/* * QTest testcase for migration * * Copyright (c) 2016-2018 Red Hat, Inc. and/or its affiliates * based on the vhost-user-test.c that is: * Copyright (c) 2014 Virtual Open Systems Sarl. * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "libqtest.h" #include "qapi/qmp/qdict.h" #include "qemu/module.h" #include "qemu/option.h" #include "qemu/range.h" #include "qemu/sockets.h" #include "chardev/char.h" #include "crypto/tlscredspsk.h" #include "qapi/qmp/qlist.h" #include "ppc-util.h" #include "migration-helpers.h" #include "tests/migration/migration-test.h" #ifdef CONFIG_GNUTLS # include "tests/unit/crypto-tls-psk-helpers.h" # ifdef CONFIG_TASN1 # include "tests/unit/crypto-tls-x509-helpers.h" # endif /* CONFIG_TASN1 */ #endif /* CONFIG_GNUTLS */ /* For dirty ring test; so far only x86_64 is supported */ #if defined(__linux__) && defined(HOST_X86_64) #include "linux/kvm.h" #endif unsigned start_address; unsigned end_address; static bool uffd_feature_thread_id; static QTestMigrationState src_state; static QTestMigrationState dst_state; /* * An initial 3 MB offset is used as that corresponds * to ~1 sec of data transfer with our bandwidth setting. */ #define MAGIC_OFFSET_BASE (3 * 1024 * 1024) /* * A further 1k is added to ensure we're not a multiple * of TEST_MEM_PAGE_SIZE, thus avoid clash with writes * from the migration guest workload. */ #define MAGIC_OFFSET_SHUFFLE 1024 #define MAGIC_OFFSET (MAGIC_OFFSET_BASE + MAGIC_OFFSET_SHUFFLE) #define MAGIC_MARKER 0xFEED12345678CAFEULL /* * Dirtylimit stop working if dirty page rate error * value less than DIRTYLIMIT_TOLERANCE_RANGE */ #define DIRTYLIMIT_TOLERANCE_RANGE 25 /* MB/s */ #define ANALYZE_SCRIPT "scripts/analyze-migration.py" #define QEMU_VM_FILE_MAGIC 0x5145564d #define FILE_TEST_FILENAME "migfile" #define FILE_TEST_OFFSET 0x1000 #define FILE_TEST_MARKER 'X' #define QEMU_ENV_SRC "QTEST_QEMU_BINARY_SRC" #define QEMU_ENV_DST "QTEST_QEMU_BINARY_DST" typedef enum PostcopyRecoveryFailStage { /* * "no failure" must be 0 as it's the default. OTOH, real failure * cases must be >0 to make sure they trigger by a "if" test. */ POSTCOPY_FAIL_NONE = 0, POSTCOPY_FAIL_CHANNEL_ESTABLISH, POSTCOPY_FAIL_RECOVERY, POSTCOPY_FAIL_MAX } PostcopyRecoveryFailStage; #if defined(__linux__) #include #include #endif #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) #include #include #include "qemu/userfaultfd.h" static bool ufd_version_check(void) { struct uffdio_api api_struct; uint64_t ioctl_mask; int ufd = uffd_open(O_CLOEXEC); if (ufd == -1) { g_test_message("Skipping test: userfaultfd not available"); return false; } api_struct.api = UFFD_API; api_struct.features = 0; if (ioctl(ufd, UFFDIO_API, &api_struct)) { g_test_message("Skipping test: UFFDIO_API failed"); return false; } uffd_feature_thread_id = api_struct.features & UFFD_FEATURE_THREAD_ID; ioctl_mask = 1ULL << _UFFDIO_REGISTER | 1ULL << _UFFDIO_UNREGISTER; if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { g_test_message("Skipping test: Missing userfault feature"); return false; } return true; } #else static bool ufd_version_check(void) { g_test_message("Skipping test: Userfault not available (builtdtime)"); return false; } #endif static char *tmpfs; static char *bootpath; /* The boot file modifies memory area in [start_address, end_address) * repeatedly. It outputs a 'B' at a fixed rate while it's still running. */ #include "tests/migration/i386/a-b-bootblock.h" #include "tests/migration/aarch64/a-b-kernel.h" #include "tests/migration/ppc64/a-b-kernel.h" #include "tests/migration/s390x/a-b-bios.h" static void bootfile_delete(void) { if (!bootpath) { return; } unlink(bootpath); g_free(bootpath); bootpath = NULL; } static void bootfile_create(char *dir, bool suspend_me) { const char *arch = qtest_get_arch(); unsigned char *content; size_t len; bootfile_delete(); bootpath = g_strdup_printf("%s/bootsect", dir); if (strcmp(arch, "i386") == 0 || strcmp(arch, "x86_64") == 0) { /* the assembled x86 boot sector should be exactly one sector large */ g_assert(sizeof(x86_bootsect) == 512); x86_bootsect[SYM_suspend_me - SYM_start] = suspend_me; content = x86_bootsect; len = sizeof(x86_bootsect); } else if (g_str_equal(arch, "s390x")) { content = s390x_elf; len = sizeof(s390x_elf); } else if (strcmp(arch, "ppc64") == 0) { content = ppc64_kernel; len = sizeof(ppc64_kernel); } else if (strcmp(arch, "aarch64") == 0) { content = aarch64_kernel; len = sizeof(aarch64_kernel); g_assert(sizeof(aarch64_kernel) <= ARM_TEST_MAX_KERNEL_SIZE); } else { g_assert_not_reached(); } FILE *bootfile = fopen(bootpath, "wb"); g_assert_cmpint(fwrite(content, len, 1, bootfile), ==, 1); fclose(bootfile); } /* * Wait for some output in the serial output file, * we get an 'A' followed by an endless string of 'B's * but on the destination we won't have the A (unless we enabled suspend/resume) */ static void wait_for_serial(const char *side) { g_autofree char *serialpath = g_strdup_printf("%s/%s", tmpfs, side); FILE *serialfile = fopen(serialpath, "r"); do { int readvalue = fgetc(serialfile); switch (readvalue) { case 'A': /* Fine */ break; case 'B': /* It's alive! */ fclose(serialfile); return; case EOF: fseek(serialfile, 0, SEEK_SET); usleep(1000); break; default: fprintf(stderr, "Unexpected %d on %s serial\n", readvalue, side); g_assert_not_reached(); } } while (true); } static void wait_for_stop(QTestState *who, QTestMigrationState *state) { if (!state->stop_seen) { qtest_qmp_eventwait(who, "STOP"); } } static void wait_for_resume(QTestState *who, QTestMigrationState *state) { if (!state->resume_seen) { qtest_qmp_eventwait(who, "RESUME"); } } static void wait_for_suspend(QTestState *who, QTestMigrationState *state) { if (state->suspend_me && !state->suspend_seen) { qtest_qmp_eventwait(who, "SUSPEND"); } } /* * It's tricky to use qemu's migration event capability with qtest, * events suddenly appearing confuse the qmp()/hmp() responses. */ static int64_t read_ram_property_int(QTestState *who, const char *property) { QDict *rsp_return, *rsp_ram; int64_t result; rsp_return = migrate_query_not_failed(who); if (!qdict_haskey(rsp_return, "ram")) { /* Still in setup */ result = 0; } else { rsp_ram = qdict_get_qdict(rsp_return, "ram"); result = qdict_get_try_int(rsp_ram, property, 0); } qobject_unref(rsp_return); return result; } static int64_t read_migrate_property_int(QTestState *who, const char *property) { QDict *rsp_return; int64_t result; rsp_return = migrate_query_not_failed(who); result = qdict_get_try_int(rsp_return, property, 0); qobject_unref(rsp_return); return result; } static uint64_t get_migration_pass(QTestState *who) { return read_ram_property_int(who, "dirty-sync-count"); } static void read_blocktime(QTestState *who) { QDict *rsp_return; rsp_return = migrate_query_not_failed(who); g_assert(qdict_haskey(rsp_return, "postcopy-blocktime")); qobject_unref(rsp_return); } /* * Wait for two changes in the migration pass count, but bail if we stop. */ static void wait_for_migration_pass(QTestState *who) { uint64_t pass, prev_pass = 0, changes = 0; while (changes < 2 && !src_state.stop_seen && !src_state.suspend_seen) { usleep(1000); pass = get_migration_pass(who); changes += (pass != prev_pass); prev_pass = pass; } } static void check_guests_ram(QTestState *who) { /* Our ASM test will have been incrementing one byte from each page from * start_address to < end_address in order. This gives us a constraint * that any page's byte should be equal or less than the previous pages * byte (mod 256); and they should all be equal except for one transition * at the point where we meet the incrementer. (We're running this with * the guest stopped). */ unsigned address; uint8_t first_byte; uint8_t last_byte; bool hit_edge = false; int bad = 