// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2012-2020 ASPEED Technology Inc. * * Copyright 2016 Google, Inc */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* in order to speed up DRAM init time, write pre-defined values to registers * directly */ #define AST2500_SDRAMMC_MANUAL_CLK /* bit-field of m_pll_param */ #define SCU_MPLL_FREQ_MASK (SCU_MPLL_DENUM_MASK | SCU_MPLL_NUM_MASK | SCU_MPLL_POST_MASK) #define SCU_MPLL_FREQ_400M 0x93002400 #define SCU_MPLL_FREQ_360M 0x930023A0 #define SCU_MPLL_FREQ_CFG SCU_MPLL_FREQ_360M #define SCU_MPLL_TURN_OFF BIT(19) #define SCU_MPLL_BYPASS BIT(20) #define SCU_MPLL_RESET BIT(21) /* These configuration parameters are taken from Aspeed SDK */ #define DDR4_MR46_MODE 0x08000000 #define DDR4_MR5_MODE 0x400 #define DDR4_MR13_MODE 0x101 #define DDR4_MR02_MODE 0x410 #define DDR4_TRFC 0x45457188 #define PHY_CFG_SIZE 15 static const u32 ddr4_ac_timing[3] = {0x63604e37, 0xe97afa99, 0x00019000}; static const struct { u32 index[PHY_CFG_SIZE]; u32 value[PHY_CFG_SIZE]; } ddr4_phy_config = { .index = {0, 1, 3, 4, 5, 56, 57, 58, 59, 60, 61, 62, 36, 49, 50}, .value = { 0x42492aae, 0x09002000, 0x55e00b0b, 0x20000000, 0x24, 0x03002900, 0x0e0000a0, 0x000e001c, 0x35b8c106, 0x08080607, 0x9b000900, 0x0e400a00, 0x00100008, 0x3c183c3c, 0x00631e0e, }, }; /* supported SDRAM size */ #define SDRAM_SIZE_1KB (1024U) #define SDRAM_SIZE_1MB (SDRAM_SIZE_1KB * SDRAM_SIZE_1KB) #define SDRAM_MIN_SIZE (128 * SDRAM_SIZE_1MB) #define SDRAM_MAX_SIZE (1024 * SDRAM_SIZE_1MB) DECLARE_GLOBAL_DATA_PTR; /* * Bandwidth configuration parameters for different SDRAM requests. * These are hardcoded settings taken from Aspeed SDK. */ static const u32 ddr_max_grant_params[4] = { 0x88448844, 0x24422288, 0x22222222, 0x22222222 }; /* * These registers are not documented by Aspeed at all. * All writes and reads are taken pretty much as is from SDK. */ struct ast2500_ddr_phy { u32 phy[117]; }; struct dram_info { struct ram_info info; struct clk ddr_clk; struct ast2500_sdrammc_regs *regs; struct ast2500_scu *scu; struct ast2500_ddr_phy *phy; ulong clock_rate; }; static int ast2500_sdrammc_init_phy(struct ast2500_ddr_phy *phy) { writel(0, &phy->phy[2]); writel(0, &phy->phy[6]); writel(0, &phy->phy[8]); writel(0, &phy->phy[10]); writel(0, &phy->phy[12]); writel(0, &phy->phy[42]); writel(0, &phy->phy[44]); writel(0x86000000, &phy->phy[16]); writel(0x00008600, &phy->phy[17]); writel(0x80000000, &phy->phy[18]); writel(0x80808080, &phy->phy[19]); return 0; } static void ast2500_ddr_phy_init_process(struct dram_info *info) { struct ast2500_sdrammc_regs *regs = info->regs; writel(0, ®s->phy_ctrl[0]); writel(0x4040, &info->phy->phy[51]); writel(SDRAM_PHYCTRL0_NRST | SDRAM_PHYCTRL0_INIT, ®s->phy_ctrl[0]); while ((readl(®s->phy_ctrl[0]) & SDRAM_PHYCTRL0_INIT)) ; writel(SDRAM_PHYCTRL0_NRST | SDRAM_PHYCTRL0_AUTO_UPDATE, ®s->phy_ctrl[0]); } static void ast2500_sdrammc_set_vref(struct dram_info *info, u32 vref) { writel(0, &info->regs->phy_ctrl[0]); writel((vref << 8) | 0x6, &info->phy->phy[48]); ast2500_ddr_phy_init_process(info); } static int ast2500_ddr_cbr_test(struct dram_info *info) { struct ast2500_sdrammc_regs *regs = info->regs; int i; const u32 test_params = SDRAM_TEST_EN | SDRAM_TEST_ERRSTOP | SDRAM_TEST_TWO_MODES; int ret = 0; writel((1 << SDRAM_REFRESH_CYCLES_SHIFT) | (0x5c << SDRAM_REFRESH_PERIOD_SHIFT), ®s->refresh_timing); writel((0xfff << SDRAM_TEST_LEN_SHIFT), ®s->test_addr); writel(0xff00ff00, ®s->test_init_val); writel(SDRAM_TEST_EN | (SDRAM_TEST_MODE_RW << SDRAM_TEST_MODE_SHIFT) | SDRAM_TEST_ERRSTOP, ®s->ecc_test_ctrl); while (!