// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2012-2017 Altera Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; static struct pl310_regs *const pl310 = (struct pl310_regs *)CONFIG_SYS_PL310_BASE; static struct socfpga_system_manager *sysmgr_regs = (struct socfpga_system_manager *)SOCFPGA_SYSMGR_ADDRESS; static struct nic301_registers *nic301_regs = (struct nic301_registers *)SOCFPGA_L3REGS_ADDRESS; static struct scu_registers *scu_regs = (struct scu_registers *)SOCFPGA_MPUSCU_ADDRESS; /* * FPGA programming support for SoC FPGA Cyclone V */ static Altera_desc altera_fpga[] = { { /* Family */ Altera_SoCFPGA, /* Interface type */ fast_passive_parallel, /* No limitation as additional data will be ignored */ -1, /* No device function table */ NULL, /* Base interface address specified in driver */ NULL, /* No cookie implementation */ 0 }, }; static const struct { const u16 pn; const char *name; const char *var; } socfpga_fpga_model[] = { /* Cyclone V E */ { 0x2b15, "Cyclone V, E/A2", "cv_e_a2" }, { 0x2b05, "Cyclone V, E/A4", "cv_e_a4" }, { 0x2b22, "Cyclone V, E/A5", "cv_e_a5" }, { 0x2b13, "Cyclone V, E/A7", "cv_e_a7" }, { 0x2b14, "Cyclone V, E/A9", "cv_e_a9" }, /* Cyclone V GX/GT */ { 0x2b01, "Cyclone V, GX/C3", "cv_gx_c3" }, { 0x2b12, "Cyclone V, GX/C4", "cv_gx_c4" }, { 0x2b02, "Cyclone V, GX/C5 or GT/D5", "cv_gx_c5" }, { 0x2b03, "Cyclone V, GX/C7 or GT/D7", "cv_gx_c7" }, { 0x2b04, "Cyclone V, GX/C9 or GT/D9", "cv_gx_c9" }, /* Cyclone V SE/SX/ST */ { 0x2d11, "Cyclone V, SE/A2 or SX/C2", "cv_se_a2" }, { 0x2d01, "Cyclone V, SE/A4 or SX/C4", "cv_se_a4" }, { 0x2d12, "Cyclone V, SE/A5 or SX/C5 or ST/D5", "cv_se_a5" }, { 0x2d02, "Cyclone V, SE/A6 or SX/C6 or ST/D6", "cv_se_a6" }, /* Arria V */ { 0x2d03, "Arria V, D5", "av_d5" }, }; static int socfpga_fpga_id(const bool print_id) { const u32 altera_mi = 0x6e; const u32 id = scan_mgr_get_fpga_id(); const u32 lsb = id & 0x00000001; const u32 mi = (id >> 1) & 0x000007ff; const u32 pn = (id >> 12) & 0x0000ffff; const u32 version = (id >> 28) & 0x0000000f; int i; if ((mi != altera_mi) || (lsb != 1)) { printf("FPGA: Not Altera chip ID\n"); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(socfpga_fpga_model); i++) if (pn == socfpga_fpga_model[i].pn) break; if (i == ARRAY_SIZE(socfpga_fpga_model)) { printf("FPGA: Unknown Altera chip, ID 0x%08x\n", id); return -EINVAL; } if (print_id) printf("FPGA: Altera %s, version 0x%01x\n", socfpga_fpga_model[i].name, version); return i; } /* * Print CPU information */ #if defined(CONFIG_DISPLAY_CPUINFO) int print_cpuinfo(void) { const u32 bsel = SYSMGR_GET_BOOTINFO_BSEL(readl(&sysmgr_regs->bootinfo)); puts("CPU: Altera SoCFPGA Platform\n"); socfpga_fpga_id(1); printf("BOOT: %s\n", bsel_str[bsel].name); return 0; } #endif #ifdef CONFIG_ARCH_MISC_INIT int arch_misc_init(void) { const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7; const int fpga_id = socfpga_fpga_id(0); env_set("bootmode", bsel_str[bsel].mode); if (fpga_id >= 0) env_set("fpgatype", socfpga_fpga_model[fpga_id].var); return 0; } #endif /* * Convert all NIC-301 AMBA slaves from secure to non-secure */ static void socfpga_nic301_slave_ns(void) { writel(0x1, &nic301_regs->lwhps2fpgaregs); writel(0x1, &nic301_regs->hps2fpgaregs); writel(0x1, &nic301_regs->acp); writel(0x1, &nic301_regs->rom); writel(0x1, &nic301_regs->ocram); writel(0x1, &nic301_regs->sdrdata); } void