0; qtest_memread(who, start_address, &first_byte, 1); last_byte = first_byte; for (address = start_address + TEST_MEM_PAGE_SIZE; address < end_address; address += TEST_MEM_PAGE_SIZE) { uint8_t b; qtest_memread(who, address, &b, 1); if (b != last_byte) { if (((b + 1) % 256) == last_byte && !hit_edge) { /* This is OK, the guest stopped at the point of * incrementing the previous page but didn't get * to us yet. */ hit_edge = true; last_byte = b; } else { bad++; if (bad <= 10) { fprintf(stderr, "Memory content inconsistency at %x" " first_byte = %x last_byte = %x current = %x" " hit_edge = %x\n", address, first_byte, last_byte, b, hit_edge); } } } } if (bad >= 10) { fprintf(stderr, "and in another %d pages", bad - 10); } g_assert(bad == 0); } static void cleanup(const char *filename) { g_autofree char *path = g_strdup_printf("%s/%s", tmpfs, filename); unlink(path); } static long long migrate_get_parameter_int(QTestState *who, const char *parameter) { QDict *rsp; long long result; rsp = qtest_qmp_assert_success_ref( who, "{ 'execute': 'query-migrate-parameters' }"); result = qdict_get_int(rsp, parameter); qobject_unref(rsp); return result; } static void migrate_check_parameter_int(QTestState *who, const char *parameter, long long value) { long long result; result = migrate_get_parameter_int(who, parameter); g_assert_cmpint(result, ==, value); } static void migrate_set_parameter_int(QTestState *who, const char *parameter, long long value) { qtest_qmp_assert_success(who, "{ 'execute': 'migrate-set-parameters'," "'arguments': { %s: %lld } }", parameter, value); migrate_check_parameter_int(who, parameter, value); } static char *migrate_get_parameter_str(QTestState *who, const char *parameter) { QDict *rsp; char *result; rsp = qtest_qmp_assert_success_ref( who, "{ 'execute': 'query-migrate-parameters' }"); result = g_strdup(qdict_get_str(rsp, parameter)); qobject_unref(rsp); return result; } static void migrate_check_parameter_str(QTestState *who, const char *parameter, const char *value) { g_autofree char *result = migrate_get_parameter_str(who, parameter); g_assert_cmpstr(result, ==, value); } static void migrate_set_parameter_str(QTestState *who, const char *parameter, const char *value) { qtest_qmp_assert_success(who, "{ 'execute': 'migrate-set-parameters'," "'arguments': { %s: %s } }", parameter, value); migrate_check_parameter_str(who, parameter, value); } static long long migrate_get_parameter_bool(QTestState *who, const char *parameter) { QDict *rsp; int result; rsp = qtest_qmp_assert_success_ref( who, "{ 'execute': 'query-migrate-parameters' }"); result = qdict_get_bool(rsp, parameter); qobject_unref(rsp); return !!result; } static void migrate_check_parameter_bool(QTestState *who, const char *parameter, int value) { int result; result = migrate_get_parameter_bool(who, parameter); g_assert_cmpint(result, ==, value); } static void migrate_set_parameter_bool(QTestState *who, const char *parameter, int value) { qtest_qmp_assert_success(who, "{ 'execute': 'migrate-set-parameters'," "'arguments': { %s: %i } }", parameter, value); migrate_check_parameter_bool(who, parameter, value); } static void migrate_ensure_non_converge(QTestState *who) { /* Can't converge with 1ms downtime + 3 mbs bandwidth limit */ migrate_set_parameter_int(who, "max-bandwidth", 3 * 1000 * 1000); migrate_set_parameter_int(who, "downtime-limit", 1); } static void migrate_ensure_converge(QTestState *who) { /* Should converge with 30s downtime + 1 gbs bandwidth limit */ migrate_set_parameter_int(who, "max-bandwidth", 1 * 1000 * 1000 * 1000); migrate_set_parameter_int(who, "downtime-limit", 30 * 1000); } /* * Our goal is to ensure that we run a single full migration * iteration, and also dirty memory, ensuring that at least * one further iteration is required. * * We can't directly synchronize with the start of a migration * so we have to apply