(readl(®s->ecc_test_ctrl) & SDRAM_TEST_DONE)) ; if (readl(®s->ecc_test_ctrl) & SDRAM_TEST_FAIL) { ret = -EIO; } else { for (i = 0; i <= SDRAM_TEST_GEN_MODE_MASK; ++i) { writel((i << SDRAM_TEST_GEN_MODE_SHIFT) | test_params, ®s->ecc_test_ctrl); while (!(readl(®s->ecc_test_ctrl) & SDRAM_TEST_DONE)) ; if (readl(®s->ecc_test_ctrl) & SDRAM_TEST_FAIL) { ret = -EIO; break; } } } writel(0, ®s->refresh_timing); writel(0, ®s->ecc_test_ctrl); return ret; } static int ast2500_sdrammc_ddr4_calibrate_vref(struct dram_info *info) { int i; int vref_min = 0xff; int vref_max = 0; int range_size = 0; for (i = 1; i < 0x40; ++i) { int res; ast2500_sdrammc_set_vref(info, i); res = ast2500_ddr_cbr_test(info); if (res < 0) { if (range_size > 0) break; } else { ++range_size; vref_min = min(vref_min, i); vref_max = max(vref_max, i); } } /* Pick average setting */ ast2500_sdrammc_set_vref(info, (vref_min + vref_max + 1) / 2); return 0; } static size_t ast2500_sdrammc_get_vga_mem_size(struct dram_info *info) { size_t vga_mem_size_base = 8 * 1024 * 1024; u32 vga_hwconf = (readl(&info->scu->hwstrap) & SCU_HWSTRAP_VGAMEM_MASK) >> SCU_HWSTRAP_VGAMEM_SHIFT; return vga_mem_size_base << vga_hwconf; } /* * Find out RAM size and save it in dram_info * * The procedure is taken from Aspeed SDK */ static void ast2500_sdrammc_calc_size(struct dram_info *info) { /* The controller supports 128/256/512/1024 MB ram */ size_t ram_size = SDRAM_MIN_SIZE; const int write_test_offset = 0x100000; u32 test_pattern = 0xdeadbeef; u32 cap_param = SDRAM_CONF_CAP_1024M; u32 refresh_timing_param = DDR4_TRFC; const u32 write_addr_base = CONFIG_SYS_SDRAM_BASE + write_test_offset; for (ram_size = SDRAM_MAX_SIZE; ram_size > SDRAM_MIN_SIZE; ram_size >>= 1) { writel(test_pattern, write_addr_base + (ram_size >> 1)); test_pattern = (test_pattern >> 4) | (test_pattern << 28); } /* One last write to overwrite all wrapped values */ writel(test_pattern, write_addr_base); /* Reset the pattern and see which value was really written */ test_pattern = 0xdeadbeef; for (ram_size = SDRAM_MAX_SIZE; ram_size > SDRAM_MIN_SIZE; ram_size >>= 1) { if (readl(write_addr_base + (ram_size >> 1)) == test_pattern) break; --cap_param; refresh_timing_param >>= 8; test_pattern = (test_pattern >> 4) | (test_pattern << 28); } clrsetbits_le32(&info->regs->ac_timing[1], (SDRAM_AC_TRFC_MASK << SDRAM_AC_TRFC_SHIFT), ((refresh_timing_param & SDRAM_AC_TRFC_MASK) << SDRAM_AC_TRFC_SHIFT)); info->info.base = CONFIG_SYS_SDRAM_BASE; info->info.size = ram_size - ast2500_sdrammc_get_vga_mem_size(info); clrsetbits_le32(&info->regs->config, (SDRAM_CONF_CAP_MASK << SDRAM_CONF_CAP_SHIFT), ((cap_param & SDRAM_CONF_CAP_MASK) << SDRAM_CONF_CAP_SHIFT)); } #ifdef CONFIG_ASPEED_ECC static void ast2500_sdrammc_ecc_enable(struct dram_info *info) { struct ast2500_sdrammc_regs *regs = info->regs; size_t conf_size; u32 reg; conf_size = CONFIG_ASPEED_ECC_SIZE * SDRAM_SIZE_1MB; if (conf_size > info->info.size) { printf("warning: ECC configured %dMB but actual size is %dMB\n", CONFIG_ASPEED_ECC_SIZE, info->info.size / SDRAM_SIZE_1MB); conf_size = info->info.size; } else if (conf_size == 0) { conf_size = info->info.size; } info->info.size = (((conf_size / 9) * 8) >> 20) << 20; writel(((info->info.size >> 20) - 1) << 20, ®s->ecc_range_ctrl); reg = readl(®s->config) | (SDRAM_CONF_ECC_EN | SDRAM_CONF_CACHE_ADDR_CTRL); writel(reg, ®s->config); writel(0, ®s->test_init_val); writel(0, ®s->test_addr); writel(0x221, ®s->ecc_test_ctrl); while (0 == (readl(®s->ecc_test_ctrl) & BIT(12))) ; writel(0, ®s->ecc_test_ctrl); writel(BIT(31), ®s->intr_ctrl); writel(0, ®s->intr_ctrl); writel(0x400, ®s->ecc_test_ctrl); printf("ECC enable, "); } #endif static int ast2500_sdrammc_init_ddr4(struct dram_info *info) { int i; const u32 power_control = SDRAM_PCR_CKE_EN | (1 << SDRAM_PCR_CKE_DELAY_SHIFT) | (2 << SDRAM_PCR_TCKE_PW_SHIFT) | SDRAM_PCR_RESETN_DIS | SDRAM_PCR_RGAP_CTRL_EN | SDRAM_PCR_ODT_EN | SDRAM_PCR_ODT_EXT_EN; const u32 conf = (SDRAM_CONF_CAP_1024M << SDRAM_CONF_CAP_SHIFT) #ifdef CONFIG_DUALX8_RAM | SDRAM_CONF_DUALX8 #endif | SDRAM_CONF_SCRAMBLE | SDRAM_CONF_SCRAMBLE_PAT2 | SDRAM_CONF_DDR4; int ret; writel(conf, &info->regs->config); for (i = 0; i < ARRAY_SIZE(ddr4_ac_timing); ++i) writel(ddr4_ac_timing[i], &info->regs->ac_timing[i]); writel(DDR4_MR46_MODE, &info->regs->mr46_mode_setting); writel(DDR4_MR5_MODE, &info->regs->mr5_mode_setting); writel(DDR4_MR02_MODE, &info->regs->mr02_mode_setting); writel(DDR4_MR13_MODE, &info->regs->mr13_mode_setting); for (i = 0; i < PHY_CFG_SIZE; ++i) { writel(ddr4_phy_config.value[i], &info->phy->phy[ddr4_phy_config.index[i]]); } writel(power_control, &info->regs->power_control); ast2500_ddr_phy_init_process(info); ret = ast2500_sdrammc_ddr4_calibrate_vref(info); if (ret < 0) { debug("Vref calibration failed!\n"); return ret; } writel((1 << SDRAM_REFRESH_CYCLES_SHIFT) | SDRAM_REFRESH_ZQCS_EN | (0x2f << SDRAM_REFRESH_PERIOD_SHIFT), &info->regs->refresh_timing); setbits_le32(&info->regs->power_control, SDRAM_PCR_AUTOPWRDN_EN | SDRAM_PCR_ODT_AUTO_ON); ast2500_sdrammc_calc_size(info); setbits_le32(&info->regs->config, SDRAM_CONF_CACHE_INIT_EN); while (!(readl(&info->regs->config) & SDRAM_CONF_CACHE_INIT_DONE)) ; setbits_le32(&info->regs->config, SDRAM_CONF_CACHE_EN); writel(SDRAM_MISC_DDR4_TREFRESH, &info->regs->misc_control); #ifdef CONFIG_ASPEED_ECC ast2500_sdrammc_ecc_enable(info); #endif /* Enable all requests except video & display */ writel(SDRAM_REQ_USB20_EHCI1 | SDRAM_REQ_USB20_EHCI2 | SDRAM_REQ_CPU | SDRAM_REQ_AHB2 | SDRAM_REQ_AHB | SDRAM_REQ_MAC0 | SDRAM_REQ_MAC1 | SDRAM_REQ_PCIE | SDRAM_REQ_XDMA | SDRAM_REQ_ENCRYPTION | SDRAM_REQ_VIDEO_FLAG | SDRAM_REQ_VIDEO_LOW_PRI_WRITE | SDRAM_REQ_2D_RW | SDRAM_REQ_MEMCHECK, &info->regs->req_limit_mask); return 0; } static void ast2500_sdrammc_unlock(struct dram_info *info) { writel(SDRAM_UNLOCK_KEY, &info->regs->protection_key); while (!readl(&info->regs->protection_key)) ; } static void ast2500_sdrammc_lock(struct dram_info *info) { writel(~SDRAM_UNLOCK_KEY, &info->regs->protection_key); while (readl(&info->regs->protection_key)) ; } static