/* * Copyright (C) 2014, Bin Meng * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; extern void ich_spi_config_opcode(struct udevice *dev); int checkcpu(void) { return 0; } int print_cpuinfo(void) { post_code(POST_CPU_INFO); return default_print_cpuinfo(); } int fsp_init_phase_pci(void) { u32 status; /* call into FspNotify */ debug("Calling into FSP (notify phase INIT_PHASE_PCI): "); status = fsp_notify(NULL, INIT_PHASE_PCI); if (status) debug("fail, error code %x\n", status); else debug("OK\n"); return status ? -EPERM : 0; } void board_final_cleanup(void) { u32 status; #ifdef CONFIG_FSP_LOCKDOWN_SPI struct udevice *dev; /* * Some Intel FSP (like Braswell) does SPI lock-down during the call * to fsp_notify(INIT_PHASE_BOOT). But before SPI lock-down is done, * it's bootloader's responsibility to configure the SPI controller's * opcode registers properly otherwise SPI controller driver doesn't * know how to communicate with the SPI flash device. * * Note we cannot do such configuration elsewhere (eg: during the SPI * controller driver's probe() routine), because: * * 1). U-Boot SPI controller driver does not set the lock-down bit * 2). Any SPI transfer will corrupt the contents of these registers * * Hence we have to do it right here before SPI lock-down bit is set. */ if (!uclass_first_device_err(UCLASS_SPI, &dev)) ich_spi_config_opcode(dev); #endif /* call into FspNotify */ debug("Calling into FSP (notify phase INIT_PHASE_BOOT): "); status = fsp_notify(NULL, INIT_PHASE_BOOT); if (status) debug("fail, error code %x\n", status); else debug("OK\n"); return; } static __maybe_unused void *fsp_prepare_mrc_cache(void) { struct mrc_data_container *cache; struct mrc_region entry; int ret; ret = mrccache_get_region(NULL, &entry); if (ret) return NULL; cache = mrccache_find_current(&entry); if (!cache) return NULL; debug("%s: mrc cache at %p, size %x checksum %04x\n", __func__, cache->data, cache->data_size, cache->checksum); return cache->data; } #ifdef CONFIG_HAVE_ACPI_RESUME int fsp_save_s3_stack(void) { struct udevice *dev; int ret; if (gd->arch.prev_sleep_state == ACPI_S3) return 0; ret = uclass_get_device(UCLASS_RTC, 0, &dev); if (ret) { debug("Cannot find RTC: err=%d\n", ret); return -ENODEV; } /* Save the stack address to CMOS */ ret = rtc_write32(dev, CMOS_FSP_STACK_ADDR, gd->start_addr_sp); if (ret) { debug("Save stack address to CMOS: err=%d\n", ret); return -EIO; } return 0; } #endif int arch_fsp_init(void) { void *nvs; int stack = CONFIG_FSP_TEMP_RAM_ADDR; int boot_mode = BOOT_FULL_CONFIG; #ifdef CONFIG_HAVE_ACPI_RESUME int prev_sleep_state = chipset_prev_sleep_state(); gd->arch.prev_sleep_state = prev_sleep_state; #endif if (!gd->arch.hob_list) { #ifdef CONFIG_ENABLE_MRC_CACHE nvs = fsp_prepare_mrc_cache(); #else nvs = NULL; #endif #ifdef CONFIG_HAVE_ACPI_RESUME if (prev_sleep_state == ACPI_S3) { if (nvs == NULL) { /* If waking from S3 and no cache then */ debug("No MRC cache found in S3 resume path\n"); post_code(POST_RESUME_FAILURE); /* Clear Sleep Type */ chipset_clear_sleep_state(); /* Reboot */ debug("Rebooting..\n"); reset_cpu(0); /* Should not reach here.. */ panic("Reboot System"); } /* * DM is not avaiable yet at this point, hence call * CMOS access library which does not depend on DM. */ stack = cmos_read32(CMOS_FSP_STACK_ADDR); boot_mode = BOOT_ON_S3_RESUME; } #endif /* * The first time we enter here, call fsp_init(). * Note the execution does not return to this function, * instead it jumps to fsp_continue(). */ fsp_init(stack, boot_mode, nvs); } else { /* * The second time we enter here, adjust the size of malloc() * pool before relocation. Given gd->malloc_base was adjusted * after the call to board_init_f_init_reserve() in arch/x86/ * cpu/start.S, we should fix up gd->malloc_limit here. */ gd->malloc_limit += CONFIG_FSP_SYS_MALLOC_F_LEN; } return 0; }