/* * Memory Test * * This is intended to test the softmmu code and ensure we properly * behave across normal and unaligned accesses across several pages. * We are not replicating memory tests for stuck bits and other * hardware level failures but looking for issues with different size * accesses when access is: * * - unaligned at various sizes (if -DCHECK_UNALIGNED set) * - spanning a (softmmu) page * - sign extension when loading */ #include #include #include #ifndef CHECK_UNALIGNED # error "Target does not specify CHECK_UNALIGNED" #endif #define PAGE_SIZE 4096 /* nominal 4k "pages" */ #define TEST_SIZE (PAGE_SIZE * 4) /* 4 pages */ #define ARRAY_SIZE(x) ((sizeof(x) / sizeof((x)[0]))) __attribute__((aligned(PAGE_SIZE))) static uint8_t test_data[TEST_SIZE]; typedef void (*init_ufn) (int offset); typedef bool (*read_ufn) (int offset); typedef bool (*read_sfn) (int offset, bool nf); static void pdot(int count) { if (count % 128 == 0) { ml_printf("."); } } /* * Helper macros for shift/extract so we can keep our endian handling * in one place. */ #define BYTE_SHIFT(b, pos) ((uint64_t)b << (pos * 8)) #define BYTE_EXTRACT(b, pos) ((b >> (pos * 8)) & 0xff) /* * Fill the data with ascending value bytes. * * Currently we only support Little Endian machines so write in * ascending address order. When we read higher address bytes should * either be zero or higher than the lower bytes. */ static void init_test_data_u8(int unused_offset) { uint8_t count = 0, *ptr = &test_data[0]; int i; (void)(unused_offset); ml_printf("Filling test area with u8:"); for (i = 0; i < TEST_SIZE; i++) { *ptr++ = count++; pdot(i); } ml_printf("done\n"); } /* * Full the data with alternating positive and negative bytes. This * should mean for reads larger than a byte all subsequent reads will * stay either negative or positive. We never write 0. */ static inline uint8_t get_byte(int index, bool neg) { return neg ? (0xff << (index % 7)) : (0xff >> ((index % 6) + 1)); } static void init_test_data_s8(bool neg_first) { uint8_t top, bottom, *ptr = &test_data[0]; int i; ml_printf("Filling test area with s8 pairs (%s):", neg_first ? "neg first" : "pos first"); for (i = 0; i < TEST_SIZE / 2; i++) { *ptr++ = get_byte(i, neg_first); *ptr++ = get_byte(i, !neg_first); pdot(i); } ml_printf("done\n"); } /* * Zero the first few bytes of the test data in preparation for * new offset values. */ static void reset_start_data(int offset) { uint32_t *ptr = (uint32_t *) &test_data[0]; int i; for (i = 0; i < offset; i++) { *ptr++ = 0; } } static void init_test_data_u16(int offset) { uint8_t count = 0; uint16_t word, *ptr = (uint16_t *) &test_data[offset]; const int max = (TEST_SIZE - offset) / sizeof(word); int i; ml_printf("Filling test area with u16 (offset %d, %p):", offset, ptr); reset_start_data(offset); for (i = 0; i < max; i++) { uint8_t low = count++, high = count++; word = BYTE_SHIFT(high, 1) | BYTE_SHIFT(low, 0); *ptr++ = word; pdot(i); } ml_printf("done @ %p\n", ptr); } static void init_test_data_u32(int offset) { uint8_t count = 0; uint32_t word, *ptr = (uint32_t *) &test_data[offset]; const int max = (TEST_SIZE - offset) / sizeof(word); int i; ml_printf("Filling test area with u32 (offset %d, %p):", offset, ptr); reset_start_data(offset); for (i = 0; i < max; i++) { uint8_t b4 = count++, b3 = count++; uint8_t b2 = count++, b1 = count++; word = BYTE_SHIFT(b1, 3) | BYTE_SHIFT(b2, 2) | BYTE_SHIFT(b3, 1) | b4; *ptr++ = word; pdot(i); } ml_printf("done @ %p\n", ptr); } static void init_test_data_u64(int offset) { uint8_t count = 0; uint64_t word, *ptr = (uint64_t *) &test_data[offset]; const int max = (TEST_SIZE - offset) / sizeof(word); int i; ml_printf("Filling test area with u64 (offset %d, %p):", offset, ptr); reset_start_data(offset); for (i = 0; i < max; i++) { uint8_t b8 = count++, b7 = count++; uint8_t b6 = count++, b5 = count++; uint8_t b4 = count++, b3 = count++; uint8_t b2 = count++, b1 = count++; word = BYTE_SHIFT(b1, 7) | BYTE_SHIFT(b2, 6) | BYTE_SHIFT(b3, 5) | BYTE_SHIFT(b4, 4) | BYTE_SHIFT(b5, 3) | BYTE_SHIFT(b6, 2) | BYTE_SHIFT(b7, 1) | b8; *ptr++ = word; pdot(i); } ml_printf("done @ %p\n", ptr); } static bool read_test_data_u16(int offset) { uint16_t word, *ptr = (uint16_t *)&test_data[offset]; int i; const int max = (TEST_SIZE - offset) / sizeof(word); ml_printf("Reading u16 from %#lx (offset %d):", ptr, offset); for (i = 0; i < max; i++) { uint8_t high, low; word = *ptr++; high = (word >> 8) & 0xff; low = word & 0xff; if (high < low && high != 0) { ml_printf("Error %d < %d\n", high, low); return false; } else { pdot(i); } } ml_printf("done @ %p\n", ptr); return true; } static bool read_test_data_u32(int offset) { uint32_t word, *ptr = (uint32_t *)&test_data[offset]; int i; const int max = (TEST_SIZE - offset) / sizeof(word); ml_printf("Reading u32 from %#lx (offset %d):", ptr, offset); for (i = 0; i < max; i++) { uint8_t b1, b2, b3, b4; word = *ptr++; b1 = word >> 24 & 0xff; b2 = word >> 16 & 0xff; b3 = word >> 8 & 0xff; b4 = word & 0xff; if ((b1 < b2 && b1 != 0) || (b2 < b3 && b2 != 0) || (b3 < b4 && b3 != 0)) { ml_printf("Error %d, %d, %d, %d", b1, b2, b3, b4); return false; } else { pdot(i); } } ml_printf("done @ %p\n", ptr); return true; } static bool read_test_data_u64(int offset) { uint64_t word, *ptr = (uint64_t *)&test_data[offset]; int i; const int max = (TEST_SIZE - offset) / sizeof(word); ml_printf("Reading u64 from %#lx (offset %d):", ptr, offset); for (i = 0; i < max; i++) { uint8_t b1, b2, b3, b4, b5, b6, b7, b8; word = *ptr++; b1 = ((uint64_t) (word >> 56)) & 0xff; b2 = ((uint64_t) (word >> 48)) & 0xff; b3 = ((uint64_t) (word >> 40)) & 0xff; b4 = (word >> 32) & 0xff; b5 = (word >> 24) & 0xff; b6 = (word >> 16) & 0xff; b7 = (word >> 8) & 0xff; b8 = (word >> 0) & 0xff; if ((b1 < b2 && b1 != 0) || (b2 < b3 && b2 != 0) || (b3 < b4 && b3 != 0) || (b4 < b5 && b4 != 0) || (b5 < b6 && b5 != 0) || (b6 < b7 && b6 != 0) || (b7 < b8 && b7 != 0)) { ml_printf("Error %d, %d, %d, %d, %d, %d, %d, %d", b1, b2, b3, b4, b5, b6, b7, b8); return false; } else { pdot(i); } } ml_printf("done @ %p\n", ptr); return true; } /* Read the test data and verify at various offsets */ read_ufn read_ufns[] = { read_test_data_u16, read_test_data_u32, read_test_data_u64 }; bool do_unsigned_reads(void) { int i; bool ok = true; for (i = 0; i < ARRAY_SIZE(read_ufns) && ok; i++) { #if CHECK_UNALIGNED int off; for (off = 0; off < 8 && ok; off++) { ok = read_ufns[i](off); } #else ok = read_ufns[i](0); #endif } return ok; } static bool do_unsigned_test(init_ufn fn) { #if CHECK_UNALIGNED bool ok = true; int i; for (i = 0; i < 8 && ok; i++) { fn(i); ok = do_unsigned_reads(); } #else fn(0); return do_unsigned_reads(); #endif } /* * We need to ensure signed data is read into a larger data type to * ensure that sign extension is working properly. */ static bool read_test_data_s8(int offset, bool neg_first) { int8_t *ptr = (int8_t *)&test_data[offset]; int i; const int max = (TEST_SIZE - offset) / 2; ml_printf("Reading s8 pairs from %#lx (offset %d):", ptr, offset); for (i = 0; i < max; i++) { int16_t first, second; bool ok; first = *ptr++; second = *ptr++; if (neg_first && first < 0 && second > 0) { pdot(i); } else if (!neg_first && first > 0 && second < 0) { pdot(i); } else { ml_printf("Error %d %c %d\n", first, neg_first ? '<' : '>', second); return false; } } ml_printf("done @ %p\n", ptr); return true; } static bool read_test_data_s16(int offset, bool neg_first) { int16_t *ptr = (int16_t *)&test_data[offset]; int i; const int max = (TEST_SIZE - offset) / (sizeof(*ptr)); ml_printf("Reading s16 from %#lx (offset %d, %s):", ptr, offset, neg_first ? "neg" : "pos"); for (i = 0; i < max; i++) { int32_t data = *ptr++; if (neg_first && data < 0) { pdot(i); } else if (data > 0) { pdot(i); } else { ml_printf("Error %d %c 0\n", data, neg_first ? '<' : '>'); return false; } } ml_printf("done @ %p\n", ptr); return true; } static bool read_test_data_s32(int offset, bool neg_first) { int32_t *ptr = (int32_t *)&test_data[offset]; int i; const int max = (TEST_SIZE - offset) / (sizeof(int32_t)); ml_printf("Reading s32 from %#lx (offset %d, %s):", ptr, offset, neg_first ? "neg" : "pos"); for (i = 0; i < max; i++) { int64_t data = *ptr++; if (neg_first && data < 0) { pdot(i); } else if (data > 0) { pdot(i); } else { ml_printf("Error %d %c 0\n", data, neg_first ? '<' : '>'); return false; } } ml_printf("done @ %p\n", ptr); return true; } /* * Read the test data and verify at various offsets * * For everything except bytes all our reads should be either positive * or negative depending on what offset we are reading from. Currently * we only handle LE systems. */ read_sfn read_sfns[] = { read_test_data_s8, read_test_data_s16, read_test_data_s32 }; bool do_signed_reads(bool neg_first) { int i; bool ok = true; for (i = 0; i < ARRAY_SIZE(read_sfns) && ok; i++) { #if CHECK_UNALIGNED int off; for (off = 0; off < 8 && ok; off++) { bool nf = i == 0 ? neg_first ^ (off & 1) : !(neg_first ^ (off & 1)); ok = read_sfns[i](off, nf); } #else ok = read_sfns[i](0, i == 0 ? neg_first : !neg_first); #endif } return ok; } init_ufn init_ufns[] = { init_test_data_u8, init_test_data_u16, init_test_data_u32, init_test_data_u64 }; int main(void) { int i; bool ok = true; /* Run through the unsigned tests first */ for (i = 0; i < ARRAY_SIZE(init_ufns) && ok; i++) { ok = do_unsigned_test(init_ufns[i]); } if (ok) { init_test_data_s8(false); ok = do_signed_reads(false); } if (ok) { init_test_data_s8(true); ok = do_signed_reads(true); } ml_printf("Test complete: %s\n", ok ? "PASSED" : "FAILED"); return ok ? 0 : -1; }