/* * Copyright (C) Marvell International Ltd. and its affiliates * * SPDX-License-Identifier: GPL-2.0 */ #include <common.h> #include <spl.h> #include <asm/io.h> #include <asm/arch/cpu.h> #include <asm/arch/soc.h> #include "ddr3_init.h" #define GET_MAX_VALUE(x, y) \ ((x) > (y)) ? (x) : (y) #define CEIL_DIVIDE(x, y) \ ((x - (x / y) * y) == 0) ? ((x / y) - 1) : (x / y) #define TIME_2_CLOCK_CYCLES CEIL_DIVIDE #define GET_CS_FROM_MASK(mask) (cs_mask2_num[mask]) #define CS_CBE_VALUE(cs_num) (cs_cbe_reg[cs_num]) u32 window_mem_addr = 0; u32 phy_reg0_val = 0; u32 phy_reg1_val = 8; u32 phy_reg2_val = 0; u32 phy_reg3_val = 0xa; enum hws_ddr_freq init_freq = DDR_FREQ_667; enum hws_ddr_freq low_freq = DDR_FREQ_LOW_FREQ; enum hws_ddr_freq medium_freq; u32 debug_dunit = 0; u32 odt_additional = 1; u32 *dq_map_table = NULL; u32 odt_config = 1; #if defined(CONFIG_ARMADA_38X) || defined(CONFIG_ALLEYCAT3) || \ defined(CONFIG_ARMADA_39X) u32 is_pll_before_init = 0, is_adll_calib_before_init = 0, is_dfs_in_init = 0; u32 dfs_low_freq = 130; #else u32 is_pll_before_init = 0, is_adll_calib_before_init = 1, is_dfs_in_init = 0; u32 dfs_low_freq = 100; #endif u32 g_rtt_nom_c_s0, g_rtt_nom_c_s1; u8 calibration_update_control; /* 2 external only, 1 is internal only */ enum hws_result training_result[MAX_STAGE_LIMIT][MAX_INTERFACE_NUM]; enum auto_tune_stage training_stage = INIT_CONTROLLER; u32 finger_test = 0, p_finger_start = 11, p_finger_end = 64, n_finger_start = 11, n_finger_end = 64, p_finger_step = 3, n_finger_step = 3; u32 clamp_tbl[] = { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; /* Initiate to 0xff, this variable is define by user in debug mode */ u32 mode2_t = 0xff; u32 xsb_validate_type = 0; u32 xsb_validation_base_address = 0xf000; u32 first_active_if = 0; u32 dfs_low_phy1 = 0x1f; u32 multicast_id = 0; int use_broadcast = 0; struct hws_tip_freq_config_info *freq_info_table = NULL; u8 is_cbe_required = 0; u32 debug_mode = 0; u32 delay_enable = 0; int rl_mid_freq_wa = 0; u32 effective_cs = 0; u32 mask_tune_func = (SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT | LOAD_PATTERN_2_MASK_BIT | READ_LEVELING_MASK_BIT | SET_TARGET_FREQ_MASK_BIT | WRITE_LEVELING_TF_MASK_BIT | READ_LEVELING_TF_MASK_BIT | CENTRALIZATION_RX_MASK_BIT | CENTRALIZATION_TX_MASK_BIT); void ddr3_print_version(void) { printf(DDR3_TIP_VERSION_STRING); } static int ddr3_tip_ddr3_training_main_flow(u32 dev_num); static int ddr3_tip_write_odt(u32 dev_num, enum hws_access_type access_type, u32 if_id, u32 cl_value, u32 cwl_value); static int ddr3_tip_ddr3_auto_tune(u32 dev_num); static int is_bus_access_done(u32 dev_num, u32 if_id, u32 dunit_reg_adrr, u32 bit); #ifdef ODT_TEST_SUPPORT static int odt_test(u32 dev_num, enum hws_algo_type algo_type); #endif int adll_calibration(u32 dev_num, enum hws_access_type access_type, u32 if_id, enum hws_ddr_freq frequency); static int ddr3_tip_set_timing(u32 dev_num, enum hws_access_type access_type, u32 if_id, enum hws_ddr_freq frequency); static struct page_element page_param[] = { /* * 8bits 16 bits * page-size(K) page-size(K) mask */ { 1, 2, 2}, /* 512M */ { 1, 2, 3}, /* 1G */ { 1, 2, 0}, /* 2G */ { 1, 2, 4}, /* 4G */ { 2, 2, 5} /* 8G */ }; static u8 mem_size_config[MEM_SIZE_LAST] = { 0x2, /* 512Mbit */ 0x3, /* 1Gbit */ 0x0, /* 2Gbit */ 0x4, /* 4Gbit */ 0x5 /* 8Gbit */ }; static u8 cs_mask2_num[] = { 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 }; static struct reg_data odpg_default_value[] = { {0x1034, 0x38000, MASK_ALL_BITS}, {0x1038, 0x0, MASK_ALL_BITS}, {0x10b0, 0x0, MASK_ALL_BITS}, {0x10b8, 0x0, MASK_ALL_BITS}, {0x10c0, 0x0, MASK_ALL_BITS}, {0x10f0, 0x0, MASK_ALL_BITS}, {0x10f4, 0x0, MASK_ALL_BITS}, {0x10f8, 0xff, MASK_ALL_BITS}, {0x10fc, 0xffff, MASK_ALL_BITS}, {0x1130, 0x0, MASK_ALL_BITS}, {0x1830, 0x2000000, MASK_ALL_BITS}, {0x14d0, 0x0, MASK_ALL_BITS}, {0x14d4, 0x0, MASK_ALL_BITS}, {0x14d8, 0x0, MASK_ALL_BITS}, {0x14dc, 0x0, MASK_ALL_BITS}, {0x1454, 0x0, MASK_ALL_BITS}, {0x1594, 0x0, MASK_ALL_BITS}, {0x1598, 0x0, MASK_ALL_BITS}, {0x159c, 0x0, MASK_ALL_BITS}, {0x15a0, 0x0, MASK_ALL_BITS}, {0x15a4, 0x0, MASK_ALL_BITS}, {0x15a8, 0x0, MASK_ALL_BITS}, {0x15ac, 0x0, MASK_ALL_BITS}, {0x1604, 0x0, MASK_ALL_BITS}, {0x1608, 0x0, MASK_ALL_BITS}, {0x160c, 0x0, MASK_ALL_BITS}, {0x1610, 0x0, MASK_ALL_BITS}, {0x1614, 0x0, MASK_ALL_BITS}, {0x1618, 0x0, MASK_ALL_BITS}, {0x1624, 0x0, MASK_ALL_BITS}, {0x1690, 0x0, MASK_ALL_BITS}, {0x1694, 0x0, MASK_ALL_BITS}, {0x1698, 0x0, MASK_ALL_BITS}, {0x169c, 0x0, MASK_ALL_BITS}, {0x14b8, 0x6f67, MASK_ALL_BITS}, {0x1630, 0x0, MASK_ALL_BITS}, {0x1634, 0x0, MASK_ALL_BITS}, {0x1638, 0x0, MASK_ALL_BITS}, {0x163c, 0x0, MASK_ALL_BITS}, {0x16b0, 0x0, MASK_ALL_BITS}, {0x16b4, 0x0, MASK_ALL_BITS}, {0x16b8, 0x0, MASK_ALL_BITS}, {0x16bc, 0x0, MASK_ALL_BITS}, {0x16c0, 0x0, MASK_ALL_BITS}, {0x16c4, 0x0, MASK_ALL_BITS}, {0x16c8, 0x0, MASK_ALL_BITS}, {0x16cc, 0x1, MASK_ALL_BITS}, {0x16f0, 0x1, MASK_ALL_BITS}, {0x16f4, 0x0, MASK_ALL_BITS}, {0x16f8, 0x0, MASK_ALL_BITS}, {0x16fc, 0x0, MASK_ALL_BITS} }; static int ddr3_tip_bus_access(u32 dev_num, enum hws_access_type interface_access, u32 if_id, enum hws_access_type phy_access, u32 phy_id, enum hws_ddr_phy phy_type, u32 reg_addr, u32 data_value, enum hws_operation oper_type); static int ddr3_tip_pad_inv(u32 dev_num, u32 if_id); static int ddr3_tip_rank_control(u32 dev_num, u32 if_id); /* * Update global training parameters by data from user */ int ddr3_tip_tune_training_params(u32 dev_num, struct tune_train_params *params) { if (params->ck_delay != -1) ck_delay = params->ck_delay; if (params->ck_delay_16 != -1) ck_delay_16 = params->ck_delay_16; if (params->phy_reg3_val != -1) phy_reg3_val = params->phy_reg3_val; return MV_OK; } /* * Configure CS */ int ddr3_tip_configure_cs(u32 dev_num, u32 if_id, u32 cs_num, u32 enable) { u32 data, addr_hi, data_high; u32 mem_index; struct hws_topology_map *tm = ddr3_get_topology_map(); if (enable == 1) { data = (tm->interface_params[if_id].bus_width == BUS_WIDTH_8) ? 0 : 1; CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_UNICAST, if_id, SDRAM_ACCESS_CONTROL_REG, (data << (cs_num * 4)), 0x3 << (cs_num * 4))); mem_index = tm->interface_params[if_id].memory_size; addr_hi = mem_size_config[mem_index] & 0x3; CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_UNICAST, if_id, SDRAM_ACCESS_CONTROL_REG, (addr_hi << (2 + cs_num * 4)), 0x3 << (2 + cs_num * 4))); data_high = (mem_size_config[mem_index] & 0x4) >> 2; CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_UNICAST, if_id, SDRAM_ACCESS_CONTROL_REG, data_high << (20 + cs_num), 1 << (20 + cs_num))); /* Enable Address Select Mode */ CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_UNICAST, if_id, SDRAM_ACCESS_CONTROL_REG, 1 << (16 + cs_num), 1 << (16 + cs_num))); } switch (cs_num) { case 0: case 1: case 2: CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_UNICAST, if_id, DDR_CONTROL_LOW_REG, (enable << (cs_num + 11)), 1 << (cs_num + 11))); break; case 3: CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_UNICAST, if_id, DDR_CONTROL_LOW_REG, (enable << 15), 1 << 15)); break; } return MV_OK; } /* * Calculate number of CS */ static int calc_cs_num(u32 dev_num, u32 if_id, u32 *cs_num) { u32 cs; u32 bus_cnt; u32 cs_count; u32 cs_bitmask; u32 curr_cs_num = 0; struct hws_topology_map *tm = ddr3_get_topology_map(); for (bus_cnt = 0; bus_cnt < GET_TOPOLOGY_NUM_OF_BUSES(); bus_cnt++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_cnt); cs_count = 0; cs_bitmask = tm->interface_params[if_id]. as_bus_params[bus_cnt].cs_bitmask; for (cs = 0; cs < MAX_CS_NUM; cs++) { if ((cs_bitmask >> cs) & 1) cs_count++; } if (curr_cs_num == 0) { curr_cs_num = cs_count; } else if (cs_count != curr_cs_num) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("CS number is different per bus (IF %d BUS %d cs_num %d curr_cs_num %d)\n", if_id, bus_cnt, cs_count, curr_cs_num)); return MV_NOT_SUPPORTED; } } *cs_num = curr_cs_num; return MV_OK; } /* * Init Controller Flow */ int hws_ddr3_tip_init_controller(u32 dev_num, struct init_cntr_param *init_cntr_prm) { u32 if_id; u32 cs_num; u32 t_refi = 0, t_hclk = 0, t_ckclk = 0, t_faw = 0, t_pd = 0, t_wr = 0, t2t = 0, txpdll = 0; u32 data_value = 0, bus_width = 0, page_size = 0, cs_cnt = 0, mem_mask = 0, bus_index = 