// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2017, STMicroelectronics - All Rights Reserved * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics. */ #include <common.h> #include <clk-uclass.h> #include <dm.h> #include <stm32_rcc.h> #include <asm/io.h> #include <asm/arch/stm32.h> #include <asm/arch/stm32_pwr.h> #include <dt-bindings/mfd/stm32f7-rcc.h> #define RCC_CR_HSION BIT(0) #define RCC_CR_HSEON BIT(16) #define RCC_CR_HSERDY BIT(17) #define RCC_CR_HSEBYP BIT(18) #define RCC_CR_CSSON BIT(19) #define RCC_CR_PLLON BIT(24) #define RCC_CR_PLLRDY BIT(25) #define RCC_CR_PLLSAION BIT(28) #define RCC_CR_PLLSAIRDY BIT(29) #define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0) #define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6) #define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16) #define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24) #define RCC_PLLCFGR_PLLSRC BIT(22) #define RCC_PLLCFGR_PLLM_SHIFT 0 #define RCC_PLLCFGR_PLLN_SHIFT 6 #define RCC_PLLCFGR_PLLP_SHIFT 16 #define RCC_PLLCFGR_PLLQ_SHIFT 24 #define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4) #define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10) #define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13) #define RCC_CFGR_SW0 BIT(0) #define RCC_CFGR_SW1 BIT(1) #define RCC_CFGR_SW_MASK GENMASK(1, 0) #define RCC_CFGR_SW_HSI 0 #define RCC_CFGR_SW_HSE RCC_CFGR_SW0 #define RCC_CFGR_SW_PLL RCC_CFGR_SW1 #define RCC_CFGR_SWS0 BIT(2) #define RCC_CFGR_SWS1 BIT(3) #define RCC_CFGR_SWS_MASK GENMASK(3, 2) #define RCC_CFGR_SWS_HSI 0 #define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0 #define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1 #define RCC_CFGR_HPRE_SHIFT 4 #define RCC_CFGR_PPRE1_SHIFT 10 #define RCC_CFGR_PPRE2_SHIFT 13 #define RCC_PLLSAICFGR_PLLSAIN_MASK GENMASK(14, 6) #define RCC_PLLSAICFGR_PLLSAIP_MASK GENMASK(17, 16) #define RCC_PLLSAICFGR_PLLSAIQ_MASK GENMASK(27, 24) #define RCC_PLLSAICFGR_PLLSAIR_MASK GENMASK(30, 28) #define RCC_PLLSAICFGR_PLLSAIN_SHIFT 6 #define RCC_PLLSAICFGR_PLLSAIP_SHIFT 16 #define RCC_PLLSAICFGR_PLLSAIQ_SHIFT 24 #define RCC_PLLSAICFGR_PLLSAIR_SHIFT 28 #define RCC_PLLSAICFGR_PLLSAIP_4 BIT(16) #define RCC_PLLSAICFGR_PLLSAIQ_4 BIT(26) #define RCC_PLLSAICFGR_PLLSAIR_3 BIT(29) | BIT(28) #define RCC_DCKCFGRX_TIMPRE BIT(24) #define RCC_DCKCFGRX_CK48MSEL BIT(27) #define RCC_DCKCFGRX_SDMMC1SEL BIT(28) #define RCC_DCKCFGR2_SDMMC2SEL BIT(29) #define RCC_DCKCFGR_PLLSAIDIVR_SHIFT 16 #define RCC_DCKCFGR_PLLSAIDIVR_MASK GENMASK(17, 16) #define RCC_DCKCFGR_PLLSAIDIVR_2 0 /* * RCC AHB1ENR specific definitions */ #define RCC_AHB1ENR_ETHMAC_EN BIT(25) #define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26) #define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27) /* * RCC APB1ENR specific definitions */ #define RCC_APB1ENR_TIM2EN BIT(0) #define RCC_APB1ENR_PWREN BIT(28) /* * RCC APB2ENR specific definitions */ #define RCC_APB2ENR_SYSCFGEN BIT(14) #define RCC_APB2ENR_SAI1EN BIT(22) enum pllsai_div { PLLSAIP, PLLSAIQ, PLLSAIR, }; static const struct stm32_clk_info stm32f4_clk_info = { /* 180 MHz */ .sys_pll_psc = { .pll_n = 