/* * os-win32.c * * Copyright (c) 2003-2008 Fabrice Bellard * Copyright (c) 2010-2016 Red Hat, Inc. * * QEMU library functions for win32 which are shared between QEMU and * the QEMU tools. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * The implementation of g_poll (functions poll_rest, g_poll) at the end of * this file are based on code from GNOME glib-2 and use a different license, * see the license comment there. */ #include "qemu/osdep.h" #include #include "qemu-common.h" #include "qapi/error.h" #include "qemu/main-loop.h" #include "trace.h" #include "qemu/sockets.h" #include "qemu/cutils.h" #include "qemu/error-report.h" #include /* this must come after including "trace.h" */ #include static int get_allocation_granularity(void) { SYSTEM_INFO system_info; GetSystemInfo(&system_info); return system_info.dwAllocationGranularity; } void *qemu_anon_ram_alloc(size_t size, uint64_t *align, bool shared, bool noreserve) { void *ptr; if (noreserve) { /* * We need a MEM_COMMIT before accessing any memory in a MEM_RESERVE * area; we cannot easily mimic POSIX MAP_NORESERVE semantics. */ error_report("Skipping reservation of swap space is not supported."); return NULL; } ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE); trace_qemu_anon_ram_alloc(size, ptr); if (ptr && align) { *align = MAX(get_allocation_granularity(), getpagesize()); } return ptr; } void qemu_anon_ram_free(void *ptr, size_t size) { trace_qemu_anon_ram_free(ptr, size); if (ptr) { VirtualFree(ptr, 0, MEM_RELEASE); } } #ifndef _POSIX_THREAD_SAFE_FUNCTIONS /* FIXME: add proper locking */ struct tm *gmtime_r(const time_t *timep, struct tm *result) { struct tm *p = gmtime(timep); memset(result, 0, sizeof(*result)); if (p) { *result = *p; p = result; } return p; } /* FIXME: add proper locking */ struct tm *localtime_r(const time_t *timep, struct tm *result) { struct tm *p = localtime(timep); memset(result, 0, sizeof(*result)); if (p) { *result = *p; p = result; } return p; } #endif /* _POSIX_THREAD_SAFE_FUNCTIONS */ static int socket_error(void) { switch (WSAGetLastError()) { case 0: return 0; case WSAEINTR: return EINTR; case WSAEINVAL: return EINVAL; case WSA_INVALID_HANDLE: return EBADF; case WSA_NOT_ENOUGH_MEMORY: return ENOMEM; case WSA_INVALID_PARAMETER: return EINVAL; case WSAENAMETOOLONG: return ENAMETOOLONG; case WSAENOTEMPTY: return ENOTEMPTY; case WSAEWOULDBLOCK: /* not using EWOULDBLOCK as we don't want code to have * to check both EWOULDBLOCK and EAGAIN */ return EAGAIN; case WSAEINPROGRESS: return EINPROGRESS; case WSAEALREADY: return EALREADY; case WSAENOTSOCK: return ENOTSOCK; case WSAEDESTADDRREQ: return EDESTADDRREQ; case WSAEMSGSIZE: return EMSGSIZE; case WSAEPROTOTYPE: return EPROTOTYPE; case WSAENOPROTOOPT: return ENOPROTOOPT; case WSAEPROTONOSUPPORT: return EPROTONOSUPPORT; case WSAEOPNOTSUPP: return EOPNOTSUPP; case WSAEAFNOSUPPORT: return EAFNOSUPPORT; case WSAEADDRINUSE: return EADDRINUSE; case WSAEADDRNOTAVAIL: return EADDRNOTAVAIL; case WSAENETDOWN: return ENETDOWN; case WSAENETUNREACH: return ENETUNREACH; case WSAENETRESET: return ENETRESET; case WSAECONNABORTED: return ECONNABORTED; case WSAECONNRESET: return ECONNRESET; case WSAENOBUFS: return ENOBUFS; case WSAEISCONN: return EISCONN; case WSAENOTCONN: return ENOTCONN; case WSAETIMEDOUT: return ETIMEDOUT; case WSAECONNREFUSED: return ECONNREFUSED; case WSAELOOP: return ELOOP; case WSAEHOSTUNREACH: return EHOSTUNREACH; default: return EIO; } } void qemu_set_block(int fd) { unsigned long opt = 0; WSAEventSelect(fd, NULL, 