int ast2500_sdrammc_probe(struct udevice *dev) { struct dram_info *priv = (struct dram_info *)dev_get_priv(dev); struct ast2500_sdrammc_regs *regs = priv->regs; struct udevice *clk_dev; int i; int ret = clk_get_by_index(dev, 0, &priv->ddr_clk); uint32_t reg; if (ret) { debug("DDR:No CLK\n"); return ret; } /* find the SCU base address from the aspeed clock device */ ret = uclass_get_device_by_driver(UCLASS_CLK, DM_GET_DRIVER(aspeed_scu), &clk_dev); if (ret) { debug("clock device not defined\n"); return ret; } priv->scu = devfdt_get_addr_ptr(clk_dev); if (IS_ERR(priv->scu)) { debug("%s(): can't get SCU\n", __func__); return PTR_ERR(priv->scu); } if (readl(&priv->scu->vga_handshake[0]) & (0x1 << 6)) { printf("already initialized, "); ast2500_sdrammc_calc_size(priv); setbits_le32(&priv->regs->config, SDRAM_CONF_CACHE_INIT_EN); while ( !(readl(&priv->regs->config) & SDRAM_CONF_CACHE_INIT_DONE)) ; setbits_le32(&priv->regs->config, SDRAM_CONF_CACHE_EN); writel(SDRAM_MISC_DDR4_TREFRESH, &priv->regs->misc_control); #ifdef CONFIG_ASPEED_ECC ast2500_sdrammc_ecc_enable(priv); #endif return 0; } #ifdef AST2500_SDRAMMC_MANUAL_CLK reg = readl(&priv->scu->m_pll_param); reg |= (SCU_MPLL_RESET | SCU_MPLL_TURN_OFF); writel(reg, &priv->scu->m_pll_param); reg &= ~(SCU_MPLL_RESET | SCU_MPLL_TURN_OFF| SCU_MPLL_FREQ_MASK); reg |= SCU_MPLL_FREQ_CFG; writel(reg, &priv->scu->m_pll_param); #else clk_set_rate(&priv->ddr_clk, priv->clock_rate); #endif ast2500_sdrammc_unlock(priv); writel(SDRAM_PCR_MREQI_DIS | SDRAM_PCR_RESETN_DIS, ®s->power_control); writel(SDRAM_VIDEO_UNLOCK_KEY, ®s->gm_protection_key); /* Mask all requests except CPU and AHB during PHY init */ writel(~(SDRAM_REQ_CPU | SDRAM_REQ_AHB), ®s->req_limit_mask); for (i = 0; i < ARRAY_SIZE(ddr_max_grant_params); ++i) writel(ddr_max_grant_params[i], ®s->max_grant_len[i]); setbits_le32(®s->intr_ctrl, SDRAM_ICR_RESET_ALL); ast2500_sdrammc_init_phy(priv->phy); if (readl(&priv->scu->hwstrap) & SCU_HWSTRAP_DDR4) { ast2500_sdrammc_init_ddr4(priv); } else { debug("Unsupported DRAM3\n"); return -EINVAL; } clrbits_le32(®s->intr_ctrl, SDRAM_ICR_RESET_ALL); ast2500_sdrammc_lock(priv); return 0; } static int ast2500_sdrammc_ofdata_to_platdata(struct udevice *dev) { struct dram_info *priv = dev_get_priv(dev); priv->regs = (void *)(uintptr_t)devfdt_get_addr_index(dev, 0); priv->phy = (void *)(uintptr_t)devfdt_get_addr_index(dev, 1); priv->clock_rate = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "clock-frequency", 0); if (!priv->clock_rate) { debug("DDR Clock Rate not defined\n"); return -EINVAL; } return 0; } static int ast2500_sdrammc_get_info(struct udevice *dev, struct ram_info *info) { struct dram_info *priv = dev_get_priv(dev); *info = priv->info; return 0; } static struct ram_ops ast2500_sdrammc_ops = { .get_info = ast2500_sdrammc_get_info, }; static const struct udevice_id ast2500_sdrammc_ids[] = { { .compatible = "aspeed,ast2500-sdrammc" }, { } }; U_BOOT_DRIVER(sdrammc_ast2500) = { .name = "aspeed_ast2500_sdrammc", .id = UCLASS_RAM, .of_match = ast2500_sdrammc_ids, .ops = &ast2500_sdrammc_ops, .ofdata_to_platdata = ast2500_sdrammc_ofdata_to_platdata, .probe = ast2500_sdrammc_probe, .priv_auto_alloc_size = sizeof(struct dram_info), };