/* * QEMU Crypto hash algorithms * * Copyright (c) 2024 Seagate Technology LLC and/or its Affiliates * Copyright (c) 2015 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ #include "qemu/osdep.h" #include "crypto/init.h" #include "crypto/hash.h" #define INPUT_TEXT "Hiss hisss Hissss hiss Hiss hisss Hiss hiss" #define INPUT_TEXT1 "Hiss hisss " #define INPUT_TEXT2 "Hissss hiss " #define INPUT_TEXT3 "Hiss hisss Hiss hiss" #define OUTPUT_MD5 "628d206371563035ab8ef62f492bdec9" #define OUTPUT_SHA1 "b2e74f26758a3a421e509cee045244b78753cc02" #define OUTPUT_SHA224 "e2f7415aad33ef79f6516b0986d7175f" \ "9ca3389a85bf6cfed078737b" #define OUTPUT_SHA256 "bc757abb0436586f392b437e5dd24096" \ "f7f224de6b74d4d86e2abc6121b160d0" #define OUTPUT_SHA384 "887ce52efb4f46700376356583b7e279" \ "4f612bd024e4495087ddb946c448c69d" \ "56dbf7152a94a5e63a80f3ba9f0eed78" #define OUTPUT_SHA512 "3a90d79638235ec6c4c11bebd84d83c0" \ "549bc1e84edc4b6ec7086487641256cb" \ "63b54e4cb2d2032b393994aa263c0dbb" \ "e00a9f2fe9ef6037352232a1eec55ee7" #define OUTPUT_RIPEMD160 "f3d658fad3fdfb2b52c9369cf0d441249ddfa8a0" #define OUTPUT_MD5_B64 "Yo0gY3FWMDWrjvYvSSveyQ==" #define OUTPUT_SHA1_B64 "sudPJnWKOkIeUJzuBFJEt4dTzAI=" #define OUTPUT_SHA224_B64 "4vdBWq0z73n2UWsJhtcXX5yjOJqFv2z+0Hhzew==" #define OUTPUT_SHA256_B64 "vHV6uwQ2WG85K0N+XdJAlvfyJN5rdNTYbiq8YSGxYNA=" #define OUTPUT_SHA384_B64 "iHzlLvtPRnADdjVlg7fieU9hK9Ak5ElQh925RsRI" \ "xp1W2/cVKpSl5jqA87qfDu14" #define OUTPUT_SHA512_B64 "OpDXljgjXsbEwRvr2E2DwFSbwehO3Etuxwhkh2QS" \ "VstjtU5MstIDKzk5lKomPA274AqfL+nvYDc1IjKh" \ "7sVe5w==" #define OUTPUT_RIPEMD160_B64 "89ZY+tP9+ytSyTac8NRBJJ3fqKA=" static const char *expected_outputs[] = { [QCRYPTO_HASH_ALGO_MD5] = OUTPUT_MD5, [QCRYPTO_HASH_ALGO_SHA1] = OUTPUT_SHA1, [QCRYPTO_HASH_ALGO_SHA224] = OUTPUT_SHA224, [QCRYPTO_HASH_ALGO_SHA256] = OUTPUT_SHA256, [QCRYPTO_HASH_ALGO_SHA384] = OUTPUT_SHA384, [QCRYPTO_HASH_ALGO_SHA512] = OUTPUT_SHA512, [QCRYPTO_HASH_ALGO_RIPEMD160] = OUTPUT_RIPEMD160, }; static const char *expected_outputs_b64[] = { [QCRYPTO_HASH_ALGO_MD5] = OUTPUT_MD5_B64, [QCRYPTO_HASH_ALGO_SHA1] = OUTPUT_SHA1_B64, [QCRYPTO_HASH_ALGO_SHA224] = OUTPUT_SHA224_B64, [QCRYPTO_HASH_ALGO_SHA256] = OUTPUT_SHA256_B64, [QCRYPTO_HASH_ALGO_SHA384] = OUTPUT_SHA384_B64, [QCRYPTO_HASH_ALGO_SHA512] = OUTPUT_SHA512_B64, [QCRYPTO_HASH_ALGO_RIPEMD160] = OUTPUT_RIPEMD160_B64, }; static const int expected_lens[] = { [QCRYPTO_HASH_ALGO_MD5] = 16, [QCRYPTO_HASH_ALGO_SHA1] = 20, [QCRYPTO_HASH_ALGO_SHA224] = 28, [QCRYPTO_HASH_ALGO_SHA256] = 32, [QCRYPTO_HASH_ALGO_SHA384] = 48, [QCRYPTO_HASH_ALGO_SHA512] = 64, [QCRYPTO_HASH_ALGO_RIPEMD160] = 20, }; static const char hex[] = "0123456789abcdef"; /* Test with dynamic allocation */ static void test_hash_alloc(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { uint8_t *result = NULL; size_t resultlen = 0; int ret; size_t j; if (!qcrypto_hash_supports(i)) { continue; } ret = qcrypto_hash_bytes(i, INPUT_TEXT, strlen(INPUT_TEXT), &result, &resultlen, &error_fatal); g_assert(ret == 0); g_assert(resultlen == expected_lens[i]); for (j = 0; j < resultlen; j++) { g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]); g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]); } g_free(result); } } /* Test with caller preallocating */ static void test_hash_prealloc(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { uint8_t *result, *origresult; size_t resultlen; int ret; size_t j; if (!qcrypto_hash_supports(i)) { continue; } resultlen = expected_lens[i]; origresult = result = g_new0(uint8_t, resultlen); ret = qcrypto_hash_bytes(i, INPUT_TEXT, strlen(INPUT_TEXT), &result, &resultlen, &error_fatal); g_assert(ret == 0); /* Validate that our pre-allocated pointer was not replaced */ g_assert(result == origresult); g_assert(resultlen == expected_lens[i]); for (j = 0; j < resultlen; j++) { g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]); g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]); } g_free(result); } } /* Test with dynamic allocation */ static void test_hash_iov(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { struct iovec iov[3] = { { .iov_base = (char *)INPUT_TEXT1, .iov_len = strlen(INPUT_TEXT1) }, { .iov_base = (char *)INPUT_TEXT2, .iov_len = strlen(INPUT_TEXT2) }, { .iov_base = (char *)INPUT_TEXT3, .iov_len = strlen(INPUT_TEXT3) }, }; uint8_t *result = NULL; size_t resultlen = 0; int ret; size_t j; if (!qcrypto_hash_supports(i)) { continue; } ret = qcrypto_hash_bytesv(i, iov, 3, &result, &resultlen, &error_fatal); g_assert(ret == 0); g_assert(resultlen == expected_lens[i]); for (j = 0; j < resultlen; j++) { g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]); g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]); } g_free(result); } } /* Test with printable hashing */ static void test_hash_digest(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { int ret; char *digest; size_t digestsize; if (!qcrypto_hash_supports(i)) { continue; } digestsize = qcrypto_hash_digest_len(i); g_assert_cmpint(digestsize * 2, ==, strlen(expected_outputs[i])); ret = qcrypto_hash_digest(i, INPUT_TEXT, strlen(INPUT_TEXT), &digest, &error_fatal); g_assert(ret == 0); g_assert_cmpstr(digest, ==, expected_outputs[i]); g_free(digest); } } /* Test with base64 encoding */ static void test_hash_base64(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { int ret; char *digest; if (!qcrypto_hash_supports(i)) { continue; } ret = qcrypto_hash_base64(i, INPUT_TEXT, strlen(INPUT_TEXT), &digest, &error_fatal); g_assert(ret == 0); g_assert_cmpstr(digest, ==, expected_outputs_b64[i]); g_free(digest); } } static void test_hash_accumulate(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) { g_autoptr(QCryptoHash) hash = NULL; struct iovec iov[] = { { .iov_base = (char *)INPUT_TEXT1, .iov_len = strlen(INPUT_TEXT1) }, { .iov_base = (char *)INPUT_TEXT2, .iov_len = strlen(INPUT_TEXT2) }, { .iov_base = (char *)INPUT_TEXT3, .iov_len = strlen(INPUT_TEXT3) }, }; g_autofree uint8_t *result = NULL; size_t resultlen = 0; int ret; size_t j; if (!qcrypto_hash_supports(i)) { continue; } hash = qcrypto_hash_new(i, &error_fatal); g_assert(hash != NULL); /* Add each iovec to the hash context separately */ for (j = 0; j < G_N_ELEMENTS(iov); j++) { ret = qcrypto_hash_updatev(hash, &iov[j], 1, &error_fatal); g_assert(ret == 0); } ret = qcrypto_hash_finalize_bytes(hash, &result, &resultlen, &error_fatal); g_assert(ret == 0); g_assert(resultlen == expected_lens[i]); for (j = 0; j < resultlen; j++) { g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]); g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]); } } } int main(int argc, char **argv) { int ret = qcrypto_init(&error_fatal); g_assert(ret == 0); g_test_init(&argc, &argv, NULL); g_test_add_func("/crypto/hash/iov", test_hash_iov); g_test_add_func("/crypto/hash/alloc", test_hash_alloc); g_test_add_func("/crypto/hash/prealloc", test_hash_prealloc); g_test_add_func("/crypto/hash/digest", test_hash_digest); g_test_add_func("/crypto/hash/base64", test_hash_base64); g_test_add_func("/crypto/hash/accumulate", test_hash_accumulate); return g_test_run(); }