0); ioctlsocket(fd, FIONBIO, &opt); } int qemu_try_set_nonblock(int fd) { unsigned long opt = 1; if (ioctlsocket(fd, FIONBIO, &opt) != NO_ERROR) { return -socket_error(); } return 0; } void qemu_set_nonblock(int fd) { (void)qemu_try_set_nonblock(fd); } int socket_set_fast_reuse(int fd) { /* Enabling the reuse of an endpoint that was used by a socket still in * TIME_WAIT state is usually performed by setting SO_REUSEADDR. On Windows * fast reuse is the default and SO_REUSEADDR does strange things. So we * don't have to do anything here. More info can be found at: * http://msdn.microsoft.com/en-us/library/windows/desktop/ms740621.aspx */ return 0; } int inet_aton(const char *cp, struct in_addr *ia) { uint32_t addr = inet_addr(cp); if (addr == 0xffffffff) { return 0; } ia->s_addr = addr; return 1; } void qemu_set_cloexec(int fd) { } int qemu_get_thread_id(void) { return GetCurrentThreadId(); } char * qemu_get_local_state_pathname(const char *relative_pathname) { HRESULT result; char base_path[MAX_PATH+1] = ""; result = SHGetFolderPath(NULL, CSIDL_COMMON_APPDATA, NULL, /* SHGFP_TYPE_CURRENT */ 0, base_path); if (result != S_OK) { /* misconfigured environment */ g_critical("CSIDL_COMMON_APPDATA unavailable: %ld", (long)result); abort(); } return g_strdup_printf("%s" G_DIR_SEPARATOR_S "%s", base_path, relative_pathname); } void qemu_set_tty_echo(int fd, bool echo) { HANDLE handle = (HANDLE)_get_osfhandle(fd); DWORD dwMode = 0; if (handle == INVALID_HANDLE_VALUE) { return; } GetConsoleMode(handle, &dwMode); if (echo) { SetConsoleMode(handle, dwMode | ENABLE_ECHO_INPUT | ENABLE_LINE_INPUT); } else { SetConsoleMode(handle, dwMode & ~(ENABLE_ECHO_INPUT | ENABLE_LINE_INPUT)); } } static const char *exec_dir; void qemu_init_exec_dir(const char *argv0) { char *p; char buf[MAX_PATH]; DWORD len; if (exec_dir) { return; } len = GetModuleFileName(NULL, buf, sizeof(buf) - 1); if (len == 0) { return; } buf[len] = 0; p = buf + len - 1; while (p != buf && *p != '\\') { p--; } *p = 0; if (access(buf, R_OK) == 0) { exec_dir = g_strdup(buf); } else { exec_dir = CONFIG_BINDIR; } } const char *qemu_get_exec_dir(void) { return exec_dir; } int getpagesize(void) { SYSTEM_INFO system_info; GetSystemInfo(&system_info); return system_info.dwPageSize; } void os_mem_prealloc(int fd, char *area, size_t memory, int smp_cpus, Error **errp) { int i; size_t pagesize = qemu_real_host_page_size(); memory = (memory + pagesize - 1) & -pagesize; for (i = 0; i < memory / pagesize; i++) { memset(area + pagesize * i, 0, 1); } } char *qemu_get_pid_name(pid_t pid) { /* XXX Implement me */ abort(); } pid_t qemu_fork(Error **errp) { errno = ENOSYS; error_setg_errno(errp, errno, "cannot fork child process"); return -1; } #undef connect int qemu_connect_wrap(int sockfd, const struct sockaddr *addr, socklen_t addrlen) { int ret; ret = connect(sockfd, addr, addrlen); if (ret < 0) { if (WSAGetLastError() == WSAEWOULDBLOCK) { errno = EINPROGRESS; } else { errno = socket_error(); } } return ret; } #undef listen int qemu_listen_wrap(int sockfd, int backlog) { int ret; ret = listen(sockfd, backlog); if (ret < 0) { errno = socket_error(); } return ret; } #undef bind int qemu_bind_wrap(int sockfd, const struct sockaddr *addr, socklen_t addrlen) { int ret; ret = bind(sockfd, addr, addrlen); if (ret < 0) { errno = socket_error(); } return ret; } #undef socket int qemu_socket_wrap(int domain, int type, int protocol) { int ret; ret = socket(domain, type, protocol); if (ret < 0) { errno = socket_error(); } return ret; } #undef