#include #include "qemu/compiler.h" typedef vector float vsx_float32_vec_t; typedef vector double vsx_float64_vec_t; typedef vector signed int vsx_int32_vec_t; typedef vector unsigned int vsx_uint32_vec_t; typedef vector signed long long vsx_int64_vec_t; typedef vector unsigned long long vsx_uint64_vec_t; #define DEFINE_VSX_F2I_FUNC(SRC_T, DEST_T, INSN) \ static inline vsx_##DEST_T##_vec_t \ vsx_convert_##SRC_T##_vec_to_##DEST_T##_vec(vsx_##SRC_T##_vec_t v) \ { \ vsx_##DEST_T##_vec_t result; \ asm(#INSN " %x0, %x1" : "=wa" (result) : "wa" (v)); \ return result; \ } DEFINE_VSX_F2I_FUNC(float32, int32, xvcvspsxws) DEFINE_VSX_F2I_FUNC(float32, uint32, xvcvspuxws) DEFINE_VSX_F2I_FUNC(float32, int64, xvcvspsxds) DEFINE_VSX_F2I_FUNC(float32, uint64, xvcvspuxds) DEFINE_VSX_F2I_FUNC(float64, int32, xvcvdpsxws) DEFINE_VSX_F2I_FUNC(float64, uint32, xvcvdpuxws) DEFINE_VSX_F2I_FUNC(float64, int64, xvcvdpsxds) DEFINE_VSX_F2I_FUNC(float64, uint64, xvcvdpuxds) static inline vsx_float32_vec_t vsx_float32_is_nan(vsx_float32_vec_t v) { vsx_float32_vec_t abs_v; vsx_float32_vec_t result_mask; const vsx_uint32_vec_t f32_pos_inf_bits = {0x7F800000U, 0x7F800000U, 0x7F800000U, 0x7F800000U}; asm("xvabssp %x0, %x1" : "=wa" (abs_v) : "wa" (v)); asm("vcmpgtuw %0, %1, %2" : "=v" (result_mask) : "v" (abs_v), "v" (f32_pos_inf_bits)); return result_mask; } static inline vsx_float64_vec_t vsx_float64_is_nan(vsx_float64_vec_t v) { vsx_float64_vec_t abs_v; vsx_float64_vec_t result_mask; const vsx_uint64_vec_t f64_pos_inf_bits = {0x7FF0000000000000ULL, 0x7FF0000000000000ULL}; asm("xvabsdp %x0, %x1" : "=wa" (abs_v) : "wa" (v)); asm("vcmpgtud %0, %1, %2" : "=v" (result_mask) : "v" (abs_v), "v" (f64_pos_inf_bits)); return result_mask; } #define DEFINE_VSX_BINARY_LOGICAL_OP_INSN(LANE_TYPE, OP_NAME, OP_INSN) \ static inline vsx_##LANE_TYPE##_vec_t vsx_##LANE_TYPE##_##OP_NAME( \ vsx_##LANE_TYPE##_vec_t a, vsx_##LANE_TYPE##_vec_t b) \ { \ vsx_##LANE_TYPE##_vec_t result; \ asm(#OP_INSN " %x0, %x1, %x2" : "=wa" (result) : "wa" (a), "wa" (b)); \ return result; \ } DEFINE_VSX_BINARY_LOGICAL_OP_INSN(float32, logical_and, xxland) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(float64, logical_and, xxland) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(int32, logical_and, xxland) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(uint32, logical_and, xxland) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(int64, logical_and, xxland) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(uint64, logical_and, xxland) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(float32, logical_andc, xxlandc) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(float64, logical_andc, xxlandc) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(float32, logical_or, xxlor) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(float64, logical_or, xxlor) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(int32, logical_or, xxlor) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(uint32, logical_or, xxlor) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(int64, logical_or, xxlor) DEFINE_VSX_BINARY_LOGICAL_OP_INSN(uint64, logical_or, xxlor) static