/* * AioContext tests * * Copyright Red Hat, Inc. 2012 * * Authors: * Paolo Bonzini * * This work is licensed under the terms of the GNU LGPL, version 2 or later. * See the COPYING.LIB file in the top-level directory. */ #include "qemu/osdep.h" #include "block/aio.h" #include "qapi/error.h" #include "qemu/timer.h" #include "qemu/sockets.h" #include "qemu/error-report.h" #include "qemu/coroutine-core.h" #include "qemu/main-loop.h" static AioContext *ctx; typedef struct { EventNotifier e; int n; int active; bool auto_set; } EventNotifierTestData; /* Wait until event notifier becomes inactive */ static void wait_until_inactive(EventNotifierTestData *data) { while (data->active > 0) { aio_poll(ctx, true); } } /* Simple callbacks for testing. */ typedef struct { QEMUBH *bh; int n; int max; } BHTestData; typedef struct { QEMUTimer timer; QEMUClockType clock_type; int n; int max; int64_t ns; AioContext *ctx; } TimerTestData; static void bh_test_cb(void *opaque) { BHTestData *data = opaque; if (++data->n < data->max) { qemu_bh_schedule(data->bh); } } static void timer_test_cb(void *opaque) { TimerTestData *data = opaque; if (++data->n < data->max) { timer_mod(&data->timer, qemu_clock_get_ns(data->clock_type) + data->ns); } } static void dummy_io_handler_read(EventNotifier *e) { } static void bh_delete_cb(void *opaque) { BHTestData *data = opaque; if (++data->n < data->max) { qemu_bh_schedule(data->bh); } else { qemu_bh_delete(data->bh); data->bh = NULL; } } static void event_ready_cb(EventNotifier *e) { EventNotifierTestData *data = container_of(e, EventNotifierTestData, e); g_assert(event_notifier_test_and_clear(e)); data->n++; if (data->active > 0) { data->active--; } if (data->auto_set && data->active) { event_notifier_set(e); } } /* Tests using aio_*. */ typedef struct { QemuMutex start_lock; EventNotifier notifier; bool thread_acquired; } AcquireTestData; static void *test_acquire_thread(void *opaque) { AcquireTestData *data = opaque; /* Wait for other thread to let us start */ qemu_mutex_lock(&data->start_lock); qemu_mutex_unlock(&data->start_lock); /* event_notifier_set might be called either before or after * the main thread's call to poll(). The test case's outcome * should be the same in either case. */ event_notifier_set(&data->notifier); aio_context_acquire(ctx); aio_context_release(ctx); data->thread_acquired = true; /* success, we got here */ return NULL; } static void set_event_notifier(AioContext *ctx, EventNotifier *notifier, EventNotifierHandler *handler) { aio_set_event_notifier(ctx, notifier, handler, NULL, NULL); } static void dummy_notifier_read(EventNotifier *n) { event_notifier_test_and_clear(n); } static void test_acquire(void) { QemuThread thread; AcquireTestData data; /* Dummy event notifier ensures aio_poll() will block */ event_notifier_init(&data.notifier, false); set_event_notifier(ctx, &data.notifier, dummy_notifier_read); g_assert(!aio_poll(ctx, false)); /* consume aio_notify() */ qemu_mutex_init(&data.start_lock); qemu_mutex_lock(&data.start_lock); data.thread_acquired = false; qemu_thread_create(&thread, "test_acquire_thread", test_acquire_thread, &data, QEMU_THREAD_JOINABLE); /* Block in aio_poll(), let other thread kick us and acquire context */ aio_context_acquire(ctx); qemu_mutex_unlock(&data.start_lock); /* let the thread run */ g_assert(aio_poll(ctx, true)); g_assert(!data.thread_acquired); aio_context_release(ctx); qemu_thread_join(&thread); set_event_notifier(ctx, &data.notifier, NULL); event_notifier_cleanup(&data.notifier); g_assert(data.thread_acquired); } static void test_bh_schedule(void) { BHTestData data = { .n = 0 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); g_assert(aio_poll(ctx, true)); g_assert_cmpint(data.n, ==, 1); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); qemu_bh_delete(data.bh); } static void test_bh_schedule10(void) { BHTestData data = { .n = 0, .max = 10 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); g_assert(aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); g_assert(aio_poll(ctx, true)); g_assert_cmpint(data.n, ==, 2); while (data.n < 10) { aio_poll(ctx, true); } g_assert_cmpint(data.n, ==, 10); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 10); qemu_bh_delete(data.bh); } static void test_bh_cancel(void) { BHTestData data = { .n = 0 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); qemu_bh_cancel(data.bh); g_assert_cmpint(data.n, ==, 0); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 0); qemu_bh_delete(data.bh); } static void test_bh_delete(void) { BHTestData data = { .n = 0 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); qemu_bh_delete(data.bh); g_assert_cmpint(data.n, ==, 0); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 0); } static void test_bh_delete_from_cb(void) { BHTestData data1 = { .n = 0, .max = 1 }; data1.bh = aio_bh_new(ctx, bh_delete_cb, &data1); qemu_bh_schedule(data1.bh); g_assert_cmpint(data1.n, ==, 0); while (data1.n < data1.max) { aio_poll(ctx, true); } g_assert_cmpint(data1.n, ==, data1.max); g_assert(data1.bh == NULL); g_assert(!aio_poll(ctx, false)); } static void test_bh_delete_from_cb_many(void) { BHTestData data1 = { .n = 0, .max = 1 }; BHTestData data2 = { .n = 0, .max = 3 }; BHTestData data3 = { .n = 0, .max = 2 }; BHTestData data4 = { .n = 0, .max = 4 }; data1.bh = aio_bh_new(ctx, bh_delete_cb, &data1); data2.bh = aio_bh_new(ctx, bh_delete_cb, &data2); data3.bh = aio_bh_new(ctx, bh_delete_cb, &data3); data4.bh = aio_bh_new(ctx, bh_delete_cb, &data4); qemu_bh_schedule(data1.bh); qemu_bh_schedule(data2.bh); qemu_bh_schedule(data3.bh); qemu_bh_schedule(data4.bh); g_assert_cmpint(data1.n, ==, 0); g_assert_cmpint(data2.n, ==, 0); g_assert_cmpint(data3.n, ==, 0); g_assert_cmpint(data4.n, ==, 0); g_assert(aio_poll(ctx, false)); g_assert_cmpint(data1.n, ==, 1); g_assert_cmpint(data2.n, ==, 1); g_assert_cmpint(data3.n, ==, 1); g_assert_cmpint(data4.n, ==, 1); g_assert(data1.bh == NULL); while (data1.n < data1.max || data2.n < data2.max || data3.n < data3.max || data4.n < data4.max) { aio_poll(ctx, true); } g_assert_cmpint(data1.n, ==, data1.max); g_assert_cmpint(data2.n, ==, data2.max); g_assert_cmpint(data3.n, ==, data3.max); g_assert_cmpint(data4.n, ==, data4.max); g_assert(data1.bh == NULL); g_assert(data2.bh == NULL); g_assert(data3.bh == NULL); g_assert(data4.bh == NULL); } static void test_bh_flush(void) { BHTestData data = { .n = 0 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); g_assert(aio_poll(ctx, true)); g_assert_cmpint(data.n, ==, 1); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); qemu_bh_delete(data.bh); } static void test_set_event_notifier(void) { EventNotifierTestData data = { .n = 0, .active = 0 }; event_notifier_init(&data.e, false); set_event_notifier(ctx, &data.e, event_ready_cb); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 0); set_event_notifier(ctx, &data.e, NULL); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 0); event_notifier_cleanup(&data.e); } static void test_wait_event_notifier(void) { EventNotifierTestData data = { .n = 0, .active = 1 }; event_notifier_init(&data.e, false); set_event_notifier(ctx, &data.e, event_ready_cb); while (aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 0); g_assert_cmpint(data.active, ==, 1); event_notifier_set(&data.e); g_assert(aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); g_assert_cmpint(data.active, ==, 0); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); g_assert_cmpint(data.active, ==, 0); set_event_notifier(ctx, &data.e, NULL); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); event_notifier_cleanup(&data.e); } static void test_flush_event_notifier(void) { EventNotifierTestData data = { .n = 0, .active = 10, .auto_set = true }; event_notifier_init(&data.e, false); set_event_notifier(ctx, &data.e, event_ready_cb); while (aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 0); g_assert_cmpint(data.active, ==, 10); event_notifier_set(&data.e); g_assert(aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); g_assert_cmpint(data.active, ==, 9); g_assert(aio_poll(ctx, false)); wait_until_inactive(&data); g_assert_cmpint(data.n, ==, 10); g_assert_cmpint(data.active, ==, 0); g_assert(!aio_poll(ctx, false)); set_event_notifier(ctx, &data.e, NULL); g_assert(!aio_poll(ctx, false)); event_notifier_cleanup(&data.e); } static void test_wait_event_notifier_noflush(void) { EventNotifierTestData data = { .n = 0 }; EventNotifierTestData dummy = { .n = 0, .active = 1 }; event_notifier_init(&data.e, false); set_event_notifier(ctx, &data.e, event_ready_cb); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 0); /* Until there is an active descriptor, aio_poll may or may not call * event_ready_cb. Still, it must not block. */ event_notifier_set(&data.e); g_assert(aio_poll(ctx, true)); data.n = 0; /* An active event notifier forces aio_poll to look at EventNotifiers. */ event_notifier_init(&dummy.e, false); set_event_notifier(ctx, &dummy.e, event_ready_cb); event_notifier_set(&data.e); g_assert(aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); event_notifier_set(&data.e); g_assert(aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 2); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 2); event_notifier_set(&dummy.e); wait_until_inactive(&dummy); g_assert_cmpint(data.n, ==, 2); g_assert_cmpint(dummy.n, ==, 1); g_assert_cmpint(dummy.active, ==, 0); set_event_notifier(ctx, &dummy.e, NULL); event_notifier_cleanup(&dummy.e); set_event_notifier(ctx, &data.e, NULL); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 2); event_notifier_cleanup(&data.e); } static void test_timer_schedule(void) { TimerTestData data = { .n = 0, .ctx = ctx, .ns = SCALE_MS * 750LL, .max = 2, .clock_type = QEMU_CLOCK_REALTIME }; EventNotifier e; /* aio_poll will not block to wait for timers to complete unless it has * an fd to wait on. Fixing this breaks other tests. So create a dummy one. */ event_notifier_init(&e, false); set_event_notifier(ctx, &e, dummy_io_handler_read); aio_poll(ctx, false); aio_timer_init(ctx, &data.timer, data.clock_type, SCALE_NS, timer_test_cb, &data); timer_mod(&data.timer, qemu_clock_get_ns(data.clock_type) + data.ns); g_assert_cmpint(data.n, ==, 0); /* timer_mod may well cause an event notifier to have gone off, * so clear that */ do {} while (aio_poll(ctx, false)); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 0); g_usleep(1 * G_USEC_PER_SEC); g_assert_cmpint(data.n, ==, 0); g_assert(aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); /* timer_mod called by our callback */ do {} while (aio_poll(ctx, false)); g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 1); g_assert(aio_poll(ctx, true)); g_assert_cmpint(data.n, ==, 2); /* As max is now 2, an event notifier should not have gone off */ g_assert(!aio_poll(ctx, false)); g_assert_cmpint(data.n, ==, 2); set_event_notifier(ctx, &e, NULL); event_notifier_cleanup(&e); timer_del(&data.timer); } /* Now the same tests, using the context as a GSource. They are * very similar to the ones above, with g_main_context_iteration * replacing aio_poll. However: * - sometimes both the AioContext and the glib main loop wake * themselves up. Hence, some "g_assert(!aio_poll(ctx, false));" * are replaced by "while (g_main_context_iteration(NULL, false));". * - there is no exact replacement for a blocking wait. * "while (g_main_context_iteration(NULL, true)" seems to work, * but it is not documented _why_ it works. For these tests a * non-blocking loop like "while (g_main_context_iteration(NULL, false)" * works well, and that's what I am using. */ static void test_source_flush(void) { g_assert(!g_main_context_iteration(NULL, false)); aio_notify(ctx); while (g_main_context_iteration(NULL, false)); g_assert(!g_main_context_iteration(NULL, false)); } static void test_source_bh_schedule(void) { BHTestData data = { .n = 0 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); g_assert(g_main_context_iteration(NULL, true)); g_assert_cmpint(data.n, ==, 1); g_assert(!g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); qemu_bh_delete(data.bh); } static void test_source_bh_schedule10(void) { BHTestData data = { .n = 0, .max = 10 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); g_assert(g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); g_assert(g_main_context_iteration(NULL, true)); g_assert_cmpint(data.n, ==, 2); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 10); g_assert(!g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 10); qemu_bh_delete(data.bh); } static void test_source_bh_cancel(void) { BHTestData data = { .n = 0 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); qemu_bh_cancel(data.bh); g_assert_cmpint(data.n, ==, 0); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 0); qemu_bh_delete(data.bh); } static void test_source_bh_delete(void) { BHTestData data = { .n = 0 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); qemu_bh_delete(data.bh); g_assert_cmpint(data.n, ==, 0); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 0); } static void test_source_bh_delete_from_cb(void) { BHTestData data1 = { .n = 0, .max = 1 }; data1.bh = aio_bh_new(ctx, bh_delete_cb, &data1); qemu_bh_schedule(data1.bh); g_assert_cmpint(data1.n, ==, 0); g_main_context_iteration(NULL, true); g_assert_cmpint(data1.n, ==, data1.max); g_assert(data1.bh == NULL); assert(g_main_context_iteration(NULL, false)); assert(!g_main_context_iteration(NULL, false)); } static void test_source_bh_delete_from_cb_many(void) { BHTestData data1 = { .n = 0, .max = 1 }; BHTestData data2 = { .n = 0, .max = 3 }; BHTestData data3 = { .n = 0, .max = 2 }; BHTestData data4 = { .n = 0, .max = 4 }; data1.bh = aio_bh_new(ctx, bh_delete_cb, &data1); data2.bh = aio_bh_new(ctx, bh_delete_cb, &data2); data3.bh = aio_bh_new(ctx, bh_delete_cb, &data3); data4.bh = aio_bh_new(ctx, bh_delete_cb, &data4); qemu_bh_schedule(data1.bh); qemu_bh_schedule(data2.bh); qemu_bh_schedule(data3.bh); qemu_bh_schedule(data4.bh); g_assert_cmpint(data1.n, ==, 0); g_assert_cmpint(data2.n, ==, 0); g_assert_cmpint(data3.n, ==, 0); g_assert_cmpint(data4.n, ==, 0); g_assert(g_main_context_iteration(NULL, false)); g_assert_cmpint(data1.n, ==, 1); g_assert_cmpint(data2.n, ==, 1); g_assert_cmpint(data3.n, ==, 1); g_assert_cmpint(data4.n, ==, 1); g_assert(data1.bh == NULL); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data1.n, ==, data1.max); g_assert_cmpint(data2.n, ==, data2.max); g_assert_cmpint(data3.n, ==, data3.max); g_assert_cmpint(data4.n, ==, data4.max); g_assert(data1.bh == NULL); g_assert(data2.bh == NULL); g_assert(data3.bh == NULL); g_assert(data4.bh == NULL); } static void test_source_bh_flush(void) { BHTestData data = { .n = 0 }; data.bh = aio_bh_new(ctx, bh_test_cb, &data); qemu_bh_schedule(data.bh); g_assert_cmpint(data.n, ==, 0); g_assert(g_main_context_iteration(NULL, true)); g_assert_cmpint(data.n, ==, 1); g_assert(!g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); qemu_bh_delete(data.bh); } static void test_source_set_event_notifier(void) { EventNotifierTestData data = { .n = 0, .active = 0 }; event_notifier_init(&data.e, false); set_event_notifier(ctx, &data.e, event_ready_cb); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 0); set_event_notifier(ctx, &data.e, NULL); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 0); event_notifier_cleanup(&data.e); } static void test_source_wait_event_notifier(void) { EventNotifierTestData data = { .n = 0, .active = 1 }; event_notifier_init(&data.e, false); set_event_notifier(ctx, &data.e, event_ready_cb); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 