// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) ASPEED Technology Inc. * Ryan Chen */ #include #include #include #include #include #include #include #include /* * MAC Clock Delay settings, taken from Aspeed SDK */ #define RGMII_TXCLK_ODLY 8 #define RMII_RXCLK_IDLY 2 /* * TGMII Clock Duty constants, taken from Aspeed SDK */ #define RGMII2_TXCK_DUTY 0x66 #define RGMII1_TXCK_DUTY 0x64 #define D2PLL_DEFAULT_RATE (250 * 1000 * 1000) DECLARE_GLOBAL_DATA_PTR; /* * Clock divider/multiplier configuration struct. * For H-PLL and M-PLL the formula is * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1) * M - Numerator * N - Denumerator * P - Post Divider * They have the same layout in their control register. * * D-PLL and D2-PLL have extra divider (OD + 1), which is not * yet needed and ignored by clock configurations. */ struct ast2600_div_config { unsigned int num; unsigned int denum; unsigned int post_div; }; /* * Get the rate of the M-PLL clock from input clock frequency and * the value of the M-PLL Parameter Register. */ extern u32 ast2600_get_mpll_rate(struct ast2600_scu *scu) { u32 clkin = AST2600_CLK_IN; u32 mpll_reg = readl(&scu->m_pll_param); unsigned int mult, div = 1; if (mpll_reg & BIT(24)) { /* Pass through mode */ mult = div = 1; } else { /* F = 25Mhz * [(M + 2) / (n + 1)] / (p + 1) */ u32 m = mpll_reg & 0x1fff; u32 n = (mpll_reg >> 13) & 0x3f; u32 p = (mpll_reg >> 19) & 0xf; mult = (m + 1) / (n + 1); div = (p + 1); } return ((clkin * mult)/div); } /* * Get the rate of the H-PLL clock from input clock frequency and * the value of the H-PLL Parameter Register. */ extern u32 ast2600_get_hpll_rate(struct ast2600_scu *scu) { u32 clkin = AST2600_CLK_IN; u32 hpll_reg = readl(&scu->h_pll_param); unsigned int mult, div = 1; if (hpll_reg & BIT(24)) { /* Pass through mode */ mult = div = 1; } else { /* F = 25Mhz * [(M + 1) / (n + 1)] / (p + 1) */ u32 m = (hpll_reg & 0x1fff); u32 n = (hpll_reg >> 13) & 0x3f; u32 p = (hpll_reg >> 19) & 0xf; mult = (m + 1) / (n + 1); div = (p + 1); } return ((clkin * mult)/div); } extern u32 ast2600_get_dpll_rate(struct ast2600_scu *scu) { u32 clk_in = AST2600_CLK_IN; u32 dpll_reg = readl(&scu->d_pll_param); unsigned int mult, div = 1; if (dpll_reg & BIT(24)) { /* Pass through mode */ mult = div = 1; } else { /* F = 25Mhz * [(M + 2) / (n + 1)] / (p + 1)*/ u32 m = dpll_reg & 0x1fff; u32 n = (dpll_reg >> 13) & 0x3f; u32 p = (dpll_reg >> 19) & 0x7; mult = ((m + 1) / (n + 1)); div = (p + 1); } return (clk_in * mult)/div; } static u32 ast2600_a0_axi_ahb_div_table[] = { 2, 2, 3, 5, }; static u32 ast2600_a1_axi_ahb_div_table[] = { 4, 6, 2, 4, }; static u32 ast2600_get_hclk(struct ast2600_scu *scu) { u32 hw_rev = readl(&scu->chip_id0); u32 hwstrap1 = readl(&scu->hwstrap1); u32 axi_div = 1; u32 ahb_div = 0; u32 rate = 0; if((hwstrap1 >> 16) & 0x1) axi_div = 1; else axi_div = 2; if (hw_rev & BIT(16)) ahb_div = ast2600_a1_axi_ahb_div_table[(hwstrap1 >> 11) & 0x3]; else ahb_div = ast2600_a0_axi_ahb_div_table[(hwstrap1 >> 11) & 0x3]; rate = ast2600_get_hpll_rate(scu); rate = rate / axi_div / ahb_div; return rate; } extern u32 ast2600_get_apll_rate(struct ast2600_scu *scu) { u32 clk_in = AST2600_CLK_IN; u32 apll_reg = readl(&scu->a_pll_param); unsigned int mult, div = 1; if (apll_reg & BIT(20)) { /* Pass through mode */ mult = div = 1; } else { /* F = 25Mhz * (2-OD) * [(M + 2) / (n + 1)] */ u32 m = (apll_reg >> 5) & 0x3f; u32 od = (apll_reg >> 4) & 0x1; u32 n = apll_reg & 0xf; mult = (2 - od) * ((m + 2) / (n + 1)); } return (clk_in * mult)/div; } extern u32 ast2600_get_epll_rate(struct ast2600_scu *scu) { u32 clk_in = AST2600_CLK_IN; u32 epll_reg = readl(&scu->e_pll_param); unsigned int mult, div = 1; if (epll_reg & BIT(24)) { /* Pass through mode */ mult = div = 1; } else { /* F = 25Mhz * [(M + 2) / (n + 1)] / (p + 1)*/ u32 m = epll_reg & 0x1fff; u32 n = (epll_reg >> 13) & 0x3f; u32 p = (epll_reg >> 19) & 0x7; mult = ((m + 1) / (n + 1)); div = (p + 1); } return (clk_in * mult)/div; } static u32 ast2600_get_uxclk_rate(struct ast2600_scu *scu) { u32 clk_in = 0; u32 uxclk_sel = readl(&scu->clk_sel4); uxclk_sel &= 0x3; switch(uxclk_sel) { case 0: clk_in = ast2600_get_apll_rate(scu) / 4; break; case 1: clk_in = ast2600_get_apll_rate(scu) / 2; break; case 2: clk_in = ast2600_get_apll_rate(scu); break; case 3: clk_in = ast2600_get_hclk(scu); break; } return clk_in; } static u32 ast2600_get_huxclk_rate(struct ast2600_scu *scu) { u32 clk_in = 0; u32 huclk_sel = readl(&scu->clk_sel4); huclk_sel = ((huclk_sel >> 3) & 0x3); switch(huclk_sel) { case 0: clk_in = ast2600_get_apll_rate(scu) / 4; break; case 1: clk_in = ast2600_get_apll_rate(scu) / 2; break; case 2: clk_in = ast2600_get_apll_rate(scu); break; case 3: clk_in = ast2600_get_hclk(scu); break; } return clk_in; } static u32 ast2600_get_uart_from_uxclk_rate(struct ast2600_scu *scu) { u32 clk_in = ast2600_get_uxclk_rate(scu); u32 div_reg = readl(&scu->uart_24m_ref_uxclk); unsigned int mult, div; u32 n = (div_reg >> 8) & 0x3ff; u32 r = div_reg & 0xff; mult = r; div = (n * 4); return (clk_in * mult)/div; } static u32 ast2600_get_uart_from_huxclk_rate(struct ast2600_scu *scu) { u32 clk_in = ast2600_get_huxclk_rate(scu); u32 div_reg = readl(&scu->uart_24m_ref_huxclk); unsigned int mult, div; u32 n = (div_reg >> 8) & 0x3ff; u32 r = div_reg & 0xff; mult = r; div = (n * 4); return (clk_in * mult)/div; } static ulong ast2600_get_uart_clk_rate(struct ast2600_scu *scu, int uart_idx) { u32 uart_sel = readl(&scu->clk_sel4); u32 uart_sel5 = readl(&scu->clk_sel5); ulong uart_clk = 0; switch(uart_idx) { case 1: case 2: case 3: case 4: case 6: if(uart_sel & BIT(uart_idx - 1)) uart_clk = ast2600_get_uart_from_uxclk_rate(scu)/13 ; else uart_clk = ast2600_get_uart_from_huxclk_rate(scu)/13 ; break; case 5: //24mhz is come form usb phy 48Mhz { u8 uart5_clk_sel = 0; //high bit if (readl(&scu->misc_ctrl1) & BIT(12)) uart5_clk_sel = 0x2; else uart5_clk_sel = 0x0; if (readl(&scu->clk_sel2) & BIT(14)) uart5_clk_sel |= 0x1; switch(uart5_clk_sel) { case 0: uart_clk = 24000000; break; case 1: uart_clk = 0; break; case 2: uart_clk = 24000000/13; break; case 3: uart_clk = 192000000/13; break; } } break; case 7: case 8: case 9: case 10: case 11: case 12: case 13: if(uart_sel5 & BIT(uart_idx - 1)) uart_clk = ast2600_get_uart_from_uxclk_rate(scu)/13 ; else uart_clk = ast2600_get_uart_from_huxclk_rate(scu)/13 ; break; } return uart_clk; } struct aspeed_clock_config { ulong input_rate; ulong rate; struct ast2600_div_config cfg; }; static const struct aspeed_clock_config aspeed_clock_config_defaults[] = { { 25000000, 400000000, { .num = 95, .denum = 2, .post_div = 1 } }, }; static bool aspeed_get_clock_config_default(ulong