/* SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #include #include static bool test_SB_SR(uint8_t *o, const uint8_t *i); static bool test_MC(uint8_t *o, const uint8_t *i); static bool test_SB_SR_MC_AK(uint8_t *o, const uint8_t *i, const uint8_t *k); static bool test_ISB_ISR(uint8_t *o, const uint8_t *i); static bool test_IMC(uint8_t *o, const uint8_t *i); static bool test_ISB_ISR_AK_IMC(uint8_t *o, const uint8_t *i, const uint8_t *k); static bool test_ISB_ISR_IMC_AK(uint8_t *o, const uint8_t *i, const uint8_t *k); /* * From https://doi.org/10.6028/NIST.FIPS.197-upd1, * Appendix B -- Cipher Example * * Note that the formatting of the 4x4 matrices in the document is * column-major, whereas C is row-major. Therefore to get the bytes * in the same order as the text, the matrices are transposed. * * Note that we are not going to test SubBytes or ShiftRows separately, * so the "After SubBytes" column is omitted, using only the combined * result "After ShiftRows" column. */ /* Ease the inline assembly by aligning everything. */ typedef struct { uint8_t b[16] __attribute__((aligned(16))); } State; typedef struct { State start, after_sr, after_mc, round_key; } Round; static const Round rounds[] = { /* Round 1 */ { { { 0x19, 0x3d, 0xe3, 0xbe, /* start */ 0xa0, 0xf4, 0xe2, 0x2b, 0x9a, 0xc6, 0x8d, 0x2a, 0xe9, 0xf8, 0x48, 0x08, } }, { { 0xd4, 0xbf, 0x5d, 0x30, /* after shiftrows */ 0xe0, 0xb4, 0x52, 0xae, 0xb8, 0x41, 0x11, 0xf1, 0x1e, 0x27, 0x98, 0xe5, } }, { { 0x04, 0x66, 0x81, 0xe5, /* after mixcolumns */ 0xe0, 0xcb, 0x19, 0x9a, 0x48, 0xf8, 0xd3, 0x7a, 0x28, 0x06, 0x26, 0x4c, } }, { { 0xa0, 0xfa, 0xfe, 0x17, /* round key */ 0x88, 0x54, 0x2c, 0xb1, 0x23, 0xa3, 0x39, 0x39, 0x2a, 0x6c, 0x76, 0x05, } } }, /* Round 2 */ { { { 0xa4, 0x9c, 0x7f, 0xf2, /* start */ 0x68, 0x9f, 0x35, 0x2b, 0x6b, 0x5b, 0xea, 0x43, 0x02, 0x6a, 0x50, 0x49, } }, { { 0x49, 0xdb, 0x87, 0x3b, /* after shiftrows */ 0x45, 0x39, 0x53, 0x89, 0x7f, 0x02, 0xd2, 0xf1, 0x77, 0xde, 0x96, 0x1a, } }, { { 0x58, 0x4d, 0xca, 0xf1, /* after mixcolumns */ 0x1b, 0x4b, 0x5a, 0xac, 0xdb, 0xe7, 0xca, 0xa8, 0x1b, 0x6b, 0xb0, 0xe5, } }, { { 0xf2, 0xc2, 0x95, 0xf2, /* round key */ 0x7a, 0x96, 0xb9, 0x43, 0x59, 0x35, 0x80, 0x7a, 0x73, 0x59, 0xf6, 0x7f, } } }, /* Round 3 */ { { { 0xaa, 0x8f, 0x5f, 0x03, /* start */ 0x61, 0xdd, 0xe3, 0xef, 0x82, 0xd2, 0x4a, 0xd2, 0x68, 0x32, 0x46, 0x9a, } }, { { 0xac, 0xc1, 0xd6, 0xb8, /* after shiftrows */ 0xef, 0xb5, 0x5a, 0x7b, 0x13, 0x23, 0xcf, 0xdf, 0x45, 0x73, 0x11, 0xb5, } }, { { 0x75, 0xec, 0x09, 0x93, /* after mixcolumns */ 0x20, 0x0b, 0x63, 0x33, 0x53, 0xc0, 0xcf, 0x7c, 0xbb, 0x25, 0xd0, 0xdc, } }, { { 0x3d, 0x80, 0x47, 0x7d, /* round key */ 0x47, 0x16, 0xfe, 0x3e, 0x1e, 0x23, 0x7e, 0x44, 0x6d, 0x7a, 0x88, 0x3b, } } }, }; static void verify_log(const char *prefix, const State *s) { printf("%s:", prefix); for (int i = 0; i < sizeof(State); ++i) { printf(" %02x", s->b[i]); } printf("\n"); } static void verify(const State *ref, const State *tst, const char *which) { if (!memcmp(ref, tst, sizeof(State))) { return; } printf("Mismatch on %s\n", which); verify_log("ref", ref); verify_log("tst", tst); exit(EXIT_FAILURE); } int main() { int i, n = sizeof(rounds) / sizeof(Round); State t; for (i = 0; i < n; ++i) { if (test_SB_SR(t.b, rounds[i].start.b)) { verify(&rounds[i].after_sr, &t, "SB+SR"); } } for (i = 0; i < n; ++i) { if (test_MC(t.b, rounds[i].after_sr.b)) { verify(&rounds[i].after_mc, &t, "MC"); } } /* The kernel of Cipher(). */ for (i = 0; i < n - 1; ++i) { if (test_SB_SR_MC_AK(t.b, rounds[i].start.b, rounds[i].round_key.b)) { verify(&rounds[i + 1].start, &t, "SB+SR+MC+AK"); } } for (i = 0; i < n; ++i) { if (test_ISB_ISR(t.b, rounds[i].after_sr.b)) { verify(&rounds[i].start, &t, "ISB+ISR"); } } for (i = 0; i < n; ++i) { if (test_IMC(t.b, rounds[i].after_mc.b)) { verify(&rounds[i].after_sr, &t, "IMC"); } } /* The kernel of InvCipher(). */ for (i = n - 1; i > 0; --i) { if (test_ISB_ISR_AK_IMC(t.b, rounds[i].after_sr.b, rounds[i - 1].round_key.b)) { verify(&rounds[i - 1].after_sr, &t, "ISB+ISR+AK+IMC"); } } /* * The kernel of EqInvCipher(). * We must compute a different round key: apply InvMixColumns to * the standard round key, per KeyExpansion vs KeyExpansionEIC. */ for (i = 1; i < n; ++i) { if (test_IMC(t.b, rounds[i - 1].round_key.b) && test_ISB_ISR_IMC_AK(t.b, rounds[i].after_sr.b, t.b)) { verify(&rounds[i - 1].after_sr, &t, "ISB+ISR+IMC+AK"); } } return EXIT_SUCCESS; }