0); g_assert_cmpint(data.active, ==, 1); event_notifier_set(&data.e); g_assert(g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); g_assert_cmpint(data.active, ==, 0); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); g_assert_cmpint(data.active, ==, 0); set_event_notifier(ctx, &data.e, NULL); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); event_notifier_cleanup(&data.e); } static void test_source_flush_event_notifier(void) { EventNotifierTestData data = { .n = 0, .active = 10, .auto_set = true }; event_notifier_init(&data.e, false); set_event_notifier(ctx, &data.e, event_ready_cb); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 0); g_assert_cmpint(data.active, ==, 10); event_notifier_set(&data.e); g_assert(g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); g_assert_cmpint(data.active, ==, 9); g_assert(g_main_context_iteration(NULL, false)); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 10); g_assert_cmpint(data.active, ==, 0); g_assert(!g_main_context_iteration(NULL, false)); set_event_notifier(ctx, &data.e, NULL); while (g_main_context_iteration(NULL, false)); event_notifier_cleanup(&data.e); } static void test_source_wait_event_notifier_noflush(void) { EventNotifierTestData data = { .n = 0 }; EventNotifierTestData dummy = { .n = 0, .active = 1 }; event_notifier_init(&data.e, false); set_event_notifier(ctx, &data.e, event_ready_cb); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 0); /* Until there is an active descriptor, glib may or may not call * event_ready_cb. Still, it must not block. */ event_notifier_set(&data.e); g_main_context_iteration(NULL, true); data.n = 0; /* An active event notifier forces aio_poll to look at EventNotifiers. */ event_notifier_init(&dummy.e, false); set_event_notifier(ctx, &dummy.e, event_ready_cb); event_notifier_set(&data.e); g_assert(g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); g_assert(!g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); event_notifier_set(&data.e); g_assert(g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 2); g_assert(!g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 2); event_notifier_set(&dummy.e); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 2); g_assert_cmpint(dummy.n, ==, 1); g_assert_cmpint(dummy.active, ==, 0); set_event_notifier(ctx, &dummy.e, NULL); event_notifier_cleanup(&dummy.e); set_event_notifier(ctx, &data.e, NULL); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 2); event_notifier_cleanup(&data.e); } static void test_source_timer_schedule(void) { TimerTestData data = { .n = 0, .ctx = ctx, .ns = SCALE_MS * 750LL, .max = 2, .clock_type = QEMU_CLOCK_REALTIME }; EventNotifier e; int64_t expiry; /* aio_poll will not block to wait for timers to complete unless it has * an fd to wait on. Fixing this breaks other tests. So create a dummy one. */ event_notifier_init(&e, false); set_event_notifier(ctx, &e, dummy_io_handler_read); do {} while (g_main_context_iteration(NULL, false)); aio_timer_init(ctx, &data.timer, data.clock_type, SCALE_NS, timer_test_cb, &data); expiry = qemu_clock_get_ns(data.clock_type) + data.ns; timer_mod(&data.timer, expiry); g_assert_cmpint(data.n, ==, 0); g_usleep(1 * G_USEC_PER_SEC); g_assert_cmpint(data.n, ==, 0); g_assert(g_main_context_iteration(NULL, true)); g_assert_cmpint(data.n, ==, 1); expiry += data.ns; while (data.n < 2) { g_main_context_iteration(NULL, true); } g_assert_cmpint(data.n, ==, 2); g_assert(qemu_clock_get_ns(data.clock_type) > expiry); set_event_notifier(ctx, &e, NULL); event_notifier_cleanup(&e); timer_del(&data.timer); } /* * Check that aio_co_enter() can chain many times * * Two coroutines should be able to invoke each other via aio_co_enter() many * times without hitting a limit like stack exhaustion. In other words, the * calls should be chained instead of nested. */ typedef struct { Coroutine *other; unsigned