360, .pll_p = 2, .pll_q = 8, .ahb_psc = AHB_PSC_1, .apb1_psc = APB_PSC_4, .apb2_psc = APB_PSC_2, }, .has_overdrive = false, .v2 = false, }; static const struct stm32_clk_info stm32f7_clk_info = { /* 200 MHz */ .sys_pll_psc = { .pll_n = 400, .pll_p = 2, .pll_q = 8, .ahb_psc = AHB_PSC_1, .apb1_psc = APB_PSC_4, .apb2_psc = APB_PSC_2, }, .has_overdrive = true, .v2 = true, }; struct stm32_clk { struct stm32_rcc_regs *base; struct stm32_pwr_regs *pwr_regs; struct stm32_clk_info info; unsigned long hse_rate; bool pllsaip; }; #ifdef CONFIG_VIDEO_STM32 static const u8 plldivr_table[] = { 0, 0, 2, 3, 4, 5, 6, 7 }; #endif static const u8 pllsaidivr_table[] = { 2, 4, 8, 16 }; static int configure_clocks(struct udevice *dev) { struct stm32_clk *priv = dev_get_priv(dev); struct stm32_rcc_regs *regs = priv->base; struct stm32_pwr_regs *pwr = priv->pwr_regs; struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc; /* Reset RCC configuration */ setbits_le32(®s->cr, RCC_CR_HSION); writel(0, ®s->cfgr); /* Reset CFGR */ clrbits_le32(®s->cr, (RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON | RCC_CR_PLLSAION)); writel(0x24003010, ®s->pllcfgr); /* Reset value from RM */ clrbits_le32(®s->cr, RCC_CR_HSEBYP); writel(0, ®s->cir); /* Disable all interrupts */ /* Configure for HSE+PLL operation */ setbits_le32(®s->cr, RCC_CR_HSEON); while (!(readl(®s->cr) & RCC_CR_HSERDY)) ; setbits_le32(®s->cfgr, (( sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT) | (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT) | (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT))); /* Configure the main PLL */ setbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */ clrsetbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLM_MASK, sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT); clrsetbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLN_MASK, sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT); clrsetbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLP_MASK, ((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT); clrsetbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLQ_MASK, sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT); /* configure SDMMC clock */ if (priv->info.v2) { /*stm32f7 case */ if (priv->pllsaip) /* select PLLSAIP as 48MHz clock source */ setbits_le32(®s->dckcfgr2, RCC_DCKCFGRX_CK48MSEL); else /* select PLLQ as 48MHz clock source */ clrbits_le32(®s->dckcfgr2, RCC_DCKCFGRX_CK48MSEL); /* select 48MHz as SDMMC1 clock source */ clrbits_le32(®s->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL); /* select 48MHz as SDMMC2 clock source */ clrbits_le32(®s->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL); } else { /* stm32f4 case */ if (priv->pllsaip) /* select PLLSAIP as 48MHz clock source */ setbits_le32(®s->dckcfgr, RCC_DCKCFGRX_CK48MSEL); else /* select PLLQ as 48MHz clock source */ clrbits_le32(®s->dckcfgr, RCC_DCKCFGRX_CK48MSEL); /* select 48MHz as SDMMC1 clock source */ clrbits_le32(®s->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL); } /* * Configure the SAI PLL to generate LTDC pixel clock and * 48 Mhz for SDMMC and USB */ clrsetbits_le32(®s->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIP_MASK, RCC_PLLSAICFGR_PLLSAIP_4); clrsetbits_le32(®s->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK, RCC_PLLSAICFGR_PLLSAIR_3); clrsetbits_le32(®s->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIN_MASK, 195 << RCC_PLLSAICFGR_PLLSAIN_SHIFT); clrsetbits_le32(®s->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK, RCC_DCKCFGR_PLLSAIDIVR_2 << RCC_DCKCFGR_PLLSAIDIVR_SHIFT); /* Enable the main PLL */ setbits_le32(®s->cr, RCC_CR_PLLON); while (!(readl(®s->cr) & RCC_CR_PLLRDY)) ; /* Enable the SAI PLL */ setbits_le32(®s->cr, RCC_CR_PLLSAION); while (!(readl(®s->cr) & RCC_CR_PLLSAIRDY)) ; setbits_le32(®s->apb1enr, RCC_APB1ENR_PWREN); if (priv->info.has_overdrive) { /* * Enable high performance mode * System frequency up to 200 MHz */ setbits_le32(&pwr->cr1, PWR_CR1_ODEN); /* Infinite wait! */ while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY)) ; /* Enable the Over-drive switch */ setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN); /* Infinite wait! */ while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY)) ; } stm32_flash_latency_cfg(5); clrbits_le32(®s->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1)); setbits_le32(®s->cfgr, RCC_CFGR_SW_PLL); while ((readl(®s->cfgr) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_PLL) ; #ifdef CONFIG_ETH_DESIGNWARE /* gate the SYSCFG clock, needed to set RMII ethernet interface */ setbits_le32(®s->apb2enr, RCC_APB2ENR_SYSCFGEN); #endif return 0; } static bool stm32_clk_get_ck48msel(struct stm32_clk *priv) { struct stm32_rcc_regs *regs = priv->base; if (priv->info.v2) /*stm32f7 case */ return readl(®s->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL; else return readl(®s->dckcfgr) & RCC_DCKCFGRX_CK48MSEL; } static unsigned long stm32_clk_get_pllsai_vco_rate(struct stm32_clk *priv) { struct stm32_rcc_regs *regs = priv->base; u16 pllm, pllsain; pllm = (readl(®s->pllcfgr) & RCC_PLLCFGR_PLLM_MASK); pllsain = ((readl(®s->pllsaicfgr) & RCC_PLLSAICFGR_PLLSAIN_MASK) >> RCC_PLLSAICFGR_PLLSAIN_SHIFT); return ((priv->hse_rate / pllm) * pllsain); } static unsigned long stm32_clk_get_pllsai_rate(struct stm32_clk *priv, enum pllsai_div output) { struct stm32_rcc_regs *regs = priv->base; u16 pll_div_output; switch (output) { case PLLSAIP: pll_div_output = ((((readl(®s->pllsaicfgr) & RCC_PLLSAICFGR_PLLSAIP_MASK) >> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1); break; case PLLSAIQ: pll_div_output = (readl(®s->pllsaicfgr) & RCC_PLLSAICFGR_PLLSAIQ_MASK) >> RCC_PLLSAICFGR_PLLSAIQ_SHIFT; break; case PLLSAIR: pll_div_output = (readl(®s->pllsaicfgr) & RCC_PLLSAICFGR_PLLSAIR_MASK) >> RCC_PLLSAICFGR_PLLSAIR_SHIFT; break; default: pr_err("incorrect PLLSAI output %d\n", output); return -EINVAL; } return (stm32_clk_get_pllsai_vco_rate(priv) / pll_div_output); } static bool stm32_get_timpre(struct stm32_clk *priv) { struct stm32_rcc_regs *regs = priv->base; u32 val; if (priv->info.v2) /*stm32f7 case */ val = readl(®s->dckcfgr2); else val = readl(®s->dckcfgr); /* get timer prescaler */ return !!