input_rate, ulong requested_rate, struct ast2600_div_config *cfg) { int i; for (i = 0; i < ARRAY_SIZE(aspeed_clock_config_defaults); i++) { const struct aspeed_clock_config *default_cfg = &aspeed_clock_config_defaults[i]; if (default_cfg->input_rate == input_rate && default_cfg->rate == requested_rate) { *cfg = default_cfg->cfg; return true; } } return false; } /* * @input_rate - the rate of input clock in Hz * @requested_rate - desired output rate in Hz * @div - this is an IN/OUT parameter, at input all fields of the config * need to be set to their maximum allowed values. * The result (the best config we could find), would also be returned * in this structure. * * @return The clock rate, when the resulting div_config is used. */ static ulong aspeed_calc_clock_config(ulong input_rate, ulong requested_rate, struct ast2600_div_config *cfg) { /* * The assumption is that kHz precision is good enough and * also enough to avoid overflow when multiplying. */ const ulong input_rate_khz = input_rate / 1000; const ulong rate_khz = requested_rate / 1000; const struct ast2600_div_config max_vals = *cfg; struct ast2600_div_config it = { 0, 0, 0 }; ulong delta = rate_khz; ulong new_rate_khz = 0; /* * Look for a well known frequency first. */ if (aspeed_get_clock_config_default(input_rate, requested_rate, cfg)) return requested_rate; for (; it.denum <= max_vals.denum; ++it.denum) { for (it.post_div = 0; it.post_div <= max_vals.post_div; ++it.post_div) { it.num = (rate_khz * (it.post_div + 1) / input_rate_khz) * (it.denum + 1); if (it.num > max_vals.num) continue; new_rate_khz = (input_rate_khz * ((it.num + 1) / (it.denum + 1))) / (it.post_div + 1); /* Keep the rate below requested one. */ if (new_rate_khz > rate_khz) continue; if (new_rate_khz - rate_khz < delta) { delta = new_rate_khz - rate_khz; *cfg = it; if (delta == 0) return new_rate_khz * 1000; } } } return new_rate_khz * 1000; } static u32 ast2600_configure_ddr(struct ast2600_clk_priv *priv, ulong rate) { u32 clkin = AST2600_CLK_IN; u32 mpll_reg; struct ast2600_div_config div_cfg = { .num = (SCU_MPLL_NUM_MASK >> SCU_MPLL_NUM_SHIFT), .denum = (SCU_MPLL_DENUM_MASK >> SCU_MPLL_DENUM_SHIFT), .post_div = (SCU_MPLL_POST_MASK >> SCU_MPLL_POST_SHIFT), }; aspeed_calc_clock_config(clkin, rate, &div_cfg); mpll_reg = readl(&priv->scu->m_pll_param); mpll_reg &= ~(SCU_MPLL_POST_MASK | SCU_MPLL_NUM_MASK | SCU_MPLL_DENUM_MASK); mpll_reg |= (div_cfg.post_div << SCU_MPLL_POST_SHIFT) | (div_cfg.num << SCU_MPLL_NUM_SHIFT) | (div_cfg.denum << SCU_MPLL_DENUM_SHIFT); writel(mpll_reg, &priv->scu->m_pll_param); return ast2600_get_mpll_rate(priv->scu); } static u32 ast2600_hpll_pclk_div_table[] = { 4, 8, 12, 16, 20, 24, 28, 32, }; static ulong ast2600_clk_get_rate(struct clk *clk) { struct ast2600_clk_priv *priv = dev_get_priv(clk->dev); ulong rate = 0; switch (clk->id) { //HPLL case ASPEED_CLK_HPLL: rate = ast2600_get_hpll_rate(priv->scu); break; //HCLK case ASPEED_CLK_AHB: rate = ast2600_get_hclk(priv->scu); break; case ASPEED_CLK_MPLL: rate = ast2600_get_mpll_rate(priv->scu); break; //pclk case ASPEED_CLK_APB: { u32 clk_sel1 = readl(&priv->scu->clk_sel1); u32 apb_div = ast2600_hpll_pclk_div_table[((clk_sel1 >> 23) & 0x7)]; rate = ast2600_get_hpll_rate(priv->scu); rate = rate / apb_div; } break; case