i; unsigned max; } ChainData; static void coroutine_fn chain(void *opaque) { ChainData *data = opaque; for (data->i = 0; data->i < data->max; data->i++) { /* Queue up the other coroutine... */ aio_co_enter(ctx, data->other); /* ...and give control to it */ qemu_coroutine_yield(); } } static void test_queue_chaining(void) { /* This number of iterations hit stack exhaustion in the past: */ ChainData data_a = { .max = 25000 }; ChainData data_b = { .max = 25000 }; data_b.other = qemu_coroutine_create(chain, &data_a); data_a.other = qemu_coroutine_create(chain, &data_b); qemu_coroutine_enter(data_b.other); g_assert_cmpint(data_a.i, ==, data_a.max); g_assert_cmpint(data_b.i, ==, data_b.max - 1); /* Allow the second coroutine to terminate */ qemu_coroutine_enter(data_a.other); g_assert_cmpint(data_b.i, ==, data_b.max); } static void co_check_current_thread(void *opaque) { QemuThread *main_thread = opaque; assert(qemu_thread_is_self(main_thread)); } static void *test_aio_co_enter(void *co) { /* * qemu_get_current_aio_context() should not to be the main thread * AioContext, because this is a worker thread that has not taken * the BQL. So aio_co_enter will schedule the coroutine in the * main thread AioContext. */ aio_co_enter(qemu_get_aio_context(), co); return NULL; } static void test_worker_thread_co_enter(void) { QemuThread this_thread, worker_thread; Coroutine *co; qemu_thread_get_self(&this_thread); co = qemu_coroutine_create(co_check_current_thread, &this_thread); qemu_thread_create(&worker_thread, "test_acquire_thread", test_aio_co_enter, co, QEMU_THREAD_JOINABLE); /* Test aio_co_enter from a worker thread. */ qemu_thread_join(&worker_thread); g_assert(aio_poll(ctx, true)); g_assert(!aio_poll(ctx, false)); } /* End of tests. */ int main(int argc, char **argv) { qemu_init_main_loop(&error_fatal); ctx = qemu_get_aio_context(); while (g_main_context_iteration(NULL, false)); g_test_init(&argc, &argv, NULL); g_test_add_func("/aio/acquire", test_acquire); g_test_add_func("/aio/bh/schedule", test_bh_schedule); g_test_add_func("/aio/bh/schedule10", test_bh_schedule10); g_test_add_func("/aio/bh/cancel", test_bh_cancel); g_test_add_func("/aio/bh/delete", test_bh_delete); g_test_add_func("/aio/bh/callback-delete/one", test_bh_delete_from_cb); g_test_add_func("/aio/bh/callback-delete/many", test_bh_delete_from_cb_many); g_test_add_func("/aio/bh/flush", test_bh_flush); g_test_add_func("/aio/event/add-remove", test_set_event_notifier); g_test_add_func("/aio/event/wait", test_wait_event_notifier); g_test_add_func("/aio/event/wait/no-flush-cb", test_wait_event_notifier_noflush); g_test_add_func("/aio/event/flush", test_flush_event_notifier); g_test_add_func("/aio/timer/schedule", test_timer_schedule); g_test_add_func("/aio/coroutine/queue-chaining", test_queue_chaining); g_test_add_func("/aio/coroutine/worker-thread-co-enter", test_worker_thread_co_enter); g_test_add_func("/aio-gsource/flush", test_source_flush); g_test_add_func("/aio-gsource/bh/schedule", test_source_bh_schedule); g_test_add_func("/aio-gsource/bh/schedule10", test_source_bh_schedule10); g_test_add_func("/aio-gsource/bh/cancel", test_source_bh_cancel); g_test_add_func("/aio-gsource/bh/delete", test_source_bh_delete); g_test_add_func("/aio-gsource/bh/callback-delete/one", test_source_bh_delete_from_cb); g_test_add_func("/aio-gsource/bh/callback-delete/many", test_source_bh_delete_from_cb_many); g_test_add_func("/aio-gsource/bh/flush", test_source_bh_flush); g_test_add_func("/aio-gsource/event/add-remove", test_source_set_event_notifier); g_test_add_func("/aio-gsource/event/wait", test_source_wait_event_notifier); g_test_add_func("/aio-gsource/event/wait/no-flush-cb", test_source_wait_event_notifier_noflush); g_test_add_func("/aio-gsource/event/flush", test_source_flush_event_notifier); g_test_add_func("/aio-gsource/timer/schedule", test_source_timer_schedule); return g_test_run(); }