(val & RCC_DCKCFGRX_TIMPRE); } static u32 stm32_get_hclk_rate(struct stm32_rcc_regs *regs, u32 sysclk) { u8 shift; /* Prescaler table lookups for clock computation */ u8 ahb_psc_table[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9 }; shift = ahb_psc_table[( (readl(®s->cfgr) & RCC_CFGR_AHB_PSC_MASK) >> RCC_CFGR_HPRE_SHIFT)]; return sysclk >> shift; }; static u8 stm32_get_apb_shift(struct stm32_rcc_regs *regs, enum apb apb) { /* Prescaler table lookups for clock computation */ u8 apb_psc_table[8] = { 0, 0, 0, 0, 1, 2, 3, 4 }; if (apb == APB1) return apb_psc_table[( (readl(®s->cfgr) & RCC_CFGR_APB1_PSC_MASK) >> RCC_CFGR_PPRE1_SHIFT)]; else /* APB2 */ return apb_psc_table[( (readl(®s->cfgr) & RCC_CFGR_APB2_PSC_MASK) >> RCC_CFGR_PPRE2_SHIFT)]; }; static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk, enum apb apb) { struct stm32_rcc_regs *regs = priv->base; u8 shift = stm32_get_apb_shift(regs, apb); if (stm32_get_timpre(priv)) /* * if APB prescaler is configured to a * division factor of 1, 2 or 4 */ switch (shift) { case 0: case 1: case 2: return stm32_get_hclk_rate(regs, sysclk); default: return (sysclk >> shift) * 4; } else /* * if APB prescaler is configured to a * division factor of 1 */ if (shift == 0) return sysclk; else return (sysclk >> shift) * 2; }; static ulong stm32_clk_get_rate(struct clk *clk) { struct stm32_clk *priv = dev_get_priv(clk->dev); struct stm32_rcc_regs *regs = priv->base; u32 sysclk = 0; u32 vco; u32 sdmmcxsel_bit; u32 saidivr; u32 pllsai_rate; u16 pllm, plln, pllp, pllq; if ((readl(®s->cfgr) & RCC_CFGR_SWS_MASK) == RCC_CFGR_SWS_PLL) { pllm = (readl(®s->pllcfgr) & RCC_PLLCFGR_PLLM_MASK); plln = ((readl(®s->pllcfgr) & RCC_PLLCFGR_PLLN_MASK) >> RCC_PLLCFGR_PLLN_SHIFT); pllp = ((((readl(®s->pllcfgr) & RCC_PLLCFGR_PLLP_MASK) >> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1); pllq = ((readl(®s->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK) >> RCC_PLLCFGR_PLLQ_SHIFT); vco = (priv->hse_rate / pllm) * plln; sysclk = vco / pllp; } else { return -EINVAL; } switch (clk->id) { /* * AHB CLOCK: 3 x 32 bits consecutive registers are used : * AHB1, AHB2 and AHB3 */ case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI): return stm32_get_hclk_rate(regs, sysclk); /* APB1 CLOCK */ case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8): /* For timer clock, an additionnal prescaler is used*/ switch (clk->id) { case STM32F7_APB1_CLOCK(TIM2): case STM32F7_APB1_CLOCK(TIM3): case STM32F7_APB1_CLOCK(TIM4): case STM32F7_APB1_CLOCK(TIM5): case STM32F7_APB1_CLOCK(TIM6): case STM32F7_APB1_CLOCK(TIM7): case STM32F7_APB1_CLOCK(TIM12): case STM32F7_APB1_CLOCK(TIM13): case STM32F7_APB1_CLOCK(TIM14): return stm32_get_timer_rate(priv, sysclk, APB1); } return (sysclk >> stm32_get_apb_shift(regs, APB1)); /* APB2 CLOCK */ case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(DSI): switch (clk->id) { /* * particular case for SDMMC1 and SDMMC2 : * 48Mhz source clock can be from main PLL or from * PLLSAIP */ case STM32F7_APB2_CLOCK(SDMMC1): case STM32F7_APB2_CLOCK(SDMMC2): if (clk->id == STM32F7_APB2_CLOCK(SDMMC1)) sdmmcxsel_bit = RCC_DCKCFGRX_SDMMC1SEL; else sdmmcxsel_bit = RCC_DCKCFGR2_SDMMC2SEL; if (readl(®s->dckcfgr2) & sdmmcxsel_bit) /* System