ASPEED_CLK_GATE_UART1CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 1); break; case ASPEED_CLK_GATE_UART2CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 2); break; case ASPEED_CLK_GATE_UART3CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 3); break; case ASPEED_CLK_GATE_UART4CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 4); break; case ASPEED_CLK_GATE_UART5CLK: rate = ast2600_get_uart_clk_rate(priv->scu, 5); break; default: return -ENOENT; } return rate; } static ulong ast2600_clk_set_rate(struct clk *clk, ulong rate) { struct ast2600_clk_priv *priv = dev_get_priv(clk->dev); ulong new_rate; switch (clk->id) { case ASPEED_CLK_MPLL: new_rate = ast2600_configure_ddr(priv, rate); break; default: return -ENOENT; } return new_rate; } #define SCU_CLKSTOP_MAC1 (20) #define SCU_CLKSTOP_MAC2 (21) #define SCU_CLKSTOP_MAC3 (20) #define SCU_CLKSTOP_MAC4 (21) static u32 ast2600_configure_mac(struct ast2600_scu *scu, int index) { u32 reset_bit; u32 clkstop_bit; switch (index) { case 1: reset_bit = BIT(ASPEED_RESET_MAC1); clkstop_bit = BIT(SCU_CLKSTOP_MAC1); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl1); break; case 2: reset_bit = BIT(ASPEED_RESET_MAC2); clkstop_bit = BIT(SCU_CLKSTOP_MAC2); writel(reset_bit, &scu->sysreset_ctrl1); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl1); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl1); break; case 3: reset_bit = BIT(ASPEED_RESET_MAC3 - 32); clkstop_bit = BIT(SCU_CLKSTOP_MAC3); writel(reset_bit, &scu->sysreset_ctrl2); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl2); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl2); break; case 4: reset_bit = BIT(ASPEED_RESET_MAC4 - 32); clkstop_bit = BIT(SCU_CLKSTOP_MAC4); writel(reset_bit, &scu->sysreset_ctrl2); udelay(100); writel(clkstop_bit, &scu->clk_stop_clr_ctrl2); mdelay(10); writel(reset_bit, &scu->sysreset_clr_ctrl2); break; default: return -EINVAL; } return 0; } static int ast2600_clk_enable(struct clk *clk) { struct ast2600_clk_priv *priv = dev_get_priv(clk->dev); switch (clk->id) { case ASPEED_CLK_GATE_MAC1CLK: ast2600_configure_mac(priv->scu, 1); break; case ASPEED_CLK_GATE_MAC2CLK: ast2600_configure_mac(priv->scu, 2); break; case ASPEED_CLK_GATE_MAC3CLK: ast2600_configure_mac(priv->scu, 3); break; case ASPEED_CLK_GATE_MAC4CLK: ast2600_configure_mac(priv->scu, 4); break; default: pr_debug("can't enable clk \n"); return -ENOENT; break; } return 0; } struct clk_ops ast2600_clk_ops = { .get_rate = ast2600_clk_get_rate, .set_rate = ast2600_clk_set_rate, .enable = ast2600_clk_enable, }; static int ast2600_clk_probe(struct udevice *dev) { struct ast2600_clk_priv *priv = dev_get_priv(dev); priv->scu = devfdt_get_addr_ptr(dev); if (IS_ERR(priv->scu)) return PTR_ERR(priv->scu); return 0; } static int ast2600_clk_bind(struct udevice *dev) { int ret; /* The reset driver does not have a device node, so bind it here */ ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev); if (ret) debug("Warning: No reset driver: ret=%d\n", ret); return 0; } static const struct udevice_id ast2600_clk_ids[] = { { .compatible = "aspeed,ast2600-scu", }, { } }; U_BOOT_DRIVER(aspeed_scu) = { .name = "aspeed_scu", .id = UCLASS_CLK, .of_match = ast2600_clk_ids, .priv_auto_alloc_size = sizeof(struct ast2600_clk_priv), .ops = &ast2600_clk_ops, .bind = ast2600_clk_bind, .probe = ast2600_clk_probe, };