some tricks monitoring memory that is * transferred. * * Initially we set the migration bandwidth to an insanely * low value, with tiny max downtime too. This basically * guarantees migration will never complete. * * This will result in a test that is unacceptably slow though, * so we can't let the entire migration pass run at this speed. * Our intent is to let it run just long enough that we can * prove data prior to the marker has been transferred *AND* * also prove this transferred data is dirty again. * * Before migration starts, we write a 64-bit magic marker * into a fixed location in the src VM RAM. * * Then watch dst memory until the marker appears. This is * proof that start_address -> MAGIC_OFFSET_BASE has been * transferred. * * Finally we go back to the source and read a byte just * before the marker until we see it flip in value. This * is proof that start_address -> MAGIC_OFFSET_BASE * is now dirty again. * * IOW, we're guaranteed at least a 2nd migration pass * at this point. * * We can now let migration run at full speed to finish * the test */ static void migrate_prepare_for_dirty_mem(QTestState *from) { /* * The guest workflow iterates from start_address to * end_address, writing 1 byte every TEST_MEM_PAGE_SIZE * bytes. * * IOW, if we write to mem at a point which is NOT * a multiple of TEST_MEM_PAGE_SIZE, our write won't * conflict with the migration workflow. * * We put in a marker here, that we'll use to determine * when the data has been transferred to the dst. */ qtest_writeq(from, start_address + MAGIC_OFFSET, MAGIC_MARKER); } static void migrate_wait_for_dirty_mem(QTestState *from, QTestState *to) { uint64_t watch_address = start_address + MAGIC_OFFSET_BASE; uint64_t marker_address = start_address + MAGIC_OFFSET; uint8_t watch_byte; /* * Wait for the MAGIC_MARKER to get transferred, as an * indicator that a migration pass has made some known * amount of progress. */ do { usleep(1000 * 10); } while (qtest_readq(to, marker_address) != MAGIC_MARKER); /* If suspended, src only iterates once, and watch_byte may never change */ if (src_state.suspend_me) { return; } /* * Now ensure that already transferred bytes are * dirty again from the guest workload. Note the * guest byte value will wrap around and by chance * match the original watch_byte. This is harmless * as we'll eventually see a different value if we * keep watching */ watch_byte = qtest_readb(from, watch_address); do { usleep(1000 * 10); } while (qtest_readb(from, watch_address) == watch_byte); } static void migrate_pause(QTestState *who) { qtest_qmp_assert_success(who, "{ 'execute': 'migrate-pause' }"); } static void migrate_continue(QTestState *who, const char *state) { qtest_qmp_assert_success(who, "{ 'execute': 'migrate-continue'," " 'arguments': { 'state': %s } }", state); } static void migrate_recover(QTestState *who, const char *uri) { qtest_qmp_assert_success(who, "{ 'execute': 'migrate-recover', " " 'id': 'recover-cmd', " " 'arguments': { 'uri': %s } }", uri); } static void migrate_cancel(QTestState *who) { qtest_qmp_assert_success(who, "{ 'execute': 'migrate_cancel' }"); } static void migrate_postcopy_start(QTestState *from, QTestState *to) { qtest_qmp_assert_success(from, "{ 'execute': 'migrate-start-postcopy' }"); wait_for_stop(from, &src_state); qtest_qmp_eventwait(to, "RESUME"); } typedef struct { /* * QTEST_LOG=1 may override this. When QTEST_LOG=1, we always dump errors * unconditionally, because it means the user would like to be verbose. */ bool hide_stderr; bool use_shmem; /* only launch the target process */ bool only_target; /* Use dirty ring if true; dirty logging otherwise */ bool use_dirty_ring; const char *opts_source; const char *opts_target; /* suspend the src before migrating to dest. */ bool suspend_me; } MigrateStart; /* * A hook that runs after the src and dst QEMUs have been * created, but