clock is selected as SDMMC1 clock */ return sysclk; /* * 48 MHz can be generated by either PLLSAIP * or by PLLQ depending of CK48MSEL bit of RCC_DCKCFGR */ if (stm32_clk_get_ck48msel(priv)) return stm32_clk_get_pllsai_rate(priv, PLLSAIP); else return (vco / pllq); break; /* For timer clock, an additionnal prescaler is used*/ case STM32F7_APB2_CLOCK(TIM1): case STM32F7_APB2_CLOCK(TIM8): case STM32F7_APB2_CLOCK(TIM9): case STM32F7_APB2_CLOCK(TIM10): case STM32F7_APB2_CLOCK(TIM11): return stm32_get_timer_rate(priv, sysclk, APB2); break; /* particular case for LTDC clock */ case STM32F7_APB2_CLOCK(LTDC): saidivr = readl(®s->dckcfgr); saidivr = (saidivr & RCC_DCKCFGR_PLLSAIDIVR_MASK) >> RCC_DCKCFGR_PLLSAIDIVR_SHIFT; pllsai_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR); return pllsai_rate / pllsaidivr_table[saidivr]; } return (sysclk >> stm32_get_apb_shift(regs, APB2)); default: pr_err("clock index %ld out of range\n", clk->id); return -EINVAL; } } static ulong stm32_set_rate(struct clk *clk, ulong rate) { #ifdef CONFIG_VIDEO_STM32 struct stm32_clk *priv = dev_get_priv(clk->dev); struct stm32_rcc_regs *regs = priv->base; u32 pllsair_rate, pllsai_vco_rate, current_rate; u32 best_div, best_diff, diff; u16 div; u8 best_plldivr, best_pllsaidivr; u8 i, j; bool found = false; /* Only set_rate for LTDC clock is implemented */ if (clk->id != STM32F7_APB2_CLOCK(LTDC)) { pr_err("set_rate not implemented for clock index %ld\n", clk->id); return 0; } if (rate == stm32_clk_get_rate(clk)) /* already set to requested rate */ return rate; /* get the current PLLSAIR output freq */ pllsair_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR); best_div = pllsair_rate / rate; /* look into pllsaidivr_table if this divider is available*/ for (i = 0 ; i < sizeof(pllsaidivr_table); i++) if (best_div == pllsaidivr_table[i]) { /* set pll_saidivr with found value */ clrsetbits_le32(®s->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK, pllsaidivr_table[i]); return rate; } /* * As no pllsaidivr value is suitable to obtain requested freq, * test all combination of pllsaidivr * pllsair and find the one * which give freq closest to requested rate. */ pllsai_vco_rate = stm32_clk_get_pllsai_vco_rate(priv); best_diff = ULONG_MAX; best_pllsaidivr = 0; best_plldivr = 0; /* * start at index 2 of plldivr_table as divider value at index 0 * and 1 are 0) */ for (i = 2; i < sizeof(plldivr_table); i++) { for (j = 0; j < sizeof(pllsaidivr_table); j++) { div = plldivr_table[i] * pllsaidivr_table[j]; current_rate = pllsai_vco_rate / div; /* perfect combination is found ? */ if (current_rate == rate) { best_pllsaidivr = j; best_plldivr = i; found = true; break; } diff = (current_rate > rate) ? current_rate - rate : rate - current_rate; /* found a better combination ? */ if (diff < best_diff) { best_diff = diff; best_pllsaidivr = j; best_plldivr = i; } } if (found) break; } /* Disable the SAI PLL */ clrbits_le32(®s->cr, RCC_CR_PLLSAION); /* set pll_saidivr with found value */ clrsetbits_le32(®s->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK, best_pllsaidivr << RCC_DCKCFGR_PLLSAIDIVR_SHIFT); /* set pllsair with found value */ clrsetbits_le32(®s->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK, plldivr_table[best_plldivr] << RCC_PLLSAICFGR_PLLSAIR_SHIFT); /* Enable the SAI PLL */ setbits_le32(®s->cr, RCC_CR_PLLSAION); while (!