inline vsx_int32_vec_t vsx_mask_out_float32_vec_to_int32_vec( vsx_int32_vec_t v) { return v; } static inline vsx_uint32_vec_t vsx_mask_out_float32_vec_to_uint32_vec( vsx_uint32_vec_t v) { return v; } static inline vsx_int64_vec_t vsx_mask_out_float32_vec_to_int64_vec( vsx_int64_vec_t v) { return v; } static inline vsx_uint64_vec_t vsx_mask_out_float32_vec_to_uint64_vec( vsx_uint64_vec_t v) { return v; } static inline vsx_int32_vec_t vsx_mask_out_float64_vec_to_int32_vec( vsx_int32_vec_t v) { #if HOST_BIG_ENDIAN const vsx_int32_vec_t valid_lanes_mask = {-1, 0, -1, 0}; #else const vsx_int32_vec_t valid_lanes_mask = {0, -1, 0, -1}; #endif return vsx_int32_logical_and(v, valid_lanes_mask); } static inline vsx_uint32_vec_t vsx_mask_out_float64_vec_to_uint32_vec( vsx_uint32_vec_t v) { return (vsx_uint32_vec_t)vsx_mask_out_float64_vec_to_int32_vec( (vsx_int32_vec_t)v); } static inline vsx_int64_vec_t vsx_mask_out_float64_vec_to_int64_vec( vsx_int64_vec_t v) { return v; } static inline vsx_uint64_vec_t vsx_mask_out_float64_vec_to_uint64_vec( vsx_uint64_vec_t v) { return v; } static inline void print_vsx_float32_vec_elements(FILE *stream, vsx_float32_vec_t vec) { fprintf(stream, "%g, %g, %g, %g", (double)vec[0], (double)vec[1], (double)vec[2], (double)vec[3]); } static inline void print_vsx_float64_vec_elements(FILE *stream, vsx_float64_vec_t vec) { fprintf(stream, "%.17g, %.17g", vec[0], vec[1]); } static inline void print_vsx_int32_vec_elements(FILE *stream, vsx_int32_vec_t vec) { fprintf(stream, "%d, %d, %d, %d", vec[0], vec[1], vec[2], vec[3]); } static inline void print_vsx_uint32_vec_elements(FILE *stream, vsx_uint32_vec_t vec) { fprintf(stream, "%u, %u, %u, %u", vec[0], vec[1], vec[2], vec[3]); } static inline void print_vsx_int64_vec_elements(FILE *stream, vsx_int64_vec_t vec) { fprintf(stream, "%lld, %lld", vec[0], vec[1]); } static inline void print_vsx_uint64_vec_elements(FILE *stream, vsx_uint64_vec_t vec) { fprintf(stream, "%llu, %llu", vec[0], vec[1]); } #define DEFINE_VSX_ALL_EQ_FUNC(LANE_TYPE, CMP_INSN) \ static inline int vsx_##LANE_TYPE##_all_eq(vsx_##LANE_TYPE##_vec_t a, \ vsx_##LANE_TYPE##_vec_t b) \ { \ unsigned result; \ vsx_##LANE_TYPE##_vec_t is_eq_mask_vec; \ asm(#CMP_INSN ". %0, %2, %3\n\t" \ "mfocrf %1, 2" \ : "=v" (is_eq_mask_vec), "=r" (result) \ : "v" (a), "v" (b) \ : "cr6"); \ return (int)((result >> 7) & 1u); \ } DEFINE_VSX_ALL_EQ_FUNC(int32, vcmpequw) DEFINE_VSX_ALL_EQ_FUNC(uint32, vcmpequw) DEFINE_VSX_ALL_EQ_FUNC(int64, vcmpequd) DEFINE_VSX_ALL_EQ_FUNC(uint64, vcmpequd) #define DEFINE_VSX_F2I_TEST_FUNC(SRC_T, DEST_T) \ static inline int test_vsx_conv_##SRC_T##_vec_to_##DEST_T##_vec( \ vsx_##SRC_T##_vec_t src_v) \ { \ const vsx_##SRC_T##_vec_t is_nan_mask = vsx_##SRC_T##_is_nan(src_v); \ const vsx_##SRC_T##_vec_t nan_src_v = \ vsx_##SRC_T##_logical_and(src_v, is_nan_mask); \ const vsx_##SRC_T##_vec_t non_nan_src_v = \ vsx_##SRC_T##_logical_andc(src_v, is_nan_mask); \ \ const vsx_##DEST_T##_vec_t expected_result = \ vsx_mask_out_##SRC_T##_vec_to_##DEST_T##_vec( \ vsx_##DEST_T##_logical_or( \ vsx_convert_##SRC_T##_vec_to_##DEST_T##_vec(nan_src_v), \ vsx_convert_##SRC_T##_vec_to_##DEST_T##_vec( \ non_nan_src_v))); \ const vsx_##DEST_T##_vec_t actual_result = \ vsx_mask_out_##SRC_T##_vec_to_##DEST_T##_vec( \ vsx_convert_##SRC_T##_vec_to_##DEST_T##_vec(src_v)); \ const int test_result = \ vsx_##DEST_T##_all_eq(expected_result, actual_result); \ \ if (unlikely(test_result == 0)) { \ fputs("FAIL: Conversion of " #SRC_T " vector to " #DEST_T \ " vector failed\n", stdout); \ fputs("Source values: ", stdout); \ print_vsx_##SRC_T##_vec_elements(stdout, src_v); \ fputs("\nExpected result: ", stdout); \ print_vsx_##DEST_T##_vec_elements(stdout, expected_result); \ fputs("\nActual result: ", stdout); \ print_vsx_##DEST_T##_vec_elements(stdout, actual_result); \ fputs("\n\n", stdout); \ } \ \ return test_result; \ } DEFINE_VSX_F2I_TEST_FUNC(float32, int32) DEFINE_VSX_F2I_TEST_FUNC(float32, uint32) DEFINE_VSX_F2I_TEST_FUNC(float32, int64) DEFINE_VSX_F2I_TEST_FUNC(float32, uint64) DEFINE_VSX_F2I_TEST_FUNC(float64, int32) DEFINE_VSX_F2I_TEST_FUNC(float64, uint32) DEFINE_VSX_F2I_TEST_FUNC(float64, int64) DEFINE_VSX_F2I_TEST_FUNC(float64, uint64) static inline vsx_int32_vec_t vsx_int32_vec_from_mask(int mask) { const vsx_int32_vec_t bits_to_test = {1, 2, 4, 8}; const vsx_int32_vec_t vec_mask = {mask, mask, mask, mask}; vsx_int32_vec_t result; asm("vcmpequw %0, %1, %2" : "=v" (result) : "v" (vsx_int32_logical_and(vec_mask, bits_to_test)), "v" (bits_to_test)); return result; } static inline vsx_int64_vec_t vsx_int64_vec_from_mask(int mask) { const vsx_int64_vec_t bits_to_test = {1, 2}; const vsx_int64_vec_t vec_mask = {mask, mask}; vsx_int64_vec_t result; asm("vcmpequd %0, %1, %2" : "=v" (result) : "v" (vsx_int64_logical_and(vec_mask, bits_to_test)), "v" (bits_to_test)); return result; } int main(void) { const vsx_float32_vec_t f32_iota1 = {1.0f, 2.0f, 3.0f, 4.0f}; const vsx_float64_vec_t f64_iota1 = {1.0, 2.0}; int num_of_tests_failed = 0; for (int i = 0; i < 16; i++) { const vsx_int32_vec_t nan_mask = vsx_int32_vec_from_mask(i); const vsx_float32_vec_t f32_v = vsx_float32_logical_or(f32_iota1, (vsx_float32_vec_t)nan_mask); num_of_tests_failed += (int)(!test_vsx_conv_float32_vec_to_int32_vec(f32_v)); num_of_tests_failed += (int)(!test_vsx_conv_float32_vec_to_int64_vec(f32_v)); num_of_tests_failed += (int)(!test_vsx_conv_float32_vec_to_uint32_vec(f32_v)); num_of_tests_failed += (int)(!test_vsx_conv_float32_vec_to_uint64_vec(f32_v)); } for (int i = 0; i < 4; i++) { const vsx_int64_vec_t nan_mask = vsx_int64_vec_from_mask(i); const vsx_float64_vec_t f64_v = vsx_float64_logical_or(f64_iota1, (vsx_float64_vec_t)nan_mask); num_of_tests_failed += (int)(!test_vsx_conv_float64_vec_to_int32_vec(f64_v)); num_of_tests_failed += (int)(!test_vsx_conv_float64_vec_to_int64_vec(f64_v)); num_of_tests_failed += (int)(!test_vsx_conv_float64_vec_to_uint32_vec(f64_v)); num_of_tests_failed += (int)(!test_vsx_conv_float64_vec_to_uint64_vec(f64_v)); } printf("%d tests failed\n", num_of_tests_failed); return (int)(num_of_tests_failed != 0); }