/* * Coroutine tests * * Copyright IBM, Corp. 2011 * * Authors: * Stefan Hajnoczi * * This work is licensed under the terms of the GNU LGPL, version 2 or later. * See the COPYING.LIB file in the top-level directory. * */ #include "qemu/osdep.h" #include "qemu/coroutine.h" #include "qemu/coroutine_int.h" #include "qemu/lockable.h" /* * Check that qemu_in_coroutine() works */ static void coroutine_fn verify_in_coroutine(void *opaque) { g_assert(qemu_in_coroutine()); } static void test_in_coroutine(void) { Coroutine *coroutine; g_assert(!qemu_in_coroutine()); coroutine = qemu_coroutine_create(verify_in_coroutine, NULL); qemu_coroutine_enter(coroutine); } /* * Check that qemu_coroutine_self() works */ static void coroutine_fn verify_self(void *opaque) { Coroutine **p_co = opaque; g_assert(qemu_coroutine_self() == *p_co); } static void test_self(void) { Coroutine *coroutine; coroutine = qemu_coroutine_create(verify_self, &coroutine); qemu_coroutine_enter(coroutine); } /* * Check that qemu_coroutine_entered() works */ static void coroutine_fn verify_entered_step_2(void *opaque) { Coroutine *caller = (Coroutine *)opaque; g_assert(qemu_coroutine_entered(caller)); g_assert(qemu_coroutine_entered(qemu_coroutine_self())); qemu_coroutine_yield(); /* Once more to check it still works after yielding */ g_assert(qemu_coroutine_entered(caller)); g_assert(qemu_coroutine_entered(qemu_coroutine_self())); } static void coroutine_fn verify_entered_step_1(void *opaque) { Coroutine *self = qemu_coroutine_self(); Coroutine *coroutine; g_assert(qemu_coroutine_entered(self)); coroutine = qemu_coroutine_create(verify_entered_step_2, self); g_assert(!qemu_coroutine_entered(coroutine)); qemu_coroutine_enter(coroutine); g_assert(!qemu_coroutine_entered(coroutine)); qemu_coroutine_enter(coroutine); } static void test_entered(void) { Coroutine *coroutine; coroutine = qemu_coroutine_create(verify_entered_step_1, NULL); g_assert(!qemu_coroutine_entered(coroutine)); qemu_coroutine_enter(coroutine); } /* * Check that coroutines may nest multiple levels */ typedef struct { unsigned int n_enter; /* num coroutines entered */ unsigned int n_return; /* num coroutines returned */ unsigned int max; /* maximum level of nesting */ } NestData; static void coroutine_fn nest(void *opaque) { NestData *nd = opaque; nd->n_enter++; if (nd->n_enter < nd->max) { Coroutine *child; child = qemu_coroutine_create(nest, nd); qemu_coroutine_enter(child); } nd->n_return++; } static void test_nesting(void) { Coroutine *root; NestData nd = { .n_enter = 0, .n_return = 0, .max = 128, }; root = qemu_coroutine_create(nest, &nd); qemu_coroutine_enter(root); /* Must enter and return from max nesting level */ g_assert_cmpint(nd.n_enter, ==, nd.max); g_assert_cmpint(nd.n_return, ==, nd.max); } /* * Check that yield/enter transfer control correctly */ static void coroutine_fn yield_5_times(void *opaque) { bool *done = opaque; int i; for (i = 0; i < 5; i++) { qemu_coroutine_yield(); } *done = true; } static void test_yield(void) { Coroutine *coroutine; bool done = false; int i = -1; /* one extra time to return from coroutine */ coroutine = qemu_coroutine_create(yield_5_times, &done); while (!done) { qemu_coroutine_enter(coroutine); i++; } g_assert_cmpint(i, ==, 5); /* coroutine must yield 5 times */ } static void coroutine_fn c2_fn(void *opaque) { qemu_coroutine_yield(); } static void coroutine_fn c1_fn(void *opaque) { Coroutine *c2 = opaque; qemu_coroutine_enter(c2); } static