0; enum hws_speed_bin speed_bin_index = SPEED_BIN_DDR_2133N; enum hws_mem_size memory_size = MEM_2G; enum hws_ddr_freq freq = init_freq; enum hws_timing timing; u32 cs_mask = 0; u32 cl_value = 0, cwl_val = 0; u32 refresh_interval_cnt = 0, bus_cnt = 0, adll_tap = 0; enum hws_access_type access_type = ACCESS_TYPE_UNICAST; u32 data_read[MAX_INTERFACE_NUM]; struct hws_topology_map *tm = ddr3_get_topology_map(); DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("Init_controller, do_mrs_phy=%d, is_ctrl64_bit=%d\n", init_cntr_prm->do_mrs_phy, init_cntr_prm->is_ctrl64_bit)); if (init_cntr_prm->init_phy == 1) { CHECK_STATUS(ddr3_tip_configure_phy(dev_num)); } if (generic_init_controller == 1) { for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("active IF %d\n", if_id)); mem_mask = 0; for (bus_index = 0; bus_index < GET_TOPOLOGY_NUM_OF_BUSES(); bus_index++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_index); mem_mask |= tm->interface_params[if_id]. as_bus_params[bus_index].mirror_enable_bitmask; } if (mem_mask != 0) { CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_MULTICAST, if_id, CS_ENABLE_REG, 0, 0x8)); } memory_size = tm->interface_params[if_id]. memory_size; speed_bin_index = tm->interface_params[if_id]. speed_bin_index; freq = init_freq; t_refi = (tm->interface_params[if_id]. interface_temp == HWS_TEMP_HIGH) ? TREFI_HIGH : TREFI_LOW; t_refi *= 1000; /* psec */ DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("memy_size %d speed_bin_ind %d freq %d t_refi %d\n", memory_size, speed_bin_index, freq, t_refi)); /* HCLK & CK CLK in 2:1[ps] */ /* t_ckclk is external clock */ t_ckclk = (MEGA / freq_val[freq]); /* t_hclk is internal clock */ t_hclk = 2 * t_ckclk; refresh_interval_cnt = t_refi / t_hclk; /* no units */ bus_width = (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask) == 1) ? (16) : (32); if (init_cntr_prm->is_ctrl64_bit) bus_width = 64; data_value = (refresh_interval_cnt | 0x4000 | ((bus_width == 32) ? 0x8000 : 0) | 0x1000000) & ~(1 << 26); /* Interface Bus Width */ /* SRMode */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, data_value, 0x100ffff)); /* Interleave first command pre-charge enable (TBD) */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_OPEN_PAGE_CONTROL_REG, (1 << 10), (1 << 10))); /* PHY configuration */ /* * Postamble Length = 1.5cc, Addresscntl to clk skew * \BD, Preamble length normal, parralal ADLL enable */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DRAM_PHY_CONFIGURATION, 0x28, 0x3e)); if (init_cntr_prm->is_ctrl64_bit) { /* positive edge */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DRAM_PHY_CONFIGURATION, 0x0, 0xff80)); } /* calibration block disable */ /* Xbar Read buffer select (for Internal access) */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, CALIB_MACHINE_CTRL_REG, 0x1200c, 0x7dffe01c)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, CALIB_MACHINE_CTRL_REG, calibration_update_control << 3, 0x3 << 3)); /* Pad calibration control - enable */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, CALIB_MACHINE_CTRL_REG, 0x1, 0x1)); cs_mask = 0; data_value = 0x7; /* * Address ctrl \96 Part of the Generic code * The next configuration is done: * 1) Memory Size * 2) Bus_width * 3) CS# * 4) Page Number * 5) t_faw * Per Dunit get from the Map_topology the parameters: * Bus_width * t_faw is per Dunit not per CS */ page_size = (tm->interface_params[if_id]. bus_width == BUS_WIDTH_8) ? page_param[memory_size]. page_size_8bit : page_param[memory_size]. page_size_16bit; t_faw = (page_size == 1) ? speed_bin_table(speed_bin_index, SPEED_BIN_TFAW1K) : speed_bin_table(speed_bin_index, SPEED_BIN_TFAW2K); data_value = TIME_2_CLOCK_CYCLES(t_faw, t_ckclk); data_value = data_value << 24; CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_ACCESS_CONTROL_REG, data_value, 0x7f000000)); data_value = (tm->interface_params[if_id]. bus_width == BUS_WIDTH_8) ? 0 : 1; /* create merge cs mask for all cs available in dunit */ for (bus_cnt = 0; bus_cnt < GET_TOPOLOGY_NUM_OF_BUSES(); bus_cnt++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_cnt); cs_mask |= tm->interface_params[if_id]. as_bus_params[bus_cnt].cs_bitmask; } DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("Init_controller IF %d cs_mask %d\n", if_id, cs_mask)); /* * Configure the next upon the Map Topology \96 If the * Dunit is CS0 Configure CS0 if it is multi CS * configure them both: The Bust_width it\92s the * Memory Bus width \96 x8 or x16 */ for (cs_cnt = 0; cs_cnt < NUM_OF_CS; cs_cnt++) { ddr3_tip_configure_cs(dev_num, if_id, cs_cnt, ((cs_mask & (1 << cs_cnt)) ? 1 : 0)); } if (init_cntr_prm->do_mrs_phy) { /* * MR0 \96 Part of the Generic code * The next configuration is done: * 1) Burst Length * 2) CAS Latency * get for each dunit what is it Speed_bin & * Target Frequency. From those both parameters * get the appropriate Cas_l from the CL table */ cl_value = tm->interface_params[if_id]. cas_l; cwl_val = tm->interface_params[if_id]. cas_wl; DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("cl_value 0x%x cwl_val 0x%x\n", cl_value, cwl_val)); data_value = ((cl_mask_table[cl_value] & 0x1) << 2) | ((cl_mask_table[cl_value] & 0xe) << 3); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, MR0_REG, data_value, (0x7 << 4) | (1 << 2))); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, MR0_REG, twr_mask_table[t_wr + 1], 0xe00)); /* * MR1: Set RTT and DIC Design GL values * configured by user */ CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, MR1_REG, g_dic | g_rtt_nom, 0x266)); /* MR2 - Part of the Generic code */ /* * The next configuration is done: * 1) SRT * 2) CAS Write Latency */ data_value = (cwl_mask_table[cwl_val] << 3); data_value |= ((tm->interface_params[if_id]. interface_temp == HWS_TEMP_HIGH) ? (1 << 7) : 0); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, MR2_REG, data_value, (0x7 << 3) | (0x1 << 7) | (0x3 << 9))); } ddr3_tip_write_odt(dev_num, access_type, if_id, cl_value, cwl_val); ddr3_tip_set_timing(dev_num, access_type, if_id, freq); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DUNIT_CONTROL_HIGH_REG, 0x177, 0x1000177)); if (init_cntr_prm->is_ctrl64_bit) { /* disable 0.25 cc delay */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DUNIT_CONTROL_HIGH_REG, 0x0, 0x800)); } /* reset bit 7 */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DUNIT_CONTROL_HIGH_REG, (init_cntr_prm->msys_init << 7), (1 << 7))); timing = tm->interface_params[if_id].timing; if (mode2_t != 0xff) { t2t = mode2_t; } else if (timing != HWS_TIM_DEFAULT) { /* Board topology map is forcing timing */ t2t = (timing == HWS_TIM_2T) ? 1 : 0; } else { /* calculate number of CS (per interface) */ CHECK_STATUS(calc_cs_num (dev_num, if_id, &cs_num)); t2t = (cs_num == 1) ? 0 : 1; } CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DDR_CONTROL_LOW_REG, t2t << 3, 0x3 << 3)); /* move the block to ddr3_tip_set_timing - start */ t_pd = GET_MAX_VALUE(t_ckclk * 3, speed_bin_table(speed_bin_index, SPEED_BIN_TPD)); t_pd = TIME_2_CLOCK_CYCLES(t_pd, t_ckclk); txpdll = GET_MAX_VALUE(t_ckclk * 10, 24); txpdll = CEIL_DIVIDE((txpdll - 1), t_ckclk); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DDR_TIMING_REG, txpdll << 4, 0x1f << 4)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DDR_TIMING_REG, 0x28 << 9, 0x3f << 9)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DDR_TIMING_REG, 0xa << 21, 0xff << 21)); /* move the block to ddr3_tip_set_timing - end */ /* AUTO_ZQC_TIMING */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, TIMING_REG, (AUTO_ZQC_TIMING | (2 << 20)), 0x3fffff)); CHECK_STATUS(ddr3_tip_if_read (dev_num, access_type, if_id, DRAM_PHY_CONFIGURATION, data_read, 0x30)); data_value = (data_read[if_id] == 0) ? (1 << 11) : 0; CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DUNIT_CONTROL_HIGH_REG, data_value, (1 << 11))); /* Set Active control for ODT write transactions */ CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0x1494, g_odt_config, MASK_ALL_BITS)); } } else { #ifdef STATIC_ALGO_SUPPORT CHECK_STATUS(ddr3_tip_static_init_controller(dev_num)); #if defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_39X) CHECK_STATUS(ddr3_tip_static_phy_init_controller(dev_num)); #endif #endif /* STATIC_ALGO_SUPPORT */ } for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); CHECK_STATUS(ddr3_tip_rank_control(dev_num, if_id)); if (init_cntr_prm->do_mrs_phy) { CHECK_STATUS(ddr3_tip_pad_inv(dev_num, if_id)); } /* Pad calibration control - disable */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, CALIB_MACHINE_CTRL_REG, 0x0, 0x1)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, CALIB_MACHINE_CTRL_REG, calibration_update_control << 3, 0x3 << 3)); } CHECK_STATUS(ddr3_tip_enable_init_sequence(dev_num)); if (delay_enable != 0) { adll_tap = MEGA / (freq_val[freq] * 64); ddr3_tip_cmd_addr_init_delay(dev_num, adll_tap); } return MV_OK; } /* * Load Topology map */ int hws_ddr3_tip_load_topology_map(u32 dev_num, struct hws_topology_map *tm) { enum hws_speed_bin speed_bin_index; enum hws_ddr_freq freq = DDR_FREQ_LIMIT; u32 if_id; freq_val[DDR_FREQ_LOW_FREQ] = dfs_low_freq; tm = ddr3_get_topology_map(); CHECK_STATUS(ddr3_tip_get_first_active_if ((u8)dev_num, tm->if_act_mask, &first_active_if)); DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("board IF_Mask=0x%x num_of_bus_per_interface=0x%x\n", tm->if_act_mask, tm->num_of_bus_per_interface)); /* * if CL, CWL values are missing in topology map, then fill them * according to speedbin tables */ for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); speed_bin_index = tm->interface_params[if_id].speed_bin_index; /* TBD memory frequency of interface 0 only is used ! */ freq = tm->interface_params[first_active_if].memory_freq; DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("speed_bin_index =%d freq=%d cl=%d cwl=%d\n", speed_bin_index, freq_val[freq], tm->interface_params[if_id]. cas_l, tm->interface_params[if_id]. cas_wl)); if (tm->interface_params[if_id].cas_l == 0) { tm->interface_params[if_id].cas_l = cas_latency_table[speed_bin_index].cl_val[freq]; } if (tm->interface_params[if_id].cas_wl == 0) { tm->interface_params[if_id].cas_wl = cas_write_latency_table[speed_bin_index].cl_val[freq]; } } return MV_OK; } /* * RANK Control Flow */ static int ddr3_tip_rank_control(u32 dev_num, u32 if_id) { u32 data_value = 0, bus_cnt; struct hws_topology_map *tm = ddr3_get_topology_map(); for (bus_cnt = 1; bus_cnt < GET_TOPOLOGY_NUM_OF_BUSES(); bus_cnt++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_cnt); if ((tm->interface_params[if_id]. as_bus_params[0].cs_bitmask != tm->interface_params[if_id]. as_bus_params[bus_cnt].cs_bitmask) || (tm->interface_params[if_id]. as_bus_params[0].mirror_enable_bitmask != tm->interface_params[if_id]. as_bus_params[bus_cnt].mirror_enable_bitmask)) DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("WARNING:Wrong configuration for pup #%d CS mask and CS mirroring for all pups should be the same\n", bus_cnt)); } data_value |= tm->interface_params[if_id]. as_bus_params[0].cs_bitmask; data_value |= tm->interface_params[if_id]. as_bus_params[0].mirror_enable_bitmask << 4; CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_UNICAST, if_id, RANK_CTRL_REG, data_value, 0xff)); return MV_OK; } /* * PAD Inverse Flow */ static int ddr3_tip_pad_inv(u32 dev_num, u32 if_id) { u32 bus_cnt, data_value, ck_swap_pup_ctrl; struct hws_topology_map *tm = ddr3_get_topology_map(); for (bus_cnt = 0; bus_cnt < GET_TOPOLOGY_NUM_OF_BUSES(); bus_cnt++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_cnt); if (tm->interface_params[if_id]. as_bus_params[bus_cnt].is_dqs_swap == 1) { /* dqs swap */ ddr3_tip_bus_read_modify_write(dev_num, ACCESS_TYPE_UNICAST, if_id, bus_cnt, DDR_PHY_DATA, PHY_CONTROL_PHY_REG, 0xc0, 0xc0); } if (tm->interface_params[if_id]. as_bus_params[bus_cnt].is_ck_swap == 1) { if (bus_cnt <= 1) data_value = 0x5 << 2; else data_value = 0xa << 2; /* mask equals data */ /* ck swap pup is only control pup #0 ! */ ck_swap_pup_ctrl = 0; ddr3_tip_bus_read_modify_write(dev_num, ACCESS_TYPE_UNICAST, if_id, ck_swap_pup_ctrl, DDR_PHY_CONTROL, PHY_CONTROL_PHY_REG, data_value, data_value); } } return MV_OK; } /* * Run Training Flow */ int hws_ddr3_tip_run_alg(u32 dev_num, enum hws_algo_type algo_type) { int ret = MV_OK, ret_tune = MV_OK; #ifdef ODT_TEST_SUPPORT if (finger_test == 1) return odt_test(dev_num, algo_type); #endif if (algo_type == ALGO_TYPE_DYNAMIC) { ret = ddr3_tip_ddr3_auto_tune(dev_num); } else { #ifdef STATIC_ALGO_SUPPORT { enum hws_ddr_freq freq; freq = init_freq; /* add to mask */ if (is_adll_calib_before_init != 0) { printf("with adll calib before init\n"); adll_calibration(dev_num, ACCESS_TYPE_MULTICAST, 0, freq); } /* * Frequency per interface is not relevant, * only interface 0 */ ret = ddr3_tip_run_static_alg(dev_num, freq); } #endif } if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Run_alg: tuning failed %d\n", ret_tune)); } return ret; } #ifdef ODT_TEST_SUPPORT /* * ODT Test */ static int odt_test(u32 dev_num, enum hws_algo_type algo_type) { int ret = MV_OK, ret_tune = MV_OK; int pfinger_val = 0, nfinger_val; for (pfinger_val = p_finger_start; pfinger_val <= p_finger_end; pfinger_val += p_finger_step) { for (nfinger_val = n_finger_start; nfinger_val <= n_finger_end; nfinger_val += n_finger_step) { if (finger_test != 0) { DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("pfinger_val %d nfinger_val %d\n", pfinger_val, nfinger_val)); p_finger = pfinger_val; n_finger = nfinger_val; } if (algo_type == ALGO_TYPE_DYNAMIC) { ret = ddr3_tip_ddr3_auto_tune(dev_num); } else { /* * Frequency per interface is not relevant, * only interface 0 */ ret = ddr3_tip_run_static_alg(dev_num, init_freq); } } } if (ret_tune != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Run_alg: tuning failed %d\n", ret_tune)); ret = (ret == MV_OK) ? ret_tune : ret; } return ret; } #endif /* * Select Controller */ int hws_ddr3_tip_select_ddr_controller(u32 dev_num, int enable) { if (config_func_info[dev_num].tip_dunit_mux_select_func != NULL) { return config_func_info[dev_num]. tip_dunit_mux_select_func((u8)dev_num, enable); } return MV_FAIL; } /* * Dunit Register Write */ int ddr3_tip_if_write(u32 dev_num, enum hws_access_type interface_access, u32 if_id, u32 reg_addr, u32 data_value, u32 mask) { if (config_func_info[dev_num].tip_dunit_write_func != NULL) { return config_func_info[dev_num]. tip_dunit_write_func((u8)dev_num, interface_access, if_id, reg_addr, data_value, mask); } return MV_FAIL; } /* * Dunit Register Read */ int ddr3_tip_if_read(u32 dev_num, enum hws_access_type interface_access, u32 if_id, u32 reg_addr, u32 *data, u32 mask) { if (config_func_info[dev_num].tip_dunit_read_func != NULL) { return config_func_info[dev_num]. tip_dunit_read_func((u8)dev_num, interface_access, if_id, reg_addr, data, mask); } return MV_FAIL; } /* * Dunit Register Polling */ int ddr3_tip_if_polling(u32 dev_num, enum hws_access_type access_type, u32 if_id, u32 exp_value, u32 mask, u32 offset, u32 poll_tries) { u32 poll_cnt = 0, interface_num = 0, start_if, end_if; u32 read_data[MAX_INTERFACE_NUM]; int ret; int is_fail = 0, is_if_fail; struct hws_topology_map *tm = ddr3_get_topology_map(); if (access_type == ACCESS_TYPE_MULTICAST) { start_if = 0; end_if = MAX_INTERFACE_NUM - 1; } else { start_if = if_id; end_if = if_id; } for (interface_num = start_if; interface_num <= end_if; interface_num++) { /* polling bit 3 for n times */ VALIDATE_ACTIVE(tm->if_act_mask, interface_num); is_if_fail = 0; for (poll_cnt = 0; poll_cnt < poll_tries; poll_cnt++) { ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_UNICAST, interface_num, offset, read_data, mask); if (ret != MV_OK) return ret; if (read_data[interface_num] == exp_value) break; } if (poll_cnt >= poll_tries) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("max poll IF #%d\n", interface_num)); is_fail = 1; is_if_fail = 1; } training_result[training_stage][interface_num] = (is_if_fail == 1) ? TEST_FAILED : TEST_SUCCESS; } return (is_fail == 0) ? MV_OK : MV_FAIL; } /* * Bus read access */ int ddr3_tip_bus_read(u32 dev_num, u32 if_id, enum hws_access_type phy_access, u32 phy_id, enum hws_ddr_phy phy_type, u32 reg_addr, u32 *data) { u32 bus_index = 0; u32 data_read[MAX_INTERFACE_NUM]; struct hws_topology_map *tm = ddr3_get_topology_map(); if (phy_access == ACCESS_TYPE_MULTICAST) { for (bus_index = 0; bus_index < GET_TOPOLOGY_NUM_OF_BUSES(); bus_index++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_index); CHECK_STATUS(ddr3_tip_bus_access (dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST, bus_index, phy_type, reg_addr, 0, OPERATION_READ)); CHECK_STATUS(ddr3_tip_if_read (dev_num, ACCESS_TYPE_UNICAST, if_id, PHY_REG_FILE_ACCESS, data_read, MASK_ALL_BITS)); data[bus_index] = (data_read[if_id] & 0xffff); } } else { CHECK_STATUS(ddr3_tip_bus_access (dev_num, ACCESS_TYPE_UNICAST, if_id, phy_access, phy_id, phy_type, reg_addr, 0, OPERATION_READ)); CHECK_STATUS(ddr3_tip_if_read (dev_num, ACCESS_TYPE_UNICAST, if_id, PHY_REG_FILE_ACCESS, data_read, MASK_ALL_BITS)); /* * only 16 lsb bit are valid in Phy (each register is different, * some can actually be less than 16 bits) */ *data = (data_read[if_id] & 0xffff); } return MV_OK; } /* * Bus write access */ int ddr3_tip_bus_write(u32 dev_num, enum hws_access_type interface_access, u32 if_id, enum hws_access_type phy_access, u32 phy_id, enum hws_ddr_phy phy_type, u32 reg_addr, u32 data_value) { CHECK_STATUS(ddr3_tip_bus_access (dev_num, interface_access, if_id, phy_access, phy_id, phy_type, reg_addr, data_value, OPERATION_WRITE)); return MV_OK; } /* * Bus access routine (relevant for both read & write) */ static int ddr3_tip_bus_access(u32 dev_num, enum hws_access_type interface_access, u32 if_id, enum hws_access_type phy_access, u32 phy_id, enum hws_ddr_phy phy_type, u32 reg_addr, u32 data_value, enum hws_operation oper_type) { u32 addr_low = 0x3f & reg_addr; u32 addr_hi = ((0xc0 & reg_addr) >> 6); u32 data_p1 = (oper_type << 30) + (addr_hi << 28) + (phy_access << 27) + (phy_type << 26) + (phy_id << 22) + (addr_low << 16) + (data_value & 0xffff); u32 data_p2 = data_p1 + (1 << 31); u32 start_if, end_if; struct hws_topology_map *tm = ddr3_get_topology_map(); CHECK_STATUS(ddr3_tip_if_write (dev_num, interface_access, if_id, PHY_REG_FILE_ACCESS, data_p1, MASK_ALL_BITS)); CHECK_STATUS(ddr3_tip_if_write (dev_num, interface_access, if_id, PHY_REG_FILE_ACCESS, data_p2, MASK_ALL_BITS)); if (interface_access == ACCESS_TYPE_UNICAST) { start_if = if_id; end_if = if_id; } else { start_if = 0; end_if = MAX_INTERFACE_NUM - 1; } /* polling for read/write execution done */ for (if_id = start_if; if_id <= end_if; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); CHECK_STATUS(is_bus_access_done (dev_num, if_id, PHY_REG_FILE_ACCESS, 31)); } return MV_OK; } /* * Check bus access done */ static int is_bus_access_done(u32 dev_num, u32 if_id, u32 dunit_reg_adrr, u32 bit) { u32 rd_data = 1; u32 cnt = 0; u32 data_read[MAX_INTERFACE_NUM]; CHECK_STATUS(ddr3_tip_if_read (dev_num, ACCESS_TYPE_UNICAST, if_id, dunit_reg_adrr, data_read, MASK_ALL_BITS)); rd_data = data_read[if_id]; rd_data &= (1 << bit); while (rd_data != 0) { if (cnt++ >= MAX_POLLING_ITERATIONS) break; CHECK_STATUS(ddr3_tip_if_read (dev_num, ACCESS_TYPE_UNICAST, if_id, dunit_reg_adrr, data_read, MASK_ALL_BITS)); rd_data = data_read[if_id]; rd_data &= (1 << bit); } if (cnt < MAX_POLLING_ITERATIONS) return MV_OK; else return MV_FAIL; } /* * Phy read-modify-write */ int ddr3_tip_bus_read_modify_write(u32 dev_num, enum hws_access_type access_type, u32 interface_id, u32 phy_id, enum hws_ddr_phy phy_type, u32 reg_addr, u32 data_value, u32 reg_mask) { u32 data_val = 0, if_id, start_if, end_if; struct hws_topology_map *tm = ddr3_get_topology_map(); if (access_type == ACCESS_TYPE_MULTICAST) { start_if = 0; end_if = MAX_INTERFACE_NUM - 1; } else { start_if = interface_id; end_if = interface_id; } for (if_id = start_if; if_id <= end_if; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); CHECK_STATUS(ddr3_tip_bus_read (dev_num, if_id, ACCESS_TYPE_UNICAST, phy_id, phy_type, reg_addr, &data_val)); data_value = (data_val & (~reg_mask)) | (data_value & reg_mask); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST, phy_id, phy_type, reg_addr, data_value)); } return MV_OK; } /* * ADLL Calibration */ int adll_calibration(u32 dev_num, enum hws_access_type access_type, u32 if_id, enum hws_ddr_freq frequency) { struct hws_tip_freq_config_info freq_config_info; u32 bus_cnt = 0; struct hws_topology_map *tm = ddr3_get_topology_map(); /* Reset Diver_b assert -> de-assert */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, 0, 0x10000000)); mdelay(10); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, 0x10000000, 0x10000000)); if (config_func_info[dev_num].tip_get_freq_config_info_func != NULL) { CHECK_STATUS(config_func_info[dev_num]. tip_get_freq_config_info_func((u8)dev_num, frequency, &freq_config_info)); } else { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("tip_get_freq_config_info_func is NULL")); return MV_NOT_INITIALIZED; } for (bus_cnt = 0; bus_cnt < GET_TOPOLOGY_NUM_OF_BUSES(); bus_cnt++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_cnt); CHECK_STATUS(ddr3_tip_bus_read_modify_write (dev_num, access_type, if_id, bus_cnt, DDR_PHY_DATA, BW_PHY_REG, freq_config_info.bw_per_freq << 8, 0x700)); CHECK_STATUS(ddr3_tip_bus_read_modify_write (dev_num, access_type, if_id, bus_cnt, DDR_PHY_DATA, RATE_PHY_REG, freq_config_info.rate_per_freq, 0x7)); } /* DUnit to Phy drive post edge, ADLL reset assert de-assert */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DRAM_PHY_CONFIGURATION, 0, (0x80000000 | 0x40000000))); mdelay(100 / (freq_val[frequency] / freq_val[DDR_FREQ_LOW_FREQ])); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DRAM_PHY_CONFIGURATION, (0x80000000 | 0x40000000), (0x80000000 | 0x40000000))); /* polling for ADLL Done */ if (ddr3_tip_if_polling(dev_num, access_type, if_id, 0x3ff03ff, 0x3ff03ff, PHY_LOCK_STATUS_REG, MAX_POLLING_ITERATIONS) != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Freq_set: DDR3 poll failed(1)")); } /* pup data_pup reset assert-> deassert */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, 0, 0x60000000)); mdelay(10); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, 0x60000000, 0x60000000)); return MV_OK; } int ddr3_tip_freq_set(u32 dev_num, enum hws_access_type access_type, u32 if_id, enum hws_ddr_freq frequency) { u32 cl_value = 0, cwl_value = 0, mem_mask = 0, val = 0, bus_cnt = 0, t_hclk = 0, t_wr = 0, refresh_interval_cnt = 0, cnt_id; u32 t_refi = 0, end_if, start_if; u32 bus_index = 0; int is_dll_off = 0; enum hws_speed_bin speed_bin_index = 0; struct hws_tip_freq_config_info freq_config_info; enum hws_result *flow_result = training_result[training_stage]; u32 adll_tap = 0; u32 cs_mask[MAX_INTERFACE_NUM]; struct hws_topology_map *tm = ddr3_get_topology_map(); DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("dev %d access %d IF %d freq %d\n", dev_num, access_type, if_id, frequency)); if (frequency == DDR_FREQ_LOW_FREQ) is_dll_off = 1; if (access_type == ACCESS_TYPE_MULTICAST) { start_if = 0; end_if = MAX_INTERFACE_NUM - 1; } else { start_if = if_id; end_if = if_id; } /* calculate interface cs mask - Oferb 4/11 */ /* speed bin can be different for each interface */ for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { /* cs enable is active low */ VALIDATE_ACTIVE(tm->if_act_mask, if_id); cs_mask[if_id] = CS_BIT_MASK; training_result[training_stage][if_id] = TEST_SUCCESS; ddr3_tip_calc_cs_mask(dev_num, if_id, effective_cs, &cs_mask[if_id]); } /* speed bin can be different for each interface */ /* * moti b - need to remove the loop for multicas access functions * and loop the unicast access functions */ for (if_id = start_if; if_id <= end_if; if_id++) { if (IS_ACTIVE(tm->if_act_mask, if_id) == 0) continue; flow_result[if_id] = TEST_SUCCESS; speed_bin_index = tm->interface_params[if_id].speed_bin_index; if (tm->interface_params[if_id].memory_freq == frequency) { cl_value = tm->interface_params[if_id].cas_l; cwl_value = tm->interface_params[if_id].cas_wl; } else { cl_value = cas_latency_table[speed_bin_index].cl_val[frequency]; cwl_value = cas_write_latency_table[speed_bin_index]. cl_val[frequency]; } DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("Freq_set dev 0x%x access 0x%x if 0x%x freq 0x%x speed %d:\n\t", dev_num, access_type, if_id, frequency, speed_bin_index)); for (cnt_id = 0; cnt_id < DDR_FREQ_LIMIT; cnt_id++) { DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("%d ", cas_latency_table[speed_bin_index]. cl_val[cnt_id])); } DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("\n")); mem_mask = 0; for (bus_index = 0; bus_index < GET_TOPOLOGY_NUM_OF_BUSES(); bus_index++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_index); mem_mask |= tm->interface_params[if_id]. as_bus_params[bus_index].mirror_enable_bitmask; } if (mem_mask != 0) { /* motib redundant in KW28 */ CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, CS_ENABLE_REG, 0, 0x8)); } /* dll state after exiting SR */ if (is_dll_off == 1) { CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DFS_REG, 0x1, 0x1)); } else { CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DFS_REG, 0, 0x1)); } CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DUNIT_MMASK_REG, 0, 0x1)); /* DFS - block transactions */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DFS_REG, 0x2, 0x2)); /* disable ODT in case of dll off */ if (is_dll_off == 1) { CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, 0x1874, 0, 0x244)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, 0x1884, 0, 0x244)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, 0x1894, 0, 0x244)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, 0x18a4, 0, 0x244)); } /* DFS - Enter Self-Refresh */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DFS_REG, 0x4, 0x4)); /* polling on self refresh entry */ if (ddr3_tip_if_polling(dev_num, ACCESS_TYPE_UNICAST, if_id, 0x8, 0x8, DFS_REG, MAX_POLLING_ITERATIONS) != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Freq_set: DDR3 poll failed on SR entry\n")); } /* PLL configuration */ if (config_func_info[dev_num].tip_set_freq_divider_func != NULL) { config_func_info[dev_num]. tip_set_freq_divider_func(dev_num, if_id, frequency); } /* PLL configuration End */ /* adjust t_refi to new frequency */ t_refi = (tm->interface_params[if_id].interface_temp == HWS_TEMP_HIGH) ? TREFI_LOW : TREFI_HIGH; t_refi *= 1000; /*psec */ /* HCLK in[ps] */ t_hclk = MEGA / (freq_val[frequency] / 2); refresh_interval_cnt = t_refi / t_hclk; /* no units */ val = 0x4000 | refresh_interval_cnt; CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, val, 0x7fff)); /* DFS - CL/CWL/WR parameters after exiting SR */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DFS_REG, (cl_mask_table[cl_value] << 8), 0xf00)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DFS_REG, (cwl_mask_table[cwl_value] << 12), 0x7000)); t_wr = speed_bin_table(speed_bin_index, SPEED_BIN_TWR); t_wr = (t_wr / 1000); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DFS_REG, (twr_mask_table[t_wr + 1] << 16), 0x70000)); /* Restore original RTT values if returning from DLL OFF mode */ if (is_dll_off == 1) { CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, 0x1874, g_dic | g_rtt_nom, 0x266)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, 0x1884, g_dic | g_rtt_nom, 0x266)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, 0x1894, g_dic | g_rtt_nom, 0x266)); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, 0x18a4, g_dic | g_rtt_nom, 0x266)); } /* Reset Diver_b assert -> de-assert */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, 0, 0x10000000)); mdelay(10); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, 0x10000000, 0x10000000)); /* Adll configuration function of process and Frequency */ if (config_func_info[dev_num].tip_get_freq_config_info_func != NULL) { CHECK_STATUS(config_func_info[dev_num]. tip_get_freq_config_info_func(dev_num, frequency, &freq_config_info)); } /* TBD check milo5 using device ID ? */ for (bus_cnt = 0; bus_cnt < GET_TOPOLOGY_NUM_OF_BUSES(); bus_cnt++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_cnt); CHECK_STATUS(ddr3_tip_bus_read_modify_write (dev_num, ACCESS_TYPE_UNICAST, if_id, bus_cnt, DDR_PHY_DATA, 0x92, freq_config_info. bw_per_freq << 8 /*freq_mask[dev_num][frequency] << 8 */ , 0x700)); CHECK_STATUS(ddr3_tip_bus_read_modify_write (dev_num, ACCESS_TYPE_UNICAST, if_id, bus_cnt, DDR_PHY_DATA, 0x94, freq_config_info.rate_per_freq, 0x7)); } /* DUnit to Phy drive post edge, ADLL reset assert de-assert */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DRAM_PHY_CONFIGURATION, 0, (0x80000000 | 0x40000000))); mdelay(100 / (freq_val[frequency] / freq_val[DDR_FREQ_LOW_FREQ])); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DRAM_PHY_CONFIGURATION, (0x80000000 | 0x40000000), (0x80000000 | 0x40000000))); /* polling for ADLL Done */ if (ddr3_tip_if_polling (dev_num, ACCESS_TYPE_UNICAST, if_id, 0x3ff03ff, 0x3ff03ff, PHY_LOCK_STATUS_REG, MAX_POLLING_ITERATIONS) != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Freq_set: DDR3 poll failed(1)\n")); } /* pup data_pup reset assert-> deassert */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, 0, 0x60000000)); mdelay(10); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_CONFIGURATION_REG, 0x60000000, 0x60000000)); /* Set proper timing params before existing Self-Refresh */ ddr3_tip_set_timing(dev_num, access_type, if_id, frequency); if (delay_enable != 0) { adll_tap = MEGA / (freq_val[frequency] * 64); ddr3_tip_cmd_addr_init_delay(dev_num, adll_tap); } /* Exit SR */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DFS_REG, 0, 0x4)); if (ddr3_tip_if_polling (dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x8, DFS_REG, MAX_POLLING_ITERATIONS) != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Freq_set: DDR3 poll failed(2)")); } /* Refresh Command */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, SDRAM_OPERATION_REG, 0x2, 0xf1f)); if (ddr3_tip_if_polling (dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1f, SDRAM_OPERATION_REG, MAX_POLLING_ITERATIONS) != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Freq_set: DDR3 poll failed(3)")); } /* Release DFS Block */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DFS_REG, 0, 0x2)); /* Controller to MBUS Retry - normal */ CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, DUNIT_MMASK_REG, 0x1, 0x1)); /* MRO: Burst Length 8, CL , Auto_precharge 0x16cc */ val = ((cl_mask_table[cl_value] & 0x1) << 2) | ((cl_mask_table[cl_value] & 0xe) << 3); CHECK_STATUS(ddr3_tip_if_write (dev_num, access_type, if_id, MR0_REG, val, (0x7 << 4) | (1 << 2))); /* MR2: CWL = 10 , Auto Self-Refresh - disable */ val = (cwl_mask_table[cwl_value] << 3); /* * nklein 24.10.13 - should not be here - leave value as set in * the init configuration val |= (1 << 9); * val |= ((tm->interface_params[if_id]. * interface_temp == HWS_TEMP_HIGH) ? (1 << 7) : 0); */ /* nklein 24.10.13 - see above comment */ CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, MR2_REG, val, (0x7 << 3))); /* ODT TIMING */ val = ((cl_value - cwl_value + 1) << 4) | ((cl_value - cwl_value + 6) << 8) | ((cl_value - 1) << 12) | ((cl_value + 6) << 16); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, ODT_TIMING_LOW, val, 0xffff0)); val = 0x71 | ((cwl_value - 1) << 8) | ((cwl_value + 5) << 12); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, ODT_TIMING_HI_REG, val, 0xffff)); /* ODT Active */ CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, DUNIT_ODT_CONTROL_REG, 0xf, 0xf)); /* re-write CL */ val = ((cl_mask_table[cl_value] & 0x1) << 2) | ((cl_mask_table[cl_value] & 0xe) << 3); CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, 0, MR0_REG, val, (0x7 << 4) | (1 << 2))); /* re-write CWL */ val = (cwl_mask_table[cwl_value] << 3); CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask, MRS2_CMD, val, (0x7 << 3))); CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, 0, MR2_REG, val, (0x7 << 3))); if (mem_mask != 0) { CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, CS_ENABLE_REG, 1 << 3, 0x8)); } } return MV_OK; } /* * Set ODT values */ static int ddr3_tip_write_odt(u32 dev_num, enum hws_access_type access_type, u32 if_id, u32 cl_value, u32 cwl_value) { /* ODT TIMING */ u32 val = (cl_value - cwl_value + 6); val = ((cl_value - cwl_value + 1) << 4) | ((val & 0xf) << 8) | (((cl_value - 1) & 0xf) << 12) | (((cl_value + 6) & 0xf) << 16) | (((val & 0x10) >> 4) << 21); val |= (((cl_value - 1) >> 4) << 22) | (((cl_value + 6) >> 4) << 23); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, ODT_TIMING_LOW, val, 0xffff0)); val = 0x71 | ((cwl_value - 1) << 8) | ((cwl_value + 5) << 12); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, ODT_TIMING_HI_REG, val, 0xffff)); if (odt_additional == 1) { CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_ODT_CONTROL_HIGH_REG, 