(readl(®s->cr) & RCC_CR_PLLSAIRDY)) ; div = plldivr_table[best_plldivr] * pllsaidivr_table[best_pllsaidivr]; return pllsai_vco_rate / div; #else return 0; #endif } static int stm32_clk_enable(struct clk *clk) { struct stm32_clk *priv = dev_get_priv(clk->dev); struct stm32_rcc_regs *regs = priv->base; u32 offset = clk->id / 32; u32 bit_index = clk->id % 32; debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n", __func__, clk->id, offset, bit_index); setbits_le32(®s->ahb1enr + offset, BIT(bit_index)); return 0; } static int stm32_clk_probe(struct udevice *dev) { struct ofnode_phandle_args args; struct udevice *fixed_clock_dev = NULL; struct clk clk; int err; debug("%s\n", __func__); struct stm32_clk *priv = dev_get_priv(dev); fdt_addr_t addr; addr = dev_read_addr(dev); if (addr == FDT_ADDR_T_NONE) return -EINVAL; priv->base = (struct stm32_rcc_regs *)addr; priv->pllsaip = true; switch (dev_get_driver_data(dev)) { case STM32F42X: priv->pllsaip = false; /* fallback into STM32F469 case */ case STM32F469: memcpy(&priv->info, &stm32f4_clk_info, sizeof(struct stm32_clk_info)); break; case STM32F7: memcpy(&priv->info, &stm32f7_clk_info, sizeof(struct stm32_clk_info)); break; default: return -EINVAL; } /* retrieve HSE frequency (external oscillator) */ err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse", &fixed_clock_dev); if (err) { pr_err("Can't find fixed clock (%d)", err); return err; } err = clk_request(fixed_clock_dev, &clk); if (err) { pr_err("Can't request %s clk (%d)", fixed_clock_dev->name, err); return err; } /* * set pllm factor accordingly to the external oscillator * frequency (HSE). For STM32F4 and STM32F7, we want VCO * freq at 1MHz * if input PLL frequency is 25Mhz, divide it by 25 */ clk.id = 0; priv->hse_rate = clk_get_rate(&clk); if (priv->hse_rate < 1000000) { pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__, priv->hse_rate); return -EINVAL; } priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000; if (priv->info.has_overdrive) { err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0, &args); if (err) { debug("%s: can't find syscon device (%d)\n", __func__, err); return err; } priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node); } configure_clocks(dev); return 0; } static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args) { debug("%s(clk=%p)\n", __func__, clk); if (args->args_count != 2) { debug("Invaild args_count: %d\n", args->args_count); return -EINVAL; } if (args->args_count) clk->id = args->args[1]; else clk->id = 0; return 0; } static struct clk_ops stm32_clk_ops = { .of_xlate = stm32_clk_of_xlate, .enable = stm32_clk_enable, .get_rate = stm32_clk_get_rate, .set_rate = stm32_set_rate, }; U_BOOT_DRIVER(stm32fx_clk) = { .name = "stm32fx_rcc_clock", .id = UCLASS_CLK, .ops = &stm32_clk_ops, .probe = stm32_clk_probe, .priv_auto_alloc_size = sizeof(struct stm32_clk), .flags = DM_FLAG_PRE_RELOC, };