void test_no_dangling_access(void) { Coroutine *c1; Coroutine *c2; Coroutine tmp; c2 = qemu_coroutine_create(c2_fn, NULL); c1 = qemu_coroutine_create(c1_fn, c2); qemu_coroutine_enter(c1); /* c1 shouldn't be used any more now; make sure we segfault if it is */ tmp = *c1; memset(c1, 0xff, sizeof(Coroutine)); qemu_coroutine_enter(c2); /* Must restore the coroutine now to avoid corrupted pool */ *c1 = tmp; } static bool locked; static int done; static void coroutine_fn mutex_fn(void *opaque) { CoMutex *m = opaque; qemu_co_mutex_lock(m); assert(!locked); locked = true; qemu_coroutine_yield(); locked = false; qemu_co_mutex_unlock(m); done++; } static void coroutine_fn lockable_fn(void *opaque) { QemuLockable *x = opaque; qemu_lockable_lock(x); assert(!locked); locked = true; qemu_coroutine_yield(); locked = false; qemu_lockable_unlock(x); done++; } static void do_test_co_mutex(CoroutineEntry *entry, void *opaque) { Coroutine *c1 = qemu_coroutine_create(entry, opaque); Coroutine *c2 = qemu_coroutine_create(entry, opaque); done = 0; qemu_coroutine_enter(c1); g_assert(locked); qemu_coroutine_enter(c2); /* Unlock queues c2. It is then started automatically when c1 yields or * terminates. */ qemu_coroutine_enter(c1); g_assert_cmpint(done, ==, 1); g_assert(locked); qemu_coroutine_enter(c2); g_assert_cmpint(done, ==, 2); g_assert(!locked); } static void test_co_mutex(void) { CoMutex m; qemu_co_mutex_init(&m); do_test_co_mutex(mutex_fn, &m); } static void test_co_mutex_lockable(void) { CoMutex m; CoMutex *null_pointer = NULL; qemu_co_mutex_init(&m); do_test_co_mutex(lockable_fn, QEMU_MAKE_LOCKABLE(&m)); g_assert(QEMU_MAKE_LOCKABLE(null_pointer) == NULL); } static CoRwlock rwlock; /* Test that readers are properly sent back to the queue when upgrading, * even if they are the sole readers. The test scenario is as follows: * * * | c1 | c2 | * |--------------+------------+ * | rdlock | | * | yield | | * | | wrlock | * | | | * | upgrade | | * | | | * | | unlock | * | | | * | unlock | | */ static void coroutine_fn rwlock_yield_upgrade(void *opaque) { qemu_co_rwlock_rdlock(&rwlock); qemu_coroutine_yield(); qemu_co_rwlock_upgrade(&rwlock); qemu_co_rwlock_unlock(&rwlock); *(bool *)opaque = true; } static void coroutine_fn rwlock_wrlock_yield(void *opaque) { qemu_co_rwlock_wrlock(&rwlock); qemu_coroutine_yield(); qemu_co_rwlock_unlock(&rwlock); *(bool *)opaque = true; } static void test_co_rwlock_upgrade(void) { bool c1_done = false; bool c2_done = false; Coroutine *c1, *c2; qemu_co_rwlock_init(&rwlock); c1 = qemu_coroutine_create(rwlock_yield_upgrade, &c1_done); c2 = qemu_coroutine_create(rwlock_wrlock_yield, &c2_done); qemu_coroutine_enter(c1); qemu_coroutine_enter(c2); /* c1 now should go to sleep. */ qemu_coroutine_enter(c1); g_assert(!c1_done); qemu_coroutine_enter(c2); g_assert(c1_done); g_assert(c2_done); } static void coroutine_fn rwlock_rdlock_yield(void *opaque) { qemu_co_rwlock_rdlock(&rwlock); qemu_coroutine_yield(); qemu_co_rwlock_unlock(&rwlock); qemu_coroutine_yield(); *(bool *)opaque = true; } static void coroutine_fn rwlock_wrlock_downgrade(void *opaque) { qemu_co_rwlock_wrlock(&rwlock); qemu_co_rwlock_downgrade(&rwlock); qemu_co_rwlock_unlock(&rwlock); *(bool *)opaque = true; } static void coroutine_fn rwlock_rdlock(void *opaque) { qemu_co_rwlock_rdlock(&rwlock); qemu_co_rwlock_unlock(&rwlock); *(bool *)opaque = true; } static void coroutine_fn rwlock_wrlock(void *opaque) { qemu_co_rwlock_wrlock(&rwlock); qemu_co_rwlock_unlock(&rwlock); *(bool *)opaque = true; } /* * Check that downgrading a reader-writer lock does not cause a hang. * * Four coroutines are used to produce a situation where there are * both reader and writer hopefuls waiting to acquire an rwlock that * is held by a reader. * * The correct sequence of operations we aim to provoke can be * represented as: * * | c1 | c2 | c3 | c4 | * |--------+------------+------------+------------| * | rdlock | | | | * | yield | | | | * | | wrlock | | | * | | | | | * | | | rdlock | | * | | | | | * | | | | wrlock | * | | | | | * | unlock | | | | * | yield | | | | * | | | | | * | | downgrade | | | * | | | | | * | | | unlock | | * | | ... | | | * | | unlock | | | * | | | | | * | | | | unlock | */ static void test_co_rwlock_downgrade(void) { bool c1_done = false; bool c2_done = false; bool c3_done = false; bool c4_done = false; Coroutine *c1, *c2, *c3, *c4; qemu_co_rwlock_init(&rwlock); c1 = qemu_coroutine_create(rwlock_rdlock_yield, &c1_done); c2 = qemu_coroutine_create(rwlock_wrlock_downgrade, &c2_done); c3 = qemu_coroutine_create(rwlock_rdlock, &c3_done); c4 = qemu_coroutine_create(rwlock_wrlock, &c4_done); qemu_coroutine_enter(c1); qemu_coroutine_enter(c2); qemu_coroutine_enter(c3); qemu_coroutine_enter(c4); qemu_coroutine_enter(c1); g_assert(c2_done); g_assert(c3_done); g_assert(c4_done); qemu_coroutine_enter(c1); g_assert(c1_done); } /* * Check that creation, enter, and return work */ static void coroutine_fn set_and_exit(void *opaque) { bool *done = opaque; *done = true; } static void test_lifecycle(void) { Coroutine *coroutine; bool done = false; /* Create, enter, and return from coroutine */ coroutine = qemu_coroutine_create(set_and_exit, &done); qemu_coroutine_enter(coroutine); g_assert(done); /* expect done to be true (first time) */ /* Repeat to check that no state affects this test */ done = false; coroutine = qemu_coroutine_create(set_and_exit, &done); qemu_coroutine_enter(coroutine); g_assert(done); /* expect done to be true (second time) */ } #define RECORD_SIZE 10 /* Leave some room for expansion */ struct coroutine_position { int func; int state; }; static struct coroutine_position records[RECORD_SIZE]; static unsigned record_pos; static void record_push(int func, int state) { struct coroutine_position *cp = &records[record_pos++]; g_assert_cmpint(record_pos, <, RECORD_SIZE); cp->func = func; cp->state = state; } static void coroutine_fn co_order_test(void *opaque) { record_push(2, 1); g_assert(qemu_in_coroutine()); qemu_coroutine_yield(); record_push(2, 2); g_assert(qemu_in_coroutine()); } static void do_order_test(void) { Coroutine *co; co = qemu_coroutine_create(co_order_test, NULL); record_push(1, 1); qemu_coroutine_enter(co); record_push(1, 2); g_assert(!qemu_in_coroutine()); qemu_coroutine_enter(co); record_push(1, 3); g_assert(!qemu_in_coroutine()); } static void test_order(void) { int i; const struct coroutine_position expected_pos[] = { {1, 1,}, {2, 1}, {1, 2}, {2, 2}, {1, 3} }; do_order_test(); g_assert_cmpint(record_pos, ==, 5); for (i = 0; i < record_pos; i++) { g_assert_cmpint(records[i].func , ==, expected_pos[i].func ); g_assert_cmpint(records[i].state, ==, expected_pos[i].state); } } /* * Lifecycle benchmark */ static void coroutine_fn empty_coroutine(void *opaque) { /* Do nothing */ } static void perf_lifecycle(void) { Coroutine *coroutine; unsigned int i, max; double duration; max = 1000000; g_test_timer_start(); for (i = 0; i < max; i++) { coroutine = qemu_coroutine_create(empty_coroutine, NULL); qemu_coroutine_enter(coroutine); } duration = g_test_timer_elapsed(); g_test_message("Lifecycle %u iterations: %f s", max, duration); } static void perf_nesting(void) { unsigned int i, maxcycles, maxnesting; double duration; maxcycles = 10000; maxnesting = 1000; Coroutine *root; g_test_timer_start(); for (i = 0; i < maxcycles; i++) { NestData nd = { .n_enter = 0, .n_return = 0, .max = maxnesting, }; root = qemu_coroutine_create(nest, &nd); qemu_coroutine_enter(root); } duration = g_test_timer_elapsed(); g_test_message("Nesting %u iterations of %u depth each: %f s", maxcycles, maxnesting, duration); } /* * Yield benchmark */ static void coroutine_fn yield_loop(void *opaque) { unsigned int *counter = opaque; while ((*counter) > 0) { (*counter)--; qemu_coroutine_yield(); } } static void perf_yield(void) { unsigned int i, maxcycles; double duration; maxcycles = 100000000; i = maxcycles; Coroutine *coroutine = qemu_coroutine_create(yield_loop, &i); g_test_timer_start(); while (i > 0) { qemu_coroutine_enter(coroutine); } duration = g_test_timer_elapsed(); g_test_message("Yield %u iterations: %f s", maxcycles, duration); } static __attribute__((noinline)) void dummy(unsigned *i) { (*i)--; } static void perf_baseline(void) { unsigned int i, maxcycles; double duration; maxcycles = 100000000; i = maxcycles; g_test_timer_start(); while (i > 0) { dummy(&i); } duration = g_test_timer_elapsed(); g_test_message("Function call %u iterations: %f s", maxcycles, duration); } static __attribute__((noinline)) void coroutine_fn perf_cost_func(void *opaque) { qemu_coroutine_yield(); } static void perf_cost(void) { const unsigned long maxcycles = 40000000; unsigned long i = 0; double duration; unsigned long ops; Coroutine *co; g_test_timer_start(); while (i++ < maxcycles) { co = qemu_coroutine_create(perf_cost_func, &i); qemu_coroutine_enter(co); qemu_coroutine_enter(co); } duration = g_test_timer_elapsed(); ops = (long)(maxcycles / (duration * 1000)); g_test_message("Run operation %lu iterations %f s, %luK operations/s, " "%luns per coroutine", maxcycles, duration, ops, (unsigned long)(1000000000.0 * duration / maxcycles)); } int main(int argc, char **argv) { g_test_init(&argc, &argv, NULL); /* This test assumes there is a freelist and marks freed coroutine memory * with a sentinel value. If there is no freelist this would legitimately * crash, so skip it. */ if (CONFIG_COROUTINE_POOL) { g_test_add_func("/basic/no-dangling-access", test_no_dangling_access); } g_test_add_func("/basic/lifecycle", test_lifecycle); g_test_add_func("/basic/yield", test_yield); g_test_add_func("/basic/nesting", test_nesting); g_test_add_func("/basic/self", test_self); g_test_add_func("/basic/entered", test_entered); g_test_add_func("/basic/in_coroutine", test_in_coroutine); g_test_add_func("/basic/order", test_order); g_test_add_func("/locking/co-mutex", test_co_mutex); g_test_add_func("/locking/co-mutex/lockable", test_co_mutex_lockable); g_test_add_func("/locking/co-rwlock/upgrade", test_co_rwlock_upgrade); g_test_add_func("/locking/co-rwlock/downgrade", test_co_rwlock_downgrade); if (g_test_perf()) { g_test_add_func("/perf/lifecycle", perf_lifecycle); g_test_add_func("/perf/nesting", perf_nesting); g_test_add_func("/perf/yield", perf_yield); g_test_add_func("/perf/function-call", perf_baseline); g_test_add_func("/perf/cost", perf_cost); } return g_test_run(); }