accept int qemu_accept_wrap(int sockfd, struct sockaddr *addr, socklen_t *addrlen) { int ret; ret = accept(sockfd, addr, addrlen); if (ret < 0) { errno = socket_error(); } return ret; } #undef shutdown int qemu_shutdown_wrap(int sockfd, int how) { int ret; ret = shutdown(sockfd, how); if (ret < 0) { errno = socket_error(); } return ret; } #undef ioctlsocket int qemu_ioctlsocket_wrap(int fd, int req, void *val) { int ret; ret = ioctlsocket(fd, req, val); if (ret < 0) { errno = socket_error(); } return ret; } #undef closesocket int qemu_closesocket_wrap(int fd) { int ret; ret = closesocket(fd); if (ret < 0) { errno = socket_error(); } return ret; } #undef getsockopt int qemu_getsockopt_wrap(int sockfd, int level, int optname, void *optval, socklen_t *optlen) { int ret; ret = getsockopt(sockfd, level, optname, optval, optlen); if (ret < 0) { errno = socket_error(); } return ret; } #undef setsockopt int qemu_setsockopt_wrap(int sockfd, int level, int optname, const void *optval, socklen_t optlen) { int ret; ret = setsockopt(sockfd, level, optname, optval, optlen); if (ret < 0) { errno = socket_error(); } return ret; } #undef getpeername int qemu_getpeername_wrap(int sockfd, struct sockaddr *addr, socklen_t *addrlen) { int ret; ret = getpeername(sockfd, addr, addrlen); if (ret < 0) { errno = socket_error(); } return ret; } #undef getsockname int qemu_getsockname_wrap(int sockfd, struct sockaddr *addr, socklen_t *addrlen) { int ret; ret = getsockname(sockfd, addr, addrlen); if (ret < 0) { errno = socket_error(); } return ret; } #undef send ssize_t qemu_send_wrap(int sockfd, const void *buf, size_t len, int flags) { int ret; ret = send(sockfd, buf, len, flags); if (ret < 0) { errno = socket_error(); } return ret; } #undef sendto ssize_t qemu_sendto_wrap(int sockfd, const void *buf, size_t len, int flags, const struct sockaddr *addr, socklen_t addrlen) { int ret; ret = sendto(sockfd, buf, len, flags, addr, addrlen); if (ret < 0) { errno = socket_error(); } return ret; } #undef recv ssize_t qemu_recv_wrap(int sockfd, void *buf, size_t len, int flags) { int ret; ret = recv(sockfd, buf, len, flags); if (ret < 0) { errno = socket_error(); } return ret; } #undef recvfrom ssize_t qemu_recvfrom_wrap(int sockfd, void *buf, size_t len, int flags, struct sockaddr *addr, socklen_t *addrlen) { int ret; ret = recvfrom(sockfd, buf, len, flags, addr, addrlen); if (ret < 0) { errno = socket_error(); } return ret; } bool qemu_write_pidfile(const char *filename, Error **errp) { char buffer[128]; int len; HANDLE file; OVERLAPPED overlap; BOOL ret; memset(&overlap, 0, sizeof(overlap)); file = CreateFile(filename, GENERIC_WRITE, FILE_SHARE_READ, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if (file == INVALID_HANDLE_VALUE) { error_setg(errp, "Failed to create PID file"); return false; } len = snprintf(buffer, sizeof(buffer), FMT_pid "\n", (pid_t)getpid()); ret = WriteFile(file, (LPCVOID)buffer, (DWORD)len, NULL, &overlap); CloseHandle(file); if (ret == 0) { error_setg(errp, "Failed to write PID file"); return false; } return true; } char *qemu_get_host_name(Error **errp) { wchar_t tmp[MAX_COMPUTERNAME_LENGTH + 1]; DWORD size = G_N_ELEMENTS(tmp); if (GetComputerNameW(tmp, &size) == 0) { error_setg_win32(errp, GetLastError(), "failed close handle"); return NULL; } return g_utf16_to_utf8(tmp, size, NULL, NULL, NULL); } size_t qemu_get_host_physmem(void) { MEMORYSTATUSEX statex; statex.dwLength = sizeof(statex); if (GlobalMemoryStatusEx(&statex)) { return statex.ullTotalPhys; } return 0; }