0xf, 0xf)); } /* ODT Active */ CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, DUNIT_ODT_CONTROL_REG, 0xf, 0xf)); return MV_OK; } /* * Set Timing values for training */ static int ddr3_tip_set_timing(u32 dev_num, enum hws_access_type access_type, u32 if_id, enum hws_ddr_freq frequency) { u32 t_ckclk = 0, t_ras = 0; u32 t_rcd = 0, t_rp = 0, t_wr = 0, t_wtr = 0, t_rrd = 0, t_rtp = 0, t_rfc = 0, t_mod = 0; u32 val = 0, page_size = 0; enum hws_speed_bin speed_bin_index; enum hws_mem_size memory_size = MEM_2G; struct hws_topology_map *tm = ddr3_get_topology_map(); speed_bin_index = tm->interface_params[if_id].speed_bin_index; memory_size = tm->interface_params[if_id].memory_size; page_size = (tm->interface_params[if_id].bus_width == BUS_WIDTH_8) ? page_param[memory_size]. page_size_8bit : page_param[memory_size].page_size_16bit; t_ckclk = (MEGA / freq_val[frequency]); t_rrd = (page_size == 1) ? speed_bin_table(speed_bin_index, SPEED_BIN_TRRD1K) : speed_bin_table(speed_bin_index, SPEED_BIN_TRRD2K); t_rrd = GET_MAX_VALUE(t_ckclk * 4, t_rrd); t_rtp = GET_MAX_VALUE(t_ckclk * 4, speed_bin_table(speed_bin_index, SPEED_BIN_TRTP)); t_wtr = GET_MAX_VALUE(t_ckclk * 4, speed_bin_table(speed_bin_index, SPEED_BIN_TWTR)); t_ras = TIME_2_CLOCK_CYCLES(speed_bin_table(speed_bin_index, SPEED_BIN_TRAS), t_ckclk); t_rcd = TIME_2_CLOCK_CYCLES(speed_bin_table(speed_bin_index, SPEED_BIN_TRCD), t_ckclk); t_rp = TIME_2_CLOCK_CYCLES(speed_bin_table(speed_bin_index, SPEED_BIN_TRP), t_ckclk); t_wr = TIME_2_CLOCK_CYCLES(speed_bin_table(speed_bin_index, SPEED_BIN_TWR), t_ckclk); t_wtr = TIME_2_CLOCK_CYCLES(t_wtr, t_ckclk); t_rrd = TIME_2_CLOCK_CYCLES(t_rrd, t_ckclk); t_rtp = TIME_2_CLOCK_CYCLES(t_rtp, t_ckclk); t_rfc = TIME_2_CLOCK_CYCLES(rfc_table[memory_size] * 1000, t_ckclk); t_mod = GET_MAX_VALUE(t_ckclk * 24, 15000); t_mod = TIME_2_CLOCK_CYCLES(t_mod, t_ckclk); /* SDRAM Timing Low */ val = (t_ras & 0xf) | (t_rcd << 4) | (t_rp << 8) | (t_wr << 12) | (t_wtr << 16) | (((t_ras & 0x30) >> 4) << 20) | (t_rrd << 24) | (t_rtp << 28); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_LOW_REG, val, 0xff3fffff)); /* SDRAM Timing High */ CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, t_rfc & 0x7f, 0x7f)); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, 0x180, 0x180)); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, 0x600, 0x600)); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, 0x1800, 0xf800)); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, ((t_rfc & 0x380) >> 7) << 16, 0x70000)); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, 0, 0x380000)); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, (t_mod & 0xf) << 25, 0x1e00000)); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, (t_mod >> 4) << 30, 0xc0000000)); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, 0x16000000, 0x1e000000)); CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, SDRAM_TIMING_HIGH_REG, 0x40000000, 0xc0000000)); return MV_OK; } /* * Mode Read */ int hws_ddr3_tip_mode_read(u32 dev_num, struct mode_info *mode_info) { u32 ret; ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, MR0_REG, mode_info->reg_mr0, MASK_ALL_BITS); if (ret != MV_OK) return ret; ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, MR1_REG, mode_info->reg_mr1, MASK_ALL_BITS); if (ret != MV_OK) return ret; ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, MR2_REG, mode_info->reg_mr2, MASK_ALL_BITS); if (ret != MV_OK) return ret; ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, MR3_REG, mode_info->reg_mr2, MASK_ALL_BITS); if (ret != MV_OK) return ret; ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, READ_DATA_SAMPLE_DELAY, mode_info->read_data_sample, MASK_ALL_BITS); if (ret != MV_OK) return ret; ret = ddr3_tip_if_read(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, READ_DATA_READY_DELAY, mode_info->read_data_ready, MASK_ALL_BITS); if (ret != MV_OK) return ret; return MV_OK; } /* * Get first active IF */ int ddr3_tip_get_first_active_if(u8 dev_num, u32 interface_mask, u32 *interface_id) { u32 if_id; struct hws_topology_map *tm = ddr3_get_topology_map(); for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); if (interface_mask & (1 << if_id)) { *interface_id = if_id; break; } } return MV_OK; } /* * Write CS Result */ int ddr3_tip_write_cs_result(u32 dev_num, u32 offset) { u32 if_id, bus_num, cs_bitmask, data_val, cs_num; struct hws_topology_map *tm = ddr3_get_topology_map(); for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); for (bus_num = 0; bus_num < tm->num_of_bus_per_interface; bus_num++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_num); cs_bitmask = tm->interface_params[if_id]. as_bus_params[bus_num].cs_bitmask; if (cs_bitmask != effective_cs) { cs_num = GET_CS_FROM_MASK(cs_bitmask); ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST, bus_num, DDR_PHY_DATA, offset + CS_REG_VALUE(effective_cs), &data_val); ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST, bus_num, DDR_PHY_DATA, offset + CS_REG_VALUE(cs_num), data_val); } } } return MV_OK; } /* * Write MRS */ int ddr3_tip_write_mrs_cmd(u32 dev_num, u32 *cs_mask_arr, u32 cmd, u32 data, u32 mask) { u32 if_id, reg; struct hws_topology_map *tm = ddr3_get_topology_map(); reg = (cmd == MRS1_CMD) ? MR1_REG : MR2_REG; CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, reg, data, mask)); for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_UNICAST, if_id, SDRAM_OPERATION_REG, (cs_mask_arr[if_id] << 8) | cmd, 0xf1f)); } for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); if (ddr3_tip_if_polling(dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1f, SDRAM_OPERATION_REG, MAX_POLLING_ITERATIONS) != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("write_mrs_cmd: Poll cmd fail")); } } return MV_OK; } /* * Reset XSB Read FIFO */ int ddr3_tip_reset_fifo_ptr(u32 dev_num) { u32 if_id = 0; /* Configure PHY reset value to 0 in order to "clean" the FIFO */ CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, 0x15c8, 0, 0xff000000)); /* * Move PHY to RL mode (only in RL mode the PHY overrides FIFO values * during FIFO reset) */ CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, TRAINING_SW_2_REG, 0x1, 0x9)); /* In order that above configuration will influence the PHY */ CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, 0x15b0, 0x80000000, 0x80000000)); /* Reset read fifo assertion */ CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, 0x1400, 0, 0x40000000)); /* Reset read fifo deassertion */ CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, 0x1400, 0x40000000, 0x40000000)); /* Move PHY back to functional mode */ CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, TRAINING_SW_2_REG, 0x8, 0x9)); /* Stop training machine */ CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, if_id, 0x15b4, 0x10000, 0x10000)); return MV_OK; } /* * Reset Phy registers */ int ddr3_tip_ddr3_reset_phy_regs(u32 dev_num) { u32 if_id, phy_id, cs; struct hws_topology_map *tm = ddr3_get_topology_map(); for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); for (phy_id = 0; phy_id < tm->num_of_bus_per_interface; phy_id++) { VALIDATE_ACTIVE(tm->bus_act_mask, phy_id); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA, WL_PHY_REG + CS_REG_VALUE(effective_cs), phy_reg0_val)); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA, RL_PHY_REG + CS_REG_VALUE(effective_cs), phy_reg2_val)); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA, READ_CENTRALIZATION_PHY_REG + CS_REG_VALUE(effective_cs), phy_reg3_val)); CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA, WRITE_CENTRALIZATION_PHY_REG + CS_REG_VALUE(effective_cs), phy_reg3_val)); } } /* Set Receiver Calibration value */ for (cs = 0; cs < MAX_CS_NUM; cs++) { /* PHY register 0xdb bits[5:0] - configure to 63 */ CHECK_STATUS(ddr3_tip_bus_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, CSN_IOB_VREF_REG(cs), 63)); } return MV_OK; } /* * Restore Dunit registers */ int ddr3_tip_restore_dunit_regs(u32 dev_num) { u32 index_cnt; CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, CALIB_MACHINE_CTRL_REG, 0x1, 0x1)); CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, CALIB_MACHINE_CTRL_REG, calibration_update_control << 3, 0x3 << 