socfpga_sdram_remap_zero(void) { u32 remap; socfpga_nic301_slave_ns(); /* * Private components security: * U-Boot : configure private timer, global timer and cpu component * access as non secure for kernel stage (as required by Linux) */ setbits_le32(&scu_regs->sacr, 0xfff); /* Configure the L2 controller to make SDRAM start at 0 */ remap = 0x1; /* remap.mpuzero */ /* Keep fpga bridge enabled when running from FPGA onchip RAM */ if (socfpga_is_booting_from_fpga()) remap |= 0x8; /* remap.hps2fpga */ writel(remap, &nic301_regs->remap); writel(0x1, &pl310->pl310_addr_filter_start); } static u32 iswgrp_handoff[8]; int arch_early_init_r(void) { int i; /* * Write magic value into magic register to unlock support for * issuing warm reset. The ancient kernel code expects this * value to be written into the register by the bootloader, so * to support that old code, we write it here instead of in the * reset_cpu() function just before resetting the CPU. */ writel(0xae9efebc, &sysmgr_regs->romcodegrp_warmramgrp_enable); for (i = 0; i < 8; i++) /* Cache initial SW setting regs */ iswgrp_handoff[i] = readl(&sysmgr_regs->iswgrp_handoff[i]); socfpga_bridges_reset(1); socfpga_sdram_remap_zero(); /* Add device descriptor to FPGA device table */ socfpga_fpga_add(&altera_fpga[0]); #ifdef CONFIG_DESIGNWARE_SPI /* Get Designware SPI controller out of reset */ socfpga_per_reset(SOCFPGA_RESET(SPIM0), 0); socfpga_per_reset(SOCFPGA_RESET(SPIM1), 0); #endif #ifdef CONFIG_NAND_DENALI socfpga_per_reset(SOCFPGA_RESET(NAND), 0); #endif return 0; } #ifndef CONFIG_SPL_BUILD static struct socfpga_reset_manager *reset_manager_base = (struct socfpga_reset_manager *)SOCFPGA_RSTMGR_ADDRESS; static struct socfpga_sdr_ctrl *sdr_ctrl = (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; static void socfpga_sdram_apply_static_cfg(void) { const u32 applymask = 0x8; u32 val = readl(&sdr_ctrl->static_cfg) | applymask; /* * SDRAM staticcfg register specific: * When applying the register setting, the CPU must not access * SDRAM. Luckily for us, we can abuse i-cache here to help us * circumvent the SDRAM access issue. The idea is to make sure * that the code is in one full i-cache line by branching past * it and back. Once it is in the i-cache, we execute the core * of the code and apply the register settings. * * The code below uses 7 instructions, while the Cortex-A9 has * 32-byte cachelines, thus the limit is 8 instructions total. */ asm volatile( ".align 5 \n" " b 2f \n" "1: str %0, [%1] \n" " dsb \n" " isb \n" " b 3f \n" "2: b 1b \n" "3: nop \n" : : "r"(val), "r"(&sdr_ctrl->static_cfg) : "memory", "cc"); } void do_bridge_reset(int enable) { if (enable) { writel(iswgrp_handoff[2], &sysmgr_regs->fpgaintfgrp_module); socfpga_sdram_apply_static_cfg(); writel(iswgrp_handoff[3], &sdr_ctrl->fpgaport_rst); writel(iswgrp_handoff[0], &reset_manager_base->brg_mod_reset); writel(iswgrp_handoff[1], &nic301_regs->remap); } else { writel(0, &sysmgr_regs->fpgaintfgrp_module); writel(0, &sdr_ctrl->fpgaport_rst); socfpga_sdram_apply_static_cfg(); writel(0, &reset_manager_base->brg_mod_reset); writel(1, &nic301_regs->remap); } } #endif