reqd) { short i; short j; short status; long int actual_block_no; /* di:double indirect */ long int di_blockno_parent; long int di_blockno_child; __le32 *di_parent_buffer = NULL; __le32 *di_child_buff = NULL; __le32 *di_block_start_addr = NULL; __le32 *di_child_buff_start = NULL; struct ext_filesystem *fs = get_fs(); if (*total_remaining_blocks != 0) { /* double indirect parent block connecting to inode */ di_blockno_parent = ext4fs_get_new_blk_no(); if (di_blockno_parent == -1) { printf("no block left to assign\n"); goto fail; } di_parent_buffer = zalloc(fs->blksz); if (!di_parent_buffer) goto fail; di_block_start_addr = di_parent_buffer; (*no_blks_reqd)++; debug("DIPB %ld: %u\n", di_blockno_parent, *total_remaining_blocks); status = ext4fs_devread((lbaint_t)di_blockno_parent * fs->sect_perblk, 0, fs->blksz, (char *)di_parent_buffer); if (!status) { printf("%s: Device read error!\n", __func__); goto fail; } memset(di_parent_buffer, '\0', fs->blksz); /* * start:for each double indirect parent * block create one more block */ for (i = 0; i < (fs->blksz / sizeof(int)); i++) { di_blockno_child = ext4fs_get_new_blk_no(); if (di_blockno_child == -1) { printf("no block left to assign\n"); goto fail; } di_child_buff = zalloc(fs->blksz); if (!di_child_buff) goto fail; di_child_buff_start = di_child_buff; *di_parent_buffer = cpu_to_le32(di_blockno_child); di_parent_buffer++; (*no_blks_reqd)++; debug("DICB %ld: %u\n", di_blockno_child, *total_remaining_blocks); status = ext4fs_devread((lbaint_t)di_blockno_child * fs->sect_perblk, 0, fs->blksz, (char *)di_child_buff); if (!status) { printf("%s: Device read error!\n", __func__); goto fail; } memset(di_child_buff, '\0', fs->blksz); /* filling of actual datablocks for each child */ for (j = 0; j < (fs->blksz / sizeof(int)); j++) { actual_block_no = ext4fs_get_new_blk_no(); if (actual_block_no == -1) { printf("no block left to assign\n"); goto fail; } *di_child_buff = cpu_to_le32(actual_block_no); debug("DIAB %ld: %u\n", actual_block_no, *total_remaining_blocks); di_child_buff++; (*total_remaining_blocks)--; if (*total_remaining_blocks == 0) break; } /* write the block table */ put_ext4(((uint64_t) ((uint64_t)di_blockno_child * (uint64_t)fs->blksz)), di_child_buff_start, fs->blksz); free(di_child_buff_start); di_child_buff_start = NULL; if (*total_remaining_blocks == 0) break; } put_ext4(((uint64_t) ((uint64_t)di_blockno_parent * (uint64_t)fs->blksz)), di_block_start_addr, fs->blksz); file_inode->b.blocks.double_indir_block = cpu_to_le32(di_blockno_parent); } fail: free(di_block_start_addr); } static void alloc_triple_indirect_block(struct ext2_inode *file_inode, unsigned int *total_remaining_blocks, unsigned int *no_blks_reqd) { short i; short j; short k; long int actual_block_no; /* ti: Triple Indirect */ long int ti_gp_blockno; long int ti_parent_blockno; long int ti_child_blockno; __le32 *ti_gp_buff = NULL; __le32 *ti_parent_buff = NULL; __le32 *ti_child_buff = NULL; __le32 *ti_gp_buff_start_addr = NULL; __le32 *ti_pbuff_start_addr = NULL; __le32 *ti_cbuff_start_addr = NULL; struct ext_filesystem *fs = get_fs(); if (*total_remaining_blocks != 0) { /* triple indirect grand parent block connecting to inode */ ti_gp_blockno = ext4fs_get_new_blk_no(); if (ti_gp_blockno == -1) { printf("no block left to assign\n"); return; } ti_gp_buff = zalloc(fs->blksz); if (!ti_gp_buff) return; ti_gp_buff_start_addr = ti_gp_buff; (*no_blks_reqd)++; debug("TIGPB %ld: %u\n", ti_gp_blockno, *total_remaining_blocks); /* for each 4 byte grand parent entry create one more block */ for (i = 0; i < (fs->blksz / sizeof(int)); i++) { ti_parent_blockno = ext4fs_get_new_blk_no(); if (ti_parent_blockno == -1) { printf("no block left to assign\n"); goto fail; } ti_parent_buff = zalloc(fs->blksz); if (!ti_parent_buff) goto fail; ti_pbuff_start_addr = ti_parent_buff; *ti_gp_buff = cpu_to_le32(ti_parent_blockno); ti_gp_buff++; (*no_blks_reqd)++; debug("TIPB %ld: %u\n", ti_parent_blockno, *total_remaining_blocks); /* for each 4 byte entry parent create one more block */ for (j = 0; j < (fs->blksz / sizeof(int)); j++) { ti_child_blockno = ext4fs_get_new_blk_no(); if (ti_child_blockno == -1) { printf("no block left assign\n"); goto fail1; } ti_child_buff = zalloc(fs->blksz); if (!ti_child_buff) goto fail1; ti_cbuff_start_addr = ti_child_buff; *ti_parent_buff = cpu_to_le32(ti_child_blockno); ti_parent_buff++; (*no_blks_reqd)++; debug("TICB %ld: %u\n", ti_parent_blockno, *total_remaining_blocks); /* fill actual datablocks for each child */ for (k = 0; k < (fs->blksz / sizeof(int)); k++) { actual_block_no = ext4fs_get_new_blk_no(); if (actual_block_no == -1) { printf("no block left\n"); free(ti_cbuff_start_addr); goto fail1; } *ti_child_buff = cpu_to_le32(actual_block_no); debug("TIAB %ld: %u\n", actual_block_no, *total_remaining_blocks); ti_child_buff++; (*total_remaining_blocks)--; if (*total_remaining_blocks == 0) break; } /* write the child block */ put_ext4(((uint64_t) ((uint64_t)ti_child_blockno * (uint64_t)fs->blksz)), ti_cbuff_start_addr, fs->blksz); free(ti_cbuff_start_addr); if (*total_remaining_blocks == 0) break; } /* write the parent block */ put_ext4(((uint64_t) ((uint64_t)ti_parent_blockno * (uint64_t)fs->blksz)), ti_pbuff_start_addr, fs->blksz); free(ti_pbuff_start_addr); if (*total_remaining_blocks == 0) break; } /* write the grand parent block */ put_ext4(((uint64_t) ((uint64_t)ti_gp_blockno * (uint64_t)fs->blksz)), ti_gp_buff_start_addr, fs->blksz); file_inode->b.blocks.triple_indir_block = cpu_to_le32(ti_gp_blockno); free(ti_gp_buff_start_addr); return; } fail1: free(ti_pbuff_start_addr); fail: free(ti_gp_buff_start_addr); } void ext4fs_allocate_blocks(struct ext2_inode *file_inode, unsigned int total_remaining_blocks, unsigned int *total_no_of_block) { short i; long int direct_blockno; unsigned int no_blks_reqd = 0; /* allocation of direct blocks */ for (i = 0; total_remaining_blocks && i < INDIRECT_BLOCKS; i++) { direct_blockno = ext4fs_get_new_blk_no(); if (direct_blockno == -1) { printf("no block left to assign\n"); return; } file_inode->b.blocks.dir_blocks[i] = cpu_to_le32(direct_blockno); debug("DB %ld: %u\n", direct_blockno, total_remaining_blocks); total_remaining_blocks--; } alloc_single_indirect_block(file_inode, &total_remaining_blocks, &no_blks_reqd); alloc_double_indirect_block(file_inode, &total_remaining_blocks, &no_blks_reqd); alloc_triple_indirect_block(file_inode, &total_remaining_blocks, &no_blks_reqd); *total_no_of_block += no_blks_reqd; } #endif static struct ext4_extent_header *ext4fs_get_extent_block (struct ext2_data *data, char *buf, struct ext4_extent_header *ext_block, uint32_t fileblock, int log2_blksz) { struct ext4_extent_idx *index; unsigned long long block; int blksz = EXT2_BLOCK_SIZE(data); int i; while (1) { index = (struct ext4_extent_idx *)(ext_block + 1); if (le16_to_cpu(ext_block->eh_magic) != EXT4_EXT_MAGIC) return NULL; if (ext_block->eh_depth == 0) return ext_block; i = -1; do { i++; if (i >= le16_to_cpu(ext_block->eh_entries)) break; } while (fileblock >= le32_to_cpu(index[i].ei_block)); if (--i < 0) return NULL; block = le16_to_cpu(index[i].ei_leaf_hi); block = (block << 32) + le32_to_cpu(index[i].ei_leaf_lo); if (ext4fs_devread((lbaint_t)block << log2_blksz, 0, blksz, buf)) ext_block = (struct ext4_extent_header *)buf; else return NULL; } } static int ext4fs_blockgroup (struct ext2_data *data, int group, struct ext2_block_group *blkgrp) { long int blkno; unsigned int blkoff, desc_per_blk; int log2blksz = get_fs()->dev_desc->log2blksz; int desc_size = get_fs()->gdsize; desc_per_blk = EXT2_BLOCK_SIZE(data) / desc_size; blkno = le32_to_cpu(data->sblock.first_data_block) + 1 + group / desc_per_blk; blkoff = (group % desc_per_blk) * desc_size; debug("ext4fs read %d group descriptor (blkno %ld blkoff %u)\n", group, blkno, blkoff); return ext4fs_devread((lbaint_t)blkno << (LOG2_BLOCK_SIZE(data) - log2blksz), blkoff, desc_size, (char *)blkgrp); } int ext4fs_read_inode(struct ext2_data *data, int ino, struct ext2_inode *inode) { struct ext2_block_group blkgrp; struct ext2_sblock *sblock = &data->sblock; struct ext_filesystem *fs = get_fs(); int log2blksz = get_fs()->dev_desc->log2blksz; int inodes_per_block, status; long int blkno; unsigned int blkoff; /* It is easier to calculate if the first inode is 0. */ ino--; status = ext4fs_blockgroup(data, ino / le32_to_cpu (sblock->inodes_per_group), &blkgrp); if (status == 0) return 0; inodes_per_block = EXT2_BLOCK_SIZE(data) / fs->inodesz; blkno = ext4fs_bg_get_inode_table_id(&blkgrp, fs) + (ino % le32_to_cpu(sblock->inodes_per_group)) / inodes_per_block; blkoff = (ino % inodes_per_block) * fs->inodesz; /* Read the inode. */ status = ext4fs_devread((lbaint_t)blkno << (LOG2_BLOCK_SIZE(data) - log2blksz), blkoff, sizeof(struct ext2_inode), (char *)inode); if (status == 0) return 0; return 1; } long int read_allocated_block(struct ext2_inode *inode, int fileblock) { long int blknr; int blksz; int log2_blksz; int status; long int rblock; long int perblock_parent; long int perblock_child; unsigned long long start; /* get the blocksize of the filesystem */ blksz = EXT2_BLOCK_SIZE(ext4fs_root); log2_blksz = LOG2_BLOCK_SIZE(ext4fs_root) - get_fs()->dev_desc->log2blksz; if (le32_to_cpu(inode->flags) & EXT4_EXTENTS_FL) { long int startblock, endblock; char *buf = zalloc(blksz); if (!buf) return -ENOMEM; struct ext4_extent_header *ext_block; struct ext4_extent *extent; int i; ext_block = ext4fs_get_extent_block(ext4fs_root, buf, (struct ext4_extent_header *) inode->b.blocks.dir_blocks, fileblock, log2_blksz); if (!ext_block) { printf("invalid extent block\n"); free(buf); return -EINVAL; } extent = (struct ext4_extent *)(ext_block + 1); for (i = 0; i < le16_to_cpu(ext_block->eh_entries); i++) { startblock = le32_to_cpu(extent[i].ee_block); endblock = startblock + le16_to_cpu(extent[i].ee_len); if (startblock > fileblock) { /* Sparse file */ free(buf); return 0; } else if (fileblock < endblock) { start = le16_to_cpu(extent[i].ee_start_hi); start = (start << 32) + le32_to_cpu(extent[i].ee_start_lo); free(buf); return (fileblock - startblock) + start; } } free(buf); return 0; } /* Direct blocks. */ if (fileblock < INDIRECT_BLOCKS) blknr = le32_to_cpu(inode->b.blocks.dir_blocks[fileblock]); /* Indirect. */ else if (fileblock < (INDIRECT_BLOCKS + (blksz / 4))) { if (ext4fs_indir1_block == NULL) { ext4fs_indir1_block = zalloc(blksz); if (ext4fs_indir1_block == NULL) { printf("** SI ext2fs read block (indir 1)" "malloc failed. **\n"); return -1; } ext4fs_indir1_size = blksz; ext4fs_indir1_blkno = -1; } if (blksz != ext4fs_indir1_size) { free(ext4fs_indir1_block); ext4fs_indir1_block = NULL; ext4fs_indir1_size = 0; ext4fs_indir1_blkno = -1; ext4fs_indir1_block = zalloc(blksz); if (ext4fs_indir1_block == NULL) { printf("** SI ext2fs read block (indir 1):" "malloc failed. **\n"); return -1; } ext4fs_indir1_size = blksz; } if ((le32_to_cpu(inode->b.blocks.indir_block) << log2_blksz) != ext4fs_indir1_blkno) { status = ext4fs_devread((lbaint_t)le32_to_cpu (inode->b.blocks. indir_block) << log2_blksz, 0, blksz, (char *)ext4fs_indir1_block); if (status == 0) { printf("** SI ext2fs read block (indir 1)" "failed. **\n"); return -1; } ext4fs_indir1_blkno = le32_to_cpu(inode->b.blocks. indir_block) << log2_blksz; } blknr = le32_to_cpu(ext4fs_indir1_block [fileblock - INDIRECT_BLOCKS]); } /* Double indirect. */ else if (fileblock < (INDIRECT_BLOCKS + (blksz / 4 * (blksz / 4 + 1)))) { long int perblock = blksz / 4; long int rblock = fileblock - (INDIRECT_BLOCKS + blksz / 4); if (ext4fs_indir1_block == NULL) { ext4fs_indir1_block = zalloc(blksz); if (ext4fs_indir1_block == NULL) { printf("** DI ext2fs read block (indir 2 1)" "malloc failed. **\n"); return -1; } ext4fs_indir1_size = blksz; ext4fs_indir1_blkno = -1; } if (blksz != ext4fs_indir1_size) { free(ext4fs_indir1_block); ext4fs_indir1_block = NULL; ext4fs_indir1_size = 0; ext4fs_indir1_blkno = -1; ext4fs_indir1_block = zalloc(blksz); if (ext4fs_indir1_block == NULL) { printf("** DI ext2fs read block (indir 2 1)" "malloc failed. **\n"); return -1; } ext4fs_indir1_size = blksz; } if ((le32_to_cpu(inode->b.blocks.double_indir_block) << log2_blksz) != ext4fs_indir1_blkno) { status = ext4fs_devread((lbaint_t)le32_to_cpu (inode->b.blocks. double_indir_block) << log2_blksz, 0, blksz, (char *)ext4fs_indir1_block); if (status == 0) { printf("** DI ext2fs read block (indir 2 1)" "failed. **\n"); return -1; } ext4fs_indir1_blkno = le32_to_cpu(inode->b.blocks.double_indir_block) << log2_blksz; } if (ext4fs_indir2_block == NULL) { ext4fs_indir2_block = zalloc(blksz); if (ext4fs_indir2_block == NULL) { printf("** DI ext2fs read block (indir 2 2)" "malloc failed. **\n"); return -1; } ext4fs_indir2_size = blksz; ext4fs_indir2_blkno = -1; } if (blksz != ext4fs_indir2_size) { free(ext4fs_indir2_block); ext4fs_indir2_block = NULL; ext4fs_indir2_size = 0; ext4fs_indir2_blkno = -1; ext4fs_indir2_block = zalloc(blksz); if (ext4fs_indir2_block == NULL) { printf("** DI ext2fs read block (indir 2 2)" "malloc failed. **\n"); return -1; } ext4fs_indir2_size = blksz; } if ((le32_to_cpu(ext4fs_indir1_block[rblock / perblock]) << log2_blksz) != ext4fs_indir2_blkno) { status = ext4fs_devread((lbaint_t)le32_to_cpu (ext4fs_indir1_block [rblock / perblock]) << log2_blksz, 0, blksz, (char *)ext4fs_indir2_block); if (status == 0) { printf("** DI ext2fs read block (indir 2 2)" "failed. **\n"); return -1; } ext4fs_indir2_blkno = le32_to_cpu(ext4fs_indir1_block[rblock / perblock]) << log2_blksz; } blknr = le32_to_cpu(ext4fs_indir2_block[rblock % perblock]); } /* Tripple indirect. */ else { rblock = fileblock - (INDIRECT_BLOCKS + blksz / 4 + (blksz / 4 * blksz / 4)); perblock_child = blksz / 4; perblock_parent = ((blksz / 4) * (blksz / 4)); if (ext4fs_indir1_block == NULL) { ext4fs_indir1_block = zalloc(blksz); if (ext4fs_indir1_block == NULL) { printf("** TI ext2fs read block (indir 2 1)" "malloc failed. **\n"); return -1; } ext4fs_indir1_size = blksz; ext4fs_indir1_blkno = -1; } if (blksz != ext4fs_indir1_size) { free(ext4fs_indir1_block); ext4fs_indir1_block = NULL; ext4fs_indir1_size = 0; ext4fs_indir1_blkno = -1; ext4fs_indir1_block = zalloc(blksz); if (ext4fs_indir1_block == NULL) { printf("** TI ext2fs read block (indir 2 1)" "malloc failed. **\n"); return -1; } ext4fs_indir1_size = blksz; } if ((le32_to_cpu(inode->b.blocks.triple_indir_block) << log2_blksz) != ext4fs_indir1_blkno) { status = ext4fs_devread ((lbaint_t) le32_to_cpu(inode->b.blocks.triple_indir_block) << log2_blksz, 0, blksz, (char *)ext4fs_indir1_block); if (status == 0) { printf("** TI ext2fs read block (indir 2 1)" "failed. **\n"); return -1; } ext4fs_indir1_blkno = le32_to_cpu(inode->b.blocks.triple_indir_block) << log2_blksz; } if (ext4fs_indir2_block == NULL) { ext4fs_indir2_block = zalloc(blksz); if (ext4fs_indir2_block == NULL) { printf("** TI ext2fs read block (indir 2 2)" "malloc failed. **\n"); return -1; } ext4fs_indir2_size = blksz; ext4fs_indir2_blkno = -1; } if (blksz != ext4fs_indir2_size) { free(ext4fs_indir2_block); ext4fs_indir2_block = NULL; ext4fs_indir2_size = 0; ext4fs_indir2_blkno = -1; ext4fs_indir2_block = zalloc(blksz); if (ext4fs_indir2_block == NULL) { printf("** TI ext2fs read block (indir 2 2)" "malloc failed. **\n"); return -1; } ext4fs_indir2_size = blksz; } if ((le32_to_cpu(ext4fs_indir1_block[rblock / perblock_parent]) << log2_blksz) != ext4fs_indir2_blkno) { status = ext4fs_devread((lbaint_t)le32_to_cpu (ext4fs_indir1_block [rblock / perblock_parent]) << log2_blksz, 0, blksz, (char *)ext4fs_indir2_block); if (status == 0) { printf("** TI ext2fs read block (indir 2 2)" "failed. **\n"); return -1; } ext4fs_indir2_blkno = le32_to_cpu(ext4fs_indir1_block[rblock / perblock_parent]) << log2_blksz; } if (ext4fs_indir3_block == NULL) { ext4fs_indir3_block = zalloc(blksz); if (ext4fs_indir3_block == NULL) { printf("** TI ext2fs read block (indir 2 2)" "malloc failed. **\n"); return -1; } ext4fs_indir3_size = blksz; ext4fs_indir3_blkno = -1; } if (blksz != ext4fs_indir3_size) { free(ext4fs_indir3_block); ext4fs_indir3_block = NULL; ext4fs_indir3_size = 0; ext4fs_indir3_blkno = -1; ext4fs_indir3_block = zalloc(blksz); if (ext4fs_indir3_block == NULL) { printf("** TI ext2fs read block (indir 2 2)" "malloc failed. **\n"); return -1; } ext4fs_indir3_size = blksz; } if ((le32_to_cpu(ext4fs_indir2_block[rblock / perblock_child]) << log2_blksz) != ext4fs_indir3_blkno) { status = ext4fs_devread((lbaint_t)le32_to_cpu (ext4fs_indir2_block [(rblock / perblock_child) % (blksz / 4)]) << log2_blksz, 0, blksz, (char *)ext4fs_indir3_block); if (status == 0) { printf("** TI ext2fs read block (indir 2 2)" "failed. **\n"); return -1; } ext4fs_indir3_blkno = le32_to_cpu(ext4fs_indir2_block[(rblock / perblock_child) % (blksz / 4)]) << log2_blksz; } blknr = le32_to_cpu(ext4fs_indir3_block [rblock % perblock_child]); } debug("read_allocated_block %ld\n", blknr); return blknr; } /** * ext4fs_reinit_global() - Reinitialize values of ext4 write implementation's * global pointers * * This function assures that for a file with the same name but different size * the sequential store on the ext4 filesystem will be correct. * * In this function the global data, responsible for internal representation * of the ext4 data are initialized to the reset state. Without this, during * replacement of the smaller file with the bigger truncation of new file was * performed. */ void ext4fs_reinit_global(void) { if (ext4fs_indir1_block != NULL) { free(ext4fs_indir1_block); ext4fs_indir1_block = NULL; ext4fs_indir1_size = 0; ext4fs_indir1_blkno = -1; } if (ext4fs_indir2_block != NULL) { free(ext4fs_indir2_block); ext4fs_indir2_block = NULL; ext4fs_indir2_size = 0; ext4fs_indir2_blkno = -1; } if (ext4fs_indir3_block != NULL) { free(ext4fs_indir3_block); ext4fs_indir3_block = NULL; ext4fs_indir3_size = 0; ext4fs_indir3_blkno = -1; } } void ext4fs_close(void) { if ((ext4fs_file != NULL) && (ext4fs_root != NULL)) { ext4fs_free_node(ext4fs_file, &ext4fs_root->diropen); ext4fs_file = NULL; } if (ext4fs_root != NULL) { free(ext4fs_root); ext4fs_root = NULL; } ext4fs_reinit_global(); } int ext4fs_iterate_dir(struct ext2fs_node *dir, char *name, struct ext2fs_node **fnode, int *ftype) { unsigned int fpos = 0; int status; loff_t actread; struct ext2fs_node *diro = (struct ext2fs_node *) dir; #ifdef DEBUG if (name != NULL) printf("Iterate dir %s\n", name); #endif /* of DEBUG */ if (!diro->inode_read) { status = ext4fs_read_inode(diro->data, diro->ino, &diro->inode); if (status == 0) return 0; } /* Search the file. */ while (fpos < le32_to_cpu(diro->inode.size)) { struct ext2_dirent dirent; status = ext4fs_read_file(diro, fpos, sizeof(struct ext2_dirent), (char *)&dirent, &actread); if (status < 0) return 0; if (dirent.direntlen == 0) { printf("Failed to iterate over directory %s\n", name); return 0; } if (dirent.namelen != 0) { char filename[dirent.namelen + 1]; struct ext2fs_node *fdiro; int type = FILETYPE_UNKNOWN; status = ext4fs_read_file(diro, fpos + sizeof(struct ext2_dirent), dirent.namelen, filename, &actread); if (status < 0) return 0; fdiro = zalloc(sizeof(struct ext2fs_node)); if (!fdiro) return 0; fdiro->data = diro->data; fdiro->ino = le32_to_cpu(dirent.inode); filename[dirent.namelen] = '\0'; if (dirent.filetype != FILETYPE_UNKNOWN) { fdiro->inode_read = 0; if (dirent.filetype == FILETYPE_DIRECTORY) type = FILETYPE_DIRECTORY; else if (dirent.filetype == FILETYPE_SYMLINK) type = FILETYPE_SYMLINK; else if (dirent.filetype == FILETYPE_REG) type = FILETYPE_REG; } else { status = ext4fs_read_inode(diro->data, le32_to_cpu (dirent.inode), &fdiro->inode); if (status == 0) { free(fdiro); return 0; } fdiro->inode_read = 1; if ((le16_to_cpu(fdiro->inode.mode) & FILETYPE_INO_MASK) == FILETYPE_INO_DIRECTORY) { type = FILETYPE_DIRECTORY; } else if ((le16_to_cpu(fdiro->inode.mode) & FILETYPE_INO_MASK) == FILETYPE_INO_SYMLINK) { type = FILETYPE_SYMLINK; } else if ((le16_to_cpu(fdiro->inode.mode) & FILETYPE_INO_MASK) == FILETYPE_INO_REG) { type = FILETYPE_REG; } } #ifdef DEBUG printf("iterate >%s<\n", filename); #endif /* of DEBUG */ if ((name != NULL) && (fnode != NULL) && (ftype != NULL)) { if (strcmp(filename, name) == 0) { *ftype = type; *fnode = fdiro; return 1; } } else { if (fdiro->inode_read == 0) { status = ext4fs_read_inode(diro->data, le32_to_cpu( dirent.inode), &fdiro->inode); if (status == 0) { free(fdiro); return 0; } fdiro->inode_read = 1; } switch (type) { case FILETYPE_DIRECTORY: printf("<DIR> "); break; case FILETYPE_SYMLINK: printf("<SYM> "); break; case FILETYPE_REG: printf(" "); break; default: printf("< ? > "); break; } printf("%10u %s\n", le32_to_cpu(fdiro->inode.size), filename); } free(fdiro); } fpos += le16_to_cpu(dirent.direntlen); } return 0; } static char *ext4fs_read_symlink(struct ext2fs_node *node) { char *symlink; struct ext2fs_node *diro = node; int status; loff_t actread; if (!diro->inode_read) { status = ext4fs_read_inode(diro->data, diro->ino, &diro->inode); if (status == 0) return NULL; } symlink = zalloc(le32_to_cpu(diro->inode.size) + 1); if (!symlink) return NULL; if (le32_to_cpu(diro->inode.size) < sizeof(diro->inode.b.symlink)) { strncpy(symlink, diro->inode.b.symlink, le32_to_cpu(diro->inode.size)); } else { status = ext4fs_read_file(diro, 0, le32_to_cpu(diro->inode.size), symlink, &actread); if ((status < 0) || (actread == 0)) { free(symlink); return NULL; } } symlink[le32_to_cpu(diro->inode.size)] = '\0'; return symlink; } static int ext4fs_find_file1(const char *currpath, struct ext2fs_node *currroot, struct ext2fs_node **currfound, int *foundtype) { char fpath[strlen(currpath) + 1]; char *name = fpath; char *next; int status; int type = FILETYPE_DIRECTORY; struct ext2fs_node *currnode = currroot; struct ext2fs_node *oldnode = currroot; strncpy(fpath, currpath, strlen(currpath) + 1); /* Remove all leading slashes. */ while (*name == '/') name++; if (!*name) { *currfound = currnode; return 1; } for (;;) { int found; /* Extract the actual part from the pathname. */ next = strchr(name, '/'); if (next) { /* Remove all leading slashes. */ while (*next == '/') *(next++) = '\0'; } if (type != FILETYPE_DIRECTORY) { ext4fs_free_node(currnode, currroot); return 0; } oldnode = currnode; /* Iterate over the directory. */ found = ext4fs_iterate_dir(currnode, name, &currnode, &type); if (found == 0) return 0; if (found == -1) break; /* Read in the symlink and follow it. */ if (type == FILETYPE_SYMLINK) { char *symlink; /* Test if the symlink does not loop. */ if (++symlinknest == 8) { ext4fs_free_node(currnode, currroot); ext4fs_free_node(oldnode, currroot); return 0; } symlink = ext4fs_read_symlink(currnode); ext4fs_free_node(currnode, currroot); if (!symlink) { ext4fs_free_node(oldnode, currroot); return 0; } debug("Got symlink >%s<\n", symlink); if (symlink[0] == '/') { ext4fs_free_node(oldnode, currroot); oldnode = &ext4fs_root->diropen; } /* Lookup the node the symlink points to. */ status = ext4fs_find_file1(symlink, oldnode, &currnode, &type); free(symlink); if (status == 0) { ext4fs_free_node(oldnode, currroot); return 0; } } ext4fs_free_node(oldnode, currroot); /* Found the node! */ if (!next || *next == '\0') { *currfound = currnode; *foundtype = type; return 1; } name = next; } return -1; } int ext4fs_find_file(const char *path, struct ext2fs_node *rootnode, struct ext2fs_node **foundnode, int expecttype) { int status; int foundtype = FILETYPE_DIRECTORY; symlinknest = 0; if (!path) return 0; status = ext4fs_find_file1(path, rootnode, foundnode, &foundtype); if (status == 0) return 0; /* Check if the node that was found was of the expected type. */ if ((expecttype == FILETYPE_REG) && (foundtype != expecttype)) return 0; else if ((expecttype == FILETYPE_DIRECTORY) && (foundtype != expecttype)) return 0; return 1; } int ext4fs_open(const char *filename, loff_t *len) { struct ext2fs_node *fdiro = NULL; int status; if (ext4fs_root == NULL) return -1; ext4fs_file = NULL; status = ext4fs_find_file(filename, &ext4fs_root->diropen, &fdiro, FILETYPE_REG); if (status == 0) goto fail; if (!fdiro->inode_read) { status = ext4fs_read_inode(fdiro->data, fdiro->ino, &fdiro->inode); if (status == 0) goto fail; } *len = le32_to_cpu(fdiro->inode.size); ext4fs_file = fdiro; return 0; fail: ext4fs_free_node(fdiro, &ext4fs_root->diropen); return -1; } int ext4fs_mount(unsigned part_length) { struct ext2_data *data; int status; struct ext_filesystem *fs = get_fs(); data = zalloc(SUPERBLOCK_SIZE); if (!data) return 0; /* Read the superblock. */ status = ext4_read_superblock((char *)&data->sblock); if (status == 0) goto fail; /* Make sure this is an ext2 filesystem. */ if (le16_to_cpu(data->sblock.magic) != EXT2_MAGIC) goto fail_noerr; if (le32_to_cpu(data->sblock.revision_level) == 0) { fs->inodesz = 128; fs->gdsize = 32; } else { debug("EXT4 features COMPAT: %08x INCOMPAT: %08x RO_COMPAT: %08x\n", __le32_to_cpu(data->sblock.feature_compatibility), __le32_to_cpu(data->sblock.feature_incompat), __le32_to_cpu(data->sblock.feature_ro_compat)); fs->inodesz = le16_to_cpu(data->sblock.inode_size); fs->gdsize = le32_to_cpu(data->sblock.feature_incompat) & EXT4_FEATURE_INCOMPAT_64BIT ? le16_to_cpu(data->sblock.descriptor_size) : 32; } debug("EXT2 rev %d, inode_size %d, descriptor size %d\n", le32_to_cpu(data->sblock.revision_level), fs->inodesz, fs->gdsize); data->diropen.data = data; data->diropen.ino = 2; data->diropen.inode_read = 1; data->inode = &data->diropen.inode; status = ext4fs_read_inode(data, 2, data->inode); if (status == 0) goto fail; ext4fs_root = data; return 1; fail: printf("Failed to mount ext2 filesystem...\n"); fail_noerr: free(data); ext4fs_root = NULL; return 0; }