3)); CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ODPG_WRITE_READ_MODE_ENABLE_REG, 0xffff, MASK_ALL_BITS)); for (index_cnt = 0; index_cnt < ARRAY_SIZE(odpg_default_value); index_cnt++) { CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, odpg_default_value[index_cnt].reg_addr, odpg_default_value[index_cnt].reg_data, odpg_default_value[index_cnt].reg_mask)); } return MV_OK; } /* * Auto tune main flow */ static int ddr3_tip_ddr3_training_main_flow(u32 dev_num) { enum hws_ddr_freq freq = init_freq; struct init_cntr_param init_cntr_prm; int ret = MV_OK; u32 if_id; u32 max_cs = hws_ddr3_tip_max_cs_get(); struct hws_topology_map *tm = ddr3_get_topology_map(); #ifndef EXCLUDE_SWITCH_DEBUG if (debug_training == DEBUG_LEVEL_TRACE) { CHECK_STATUS(print_device_info((u8)dev_num)); } #endif for (effective_cs = 0; effective_cs < max_cs; effective_cs++) { CHECK_STATUS(ddr3_tip_ddr3_reset_phy_regs(dev_num)); } /* Set to 0 after each loop to avoid illegal value may be used */ effective_cs = 0; freq = init_freq; if (is_pll_before_init != 0) { for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); config_func_info[dev_num].tip_set_freq_divider_func( (u8)dev_num, if_id, freq); } } if (is_adll_calib_before_init != 0) { DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("with adll calib before init\n")); adll_calibration(dev_num, ACCESS_TYPE_MULTICAST, 0, freq); } if (is_reg_dump != 0) { DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("Dump before init controller\n")); ddr3_tip_reg_dump(dev_num); } if (mask_tune_func & INIT_CONTROLLER_MASK_BIT) { training_stage = INIT_CONTROLLER; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("INIT_CONTROLLER_MASK_BIT\n")); init_cntr_prm.do_mrs_phy = 1; init_cntr_prm.is_ctrl64_bit = 0; init_cntr_prm.init_phy = 1; init_cntr_prm.msys_init = 0; ret = hws_ddr3_tip_init_controller(dev_num, &init_cntr_prm); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("hws_ddr3_tip_init_controller failure\n")); if (debug_mode == 0) return MV_FAIL; } } #ifdef STATIC_ALGO_SUPPORT if (mask_tune_func & STATIC_LEVELING_MASK_BIT) { training_stage = STATIC_LEVELING; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("STATIC_LEVELING_MASK_BIT\n")); ret = ddr3_tip_run_static_alg(dev_num, freq); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_run_static_alg failure\n")); if (debug_mode == 0) return MV_FAIL; } } #endif if (mask_tune_func & SET_LOW_FREQ_MASK_BIT) { training_stage = SET_LOW_FREQ; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("SET_LOW_FREQ_MASK_BIT %d\n", freq_val[low_freq])); ret = ddr3_tip_freq_set(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, low_freq); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_freq_set failure\n")); if (debug_mode == 0) return MV_FAIL; } } for (effective_cs = 0; effective_cs < max_cs; effective_cs++) { if (mask_tune_func & LOAD_PATTERN_MASK_BIT) { training_stage = LOAD_PATTERN; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("LOAD_PATTERN_MASK_BIT #%d\n", effective_cs)); ret = ddr3_tip_load_all_pattern_to_mem(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_load_all_pattern_to_mem failure CS #%d\n", effective_cs)); if (debug_mode == 0) return MV_FAIL; } } } /* Set to 0 after each loop to avoid illegal value may be used */ effective_cs = 0; if (mask_tune_func & SET_MEDIUM_FREQ_MASK_BIT) { training_stage = SET_MEDIUM_FREQ; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("SET_MEDIUM_FREQ_MASK_BIT %d\n", freq_val[medium_freq])); ret = ddr3_tip_freq_set(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, medium_freq); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_freq_set failure\n")); if (debug_mode == 0) return MV_FAIL; } } if (mask_tune_func & WRITE_LEVELING_MASK_BIT) { training_stage = WRITE_LEVELING; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("WRITE_LEVELING_MASK_BIT\n")); if ((rl_mid_freq_wa == 0) || (freq_val[medium_freq] == 533)) { ret = ddr3_tip_dynamic_write_leveling(dev_num); } else { /* Use old WL */ ret = ddr3_tip_legacy_dynamic_write_leveling(dev_num); } if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_dynamic_write_leveling failure\n")); if (debug_mode == 0) return MV_FAIL; } } for (effective_cs = 0; effective_cs < max_cs; effective_cs++) { if (mask_tune_func & LOAD_PATTERN_2_MASK_BIT) { training_stage = LOAD_PATTERN_2; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("LOAD_PATTERN_2_MASK_BIT CS #%d\n", effective_cs)); ret = ddr3_tip_load_all_pattern_to_mem(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_load_all_pattern_to_mem failure CS #%d\n", effective_cs)); if (debug_mode == 0) return MV_FAIL; } } } /* Set to 0 after each loop to avoid illegal value may be used */ effective_cs = 0; if (mask_tune_func & READ_LEVELING_MASK_BIT) { training_stage = READ_LEVELING; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("READ_LEVELING_MASK_BIT\n")); if ((rl_mid_freq_wa == 0) || (freq_val[medium_freq] == 533)) { ret = ddr3_tip_dynamic_read_leveling(dev_num, medium_freq); } else { /* Use old RL */ ret = ddr3_tip_legacy_dynamic_read_leveling(dev_num); } if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_dynamic_read_leveling failure\n")); if (debug_mode == 0) return MV_FAIL; } } if (mask_tune_func & WRITE_LEVELING_SUPP_MASK_BIT) { training_stage = WRITE_LEVELING_SUPP; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("WRITE_LEVELING_SUPP_MASK_BIT\n")); ret = ddr3_tip_dynamic_write_leveling_supp(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_dynamic_write_leveling_supp failure\n")); if (debug_mode == 0) return MV_FAIL; } } for (effective_cs = 0; effective_cs < max_cs; effective_cs++) { if (mask_tune_func & PBS_RX_MASK_BIT) { training_stage = PBS_RX; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("PBS_RX_MASK_BIT CS #%d\n", effective_cs)); ret = ddr3_tip_pbs_rx(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_pbs_rx failure CS #%d\n", effective_cs)); if (debug_mode == 0) return MV_FAIL; } } } for (effective_cs = 0; effective_cs < max_cs; effective_cs++) { if (mask_tune_func & PBS_TX_MASK_BIT) { training_stage = PBS_TX; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("PBS_TX_MASK_BIT CS #%d\n", effective_cs)); ret = ddr3_tip_pbs_tx(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_pbs_tx failure CS #%d\n", effective_cs)); if (debug_mode == 0) return MV_FAIL; } } } /* Set to 0 after each loop to avoid illegal value may be used */ effective_cs = 0; if (mask_tune_func & SET_TARGET_FREQ_MASK_BIT) { training_stage = SET_TARGET_FREQ; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("SET_TARGET_FREQ_MASK_BIT %d\n", freq_val[tm-> interface_params[first_active_if]. memory_freq])); ret = ddr3_tip_freq_set(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, tm->interface_params[first_active_if]. memory_freq); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_freq_set failure\n")); if (debug_mode == 0) return MV_FAIL; } } if (mask_tune_func & WRITE_LEVELING_TF_MASK_BIT) { training_stage = WRITE_LEVELING_TF; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("WRITE_LEVELING_TF_MASK_BIT\n")); ret = ddr3_tip_dynamic_write_leveling(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_dynamic_write_leveling TF failure\n")); if (debug_mode == 0) return MV_FAIL; } } if (mask_tune_func & LOAD_PATTERN_HIGH_MASK_BIT) { training_stage = LOAD_PATTERN_HIGH; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("LOAD_PATTERN_HIGH\n")); ret = ddr3_tip_load_all_pattern_to_mem(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_load_all_pattern_to_mem failure\n")); if (debug_mode == 0) return MV_FAIL; } } if (mask_tune_func & READ_LEVELING_TF_MASK_BIT) { training_stage = READ_LEVELING_TF; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("READ_LEVELING_TF_MASK_BIT\n")); ret = ddr3_tip_dynamic_read_leveling(dev_num, tm-> interface_params[first_active_if]. memory_freq); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_dynamic_read_leveling TF failure\n")); if (debug_mode == 0) return MV_FAIL; } } if (mask_tune_func & DM_PBS_TX_MASK_BIT) { DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("DM_PBS_TX_MASK_BIT\n")); } for (effective_cs = 0; effective_cs < max_cs; effective_cs++) { if (mask_tune_func & VREF_CALIBRATION_MASK_BIT) { training_stage = VREF_CALIBRATION; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("VREF\n")); ret = ddr3_tip_vref(dev_num); if (is_reg_dump != 0) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("VREF Dump\n")); ddr3_tip_reg_dump(dev_num); } if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_vref failure\n")); if (debug_mode == 0) return MV_FAIL; } } } /* Set to 0 after each loop to avoid illegal value may be used */ effective_cs = 0; for (effective_cs = 0; effective_cs < max_cs; effective_cs++) { if (mask_tune_func & CENTRALIZATION_RX_MASK_BIT) { training_stage = CENTRALIZATION_RX; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("CENTRALIZATION_RX_MASK_BIT CS #%d\n", effective_cs)); ret = ddr3_tip_centralization_rx(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_centralization_rx failure CS #%d\n", effective_cs)); if (debug_mode == 0) return MV_FAIL; } } } /* Set to 0 after each loop to avoid illegal value may be used */ effective_cs = 0; for (effective_cs = 0; effective_cs < max_cs; effective_cs++) { if (mask_tune_func & WRITE_LEVELING_SUPP_TF_MASK_BIT) { training_stage = WRITE_LEVELING_SUPP_TF; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("WRITE_LEVELING_SUPP_TF_MASK_BIT CS #%d\n", effective_cs)); ret = ddr3_tip_dynamic_write_leveling_supp(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_dynamic_write_leveling_supp TF failure CS #%d\n", effective_cs)); if (debug_mode == 0) return MV_FAIL; } } } /* Set to 0 after each loop to avoid illegal value may be used */ effective_cs = 0; for (effective_cs = 0; effective_cs < max_cs; effective_cs++) { if (mask_tune_func & CENTRALIZATION_TX_MASK_BIT) { training_stage = CENTRALIZATION_TX; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("CENTRALIZATION_TX_MASK_BIT CS #%d\n", effective_cs)); ret = ddr3_tip_centralization_tx(dev_num); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); if (ret != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("ddr3_tip_centralization_tx failure CS #%d\n", effective_cs)); if (debug_mode == 0) return MV_FAIL; } } } /* Set to 0 after each loop to avoid illegal value may be used */ effective_cs = 0; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("restore registers to default\n")); /* restore register values */ CHECK_STATUS(ddr3_tip_restore_dunit_regs(dev_num)); if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); return MV_OK; } /* * DDR3 Dynamic training flow */ static int ddr3_tip_ddr3_auto_tune(u32 dev_num) { u32 if_id, stage, ret; int is_if_fail = 0, is_auto_tune_fail = 0; training_stage = INIT_CONTROLLER; for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { for (stage = 0; stage < MAX_STAGE_LIMIT; stage++) training_result[stage][if_id] = NO_TEST_DONE; } ret = ddr3_tip_ddr3_training_main_flow(dev_num); /* activate XSB test */ if (xsb_validate_type != 0) { run_xsb_test(dev_num, xsb_validation_base_address, 1, 1, 0x1024); } if (is_reg_dump != 0) ddr3_tip_reg_dump(dev_num); /* print log */ CHECK_STATUS(ddr3_tip_print_log(dev_num, window_mem_addr)); if (ret != MV_OK) { CHECK_STATUS(ddr3_tip_print_stability_log(dev_num)); } for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { is_if_fail = 0; for (stage = 0; stage < MAX_STAGE_LIMIT; stage++) { if (training_result[stage][if_id] == TEST_FAILED) is_if_fail = 1; } if (is_if_fail == 1) { is_auto_tune_fail = 1; DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("Auto Tune failed for IF %d\n", if_id)); } } if ((ret == MV_FAIL) || (is_auto_tune_fail == 1)) return MV_FAIL; else return MV_OK; } /* * Enable init sequence */ int ddr3_tip_enable_init_sequence(u32 dev_num) { int is_fail = 0; u32 if_id = 0, mem_mask = 0, bus_index = 0; struct hws_topology_map *tm = ddr3_get_topology_map(); /* Enable init sequence */ CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, 0, SDRAM_INIT_CONTROL_REG, 0x1, 0x1)); for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { VALIDATE_ACTIVE(tm->if_act_mask, if_id); if (ddr3_tip_if_polling (dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1, SDRAM_INIT_CONTROL_REG, MAX_POLLING_ITERATIONS) != MV_OK) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("polling failed IF %d\n", if_id)); is_fail = 1; continue; } mem_mask = 0; for (bus_index = 0; bus_index < GET_TOPOLOGY_NUM_OF_BUSES(); bus_index++) { VALIDATE_ACTIVE(tm->bus_act_mask, bus_index); mem_mask |= tm->interface_params[if_id]. as_bus_params[bus_index].mirror_enable_bitmask; } if (mem_mask != 0) { /* Disable Multi CS */ CHECK_STATUS(ddr3_tip_if_write (dev_num, ACCESS_TYPE_MULTICAST, if_id, CS_ENABLE_REG, 1 << 3, 1 << 3)); } } return (is_fail == 0) ? MV_OK : MV_FAIL; } int ddr3_tip_register_dq_table(u32 dev_num, u32 *table) { dq_map_table = table; return MV_OK; } /* * Check if pup search is locked */ int ddr3_tip_is_pup_lock(u32 *pup_buf, enum hws_training_result read_mode) { u32 bit_start = 0, bit_end = 0, bit_id; if (read_mode == RESULT_PER_BIT) { bit_start = 0; bit_end = BUS_WIDTH_IN_BITS - 1; } else { bit_start = 0; bit_end = 0; } for (bit_id = bit_start; bit_id <= bit_end; bit_id++) { if (GET_LOCK_RESULT(pup_buf[bit_id]) == 0) return 0; } return 1; } /* * Get minimum buffer value */ u8 ddr3_tip_get_buf_min(u8 *buf_ptr) { u8 min_val = 0xff; u8 cnt = 0; for (cnt = 0; cnt < BUS_WIDTH_IN_BITS; cnt++) { if (buf_ptr[cnt] < min_val) min_val = buf_ptr[cnt]; } return min_val; } /* * Get maximum buffer value */ u8 ddr3_tip_get_buf_max(u8 *buf_ptr) { u8 max_val = 0; u8 cnt = 0; for (cnt = 0; cnt < BUS_WIDTH_IN_BITS; cnt++) { if (buf_ptr[cnt] > max_val) max_val = buf_ptr[cnt]; } return max_val; } /* * The following functions return memory parameters: * bus and device width, device size */ u32 hws_ddr3_get_bus_width(void) { struct hws_topology_map *tm = ddr3_get_topology_map(); return (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask) == 1) ? 16 : 32; } u32 hws_ddr3_get_device_width(u32 if_id) { struct hws_topology_map *tm = ddr3_get_topology_map(); return (tm->interface_params[if_id].bus_width == BUS_WIDTH_8) ? 8 : 16; } u32 hws_ddr3_get_device_size(u32 if_id) { struct hws_topology_map *tm = ddr3_get_topology_map(); if (tm->interface_params[if_id].memory_size >= MEM_SIZE_LAST) { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Error: Wrong device size of Cs: %d", tm->interface_params[if_id].memory_size)); return 0; } else { return 1 << tm->interface_params[if_id].memory_size; } } int hws_ddr3_calc_mem_cs_size(u32 if_id, u32 cs, u32 *cs_size) { u32 cs_mem_size, dev_size; dev_size = hws_ddr3_get_device_size(if_id); if (dev_size != 0) { cs_mem_size = ((hws_ddr3_get_bus_width() / hws_ddr3_get_device_width(if_id)) * dev_size); /* the calculated result in Gbytex16 to avoid float using */ if (cs_mem_size == 2) { *cs_size = _128M; } else if (cs_mem_size == 4) { *cs_size = _256M; } else if (cs_mem_size == 8) { *cs_size = _512M; } else if (cs_mem_size == 16) { *cs_size = _1G; } else if (cs_mem_size == 32) { *cs_size = _2G; } else { DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Error: Wrong Memory size of Cs: %d", cs)); return MV_FAIL; } return MV_OK; } else { return MV_FAIL; } } int hws_ddr3_cs_base_adr_calc(u32 if_id, u32 cs, u32 *cs_base_addr) { u32 cs_mem_size = 0; #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE u32 physical_mem_size; u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE; #endif if (hws_ddr3_calc_mem_cs_size(if_id, cs, &cs_mem_size) != MV_OK) return MV_FAIL; #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE struct hws_topology_map *tm = ddr3_get_topology_map(); /* * if number of address pins doesn't allow to use max mem size that * is defined in topology mem size is defined by * DEVICE_MAX_DRAM_ADDRESS_SIZE */ physical_mem_size = mv_hwsmem_size[tm->interface_params[0].memory_size]; if (hws_ddr3_get_device_width(cs) == 16) { /* * 16bit mem device can be twice more - no need in less * significant pin */ max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2; } if (physical_mem_size > max_mem_size) { cs_mem_size = max_mem_size * (hws_ddr3_get_bus_width() / hws_ddr3_get_device_width(if_id)); DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("Updated Physical Mem size is from 0x%x to %x\n", physical_mem_size, DEVICE_MAX_DRAM_ADDRESS_SIZE)); } #endif /* calculate CS base addr */ *cs_base_addr = ((cs_mem_size) * cs) & 0xffff0000; return MV_OK; }