before the migration is started. This can * be used to set migration parameters and capabilities. * * Returns: NULL, or a pointer to opaque state to be * later passed to the TestMigrateFinishHook */ typedef void * (*TestMigrateStartHook)(QTestState *from, QTestState *to); /* * A hook that runs after the migration has finished, * regardless of whether it succeeded or failed, but * before QEMU has terminated (unless it self-terminated * due to migration error) * * @opaque is a pointer to state previously returned * by the TestMigrateStartHook if any, or NULL. */ typedef void (*TestMigrateFinishHook)(QTestState *from, QTestState *to, void *opaque); typedef struct { /* Optional: fine tune start parameters */ MigrateStart start; /* Required: the URI for the dst QEMU to listen on */ const char *listen_uri; /* * Optional: the URI for the src QEMU to connect to * If NULL, then it will query the dst QEMU for its actual * listening address and use that as the connect address. * This allows for dynamically picking a free TCP port. */ const char *connect_uri; /* * Optional: JSON-formatted list of src QEMU URIs. If a port is * defined as '0' in any QDict key a value of '0' will be * automatically converted to the correct destination port. */ const char *connect_channels; /* Optional: callback to run at start to set migration parameters */ TestMigrateStartHook start_hook; /* Optional: callback to run at finish to cleanup */ TestMigrateFinishHook finish_hook; /* * Optional: normally we expect the migration process to complete. * * There can be a variety of reasons and stages in which failure * can happen during tests. * * If a failure is expected to happen at time of establishing * the connection, then MIG_TEST_FAIL will indicate that the dst * QEMU is expected to stay running and accept future migration * connections. * * If a failure is expected to happen while processing the * migration stream, then MIG_TEST_FAIL_DEST_QUIT_ERR will indicate * that the dst QEMU is expected to quit with non-zero exit status */ enum { /* This test should succeed, the default */ MIG_TEST_SUCCEED = 0, /* This test should fail, dest qemu should keep alive */ MIG_TEST_FAIL, /* This test should fail, dest qemu should fail with abnormal status */ MIG_TEST_FAIL_DEST_QUIT_ERR, /* The QMP command for this migration should fail with an error */ MIG_TEST_QMP_ERROR, } result; /* * Optional: set number of migration passes to wait for, if live==true. * If zero, then merely wait for a few MB of dirty data */ unsigned int iterations; /* * Optional: whether the guest CPUs should be running during a precopy * migration test. We used to always run with live but it took much * longer so we reduced live tests to only the ones that have solid * reason to be tested live-only. For each of the new test cases for * precopy please provide justifications to use live explicitly (please * refer to existing ones with live=true), or use live=off by default. */ bool live; /* Postcopy specific fields */ void *postcopy_data; bool postcopy_preempt; PostcopyRecoveryFailStage postcopy_recovery_fail_stage; } MigrateCommon; static int test_migrate_start(QTestState **from, QTestState **to, const char *uri, MigrateStart *args) { g_autofree gchar *arch_source = NULL; g_autofree gchar *arch_target = NULL; /* options for source and target */ g_autofree gchar *arch_opts = NULL; g_autofree gchar *cmd_source = NULL; g_autofree gchar *cmd_target = NULL; const gchar *ignore_stderr; g_autofree char *shmem_opts = NULL; g_autofree char *shmem_path = NULL; const char *kvm_opts = NULL; const char *arch = qtest_get_arch(); const char *memory_size; const char *machine_alias, *machine_opts = ""; g_autofree char *machine = NULL; if (args->use_shmem) { if (!g_file_test("/dev/shm", G_FILE_TEST_IS_DIR)) { g_test_skip("/dev/shm is not supported"); return -1; } } dst_state = (QTestMigrationState) { }; src_state = (QTestMigrationState) { }; bootfile_create(tmpfs, args->suspend_me); src_state.suspend_me = args->suspend_me; if (strcmp(arch, "i386") == 0 || strcmp(arch, "x86_64") == 0) { memory_size = "150M"; if (g_str_equal(arch, "i386")) { machine_alias = "pc"; } else { machine_alias = "q35"; } arch_opts = g_strdup_printf( "-drive if=none,id=d0,file=%s,format=raw " "-device ide-hd,drive=d0,secs=1,cyls=1,heads=1", bootpath); start_address = X86_TEST_MEM_START; end_address = X86_TEST_MEM_END; } else if (g_str_equal(arch, "s390x")) { memory_size = "128M"; machine_alias = "s390-ccw-virtio"; arch_opts = g_strdup_printf("-bios %s", bootpath); start_address = S390_TEST_MEM_START; end_address = S390_TEST_MEM_END; } else if (strcmp(arch, "ppc64") == 0) { memory_size = "256M"; start_address = PPC_TEST_MEM_START; end_address = PPC_TEST_MEM_END; machine_alias = "pseries"; machine_opts = "vsmt=8"; arch_opts = g_strdup_printf( "-nodefaults -machine " PSERIES_DEFAULT_CAPABILITIES " " "-bios %s", bootpath); } else if (strcmp(arch, "aarch64") == 0) { memory_size = "150M"; machine_alias = "virt"; machine_opts = "gic-version=3"; arch_opts = g_strdup_printf("-cpu max -kernel %s", bootpath); start_address = ARM_TEST_MEM_START; end_address = ARM_TEST_MEM_END; } else { g_assert_not_reached(); } if (!getenv("QTEST_LOG") && args->hide_stderr) { #ifndef _WIN32 ignore_stderr = "2>/dev/null"; #else /* * On Windows the QEMU executable is created via CreateProcess() and * IO redirection does not work, so don't bother adding IO redirection * to the command line. */ ignore_stderr = ""; #endif } else { ignore_stderr = ""; } if (args->use_shmem) { shmem_path = g_strdup_printf("/dev/shm/qemu-%d", getpid()); shmem_opts = g_strdup_printf( "-object memory-backend-file,id=mem0,size=%s" ",mem-path=%s,share=on -numa node,memdev=mem0", memory_size, shmem_path); } if (args->use_dirty_ring) { kvm_opts = ",dirty-ring-size=4096"; } if (!qtest_has_machine(machine_alias)) { g_autofree char *msg = g_strdup_printf("machine %s not supported", machine_alias); g_test_skip(msg); return -1; } machine = resolve_machine_version(machine_alias, QEMU_ENV_SRC, QEMU_ENV_DST); g_test_message("Using machine type: %s", machine); cmd_source = g_strdup_printf("-accel kvm%s -accel tcg " "-machine %s,%s " "-name source,debug-threads=on " "-m %s " "-serial file:%s/src_serial " "%s %s %s %s %s", kvm_opts ? kvm_opts : "", machine, machine_opts, memory_size, tmpfs, arch_opts ? arch_opts : "", arch_source ? arch_source : "", shmem_opts ? shmem_opts : "", args->opts_source ? args->opts_source : "", ignore_stderr); if (!args->only_target) { *from = qtest_init_with_env(QEMU_ENV_SRC, cmd_source); qtest_qmp_set_event_callback(*from, migrate_watch_for_events, &src_state); } cmd_target = g_strdup_printf("-accel kvm%s -accel tcg " "-machine %s,%s " "-name target,debug-threads=on " "-m %s " "-serial file:%s/dest_serial " "-incoming %s " "%s %s %s %s %s", kvm_opts ? kvm_opts : "", machine, machine_opts, memory_size, tmpfs, uri, arch_opts ? arch_opts : "", arch_target ? arch_target : "", shmem_opts ? shmem_opts : "", args->opts_target ? args->opts_target : "", ignore_stderr); *to = qtest_init_with_env(QEMU_ENV_DST, cmd_target); qtest_qmp_set_event_callback(*to, migrate_watch_for_events, &dst_state); /* * Remove shmem file immediately to avoid memory leak in test failed case. * It's valid because QEMU has already opened this file */ if (args->use_shmem) { unlink(shmem_path); } /* * Always enable migration events. Libvirt always uses it, let's try * to mimic as closer as that. */ migrate_set_capability(*from, "events", true); migrate_set_capability(*to, "events", true); return 0; } static void test_migrate_end(QTestState *from, QTestState *to, bool test_dest) { unsigned char dest_byte_a, dest_byte_b, dest_byte_c, dest_byte_d; qtest_quit(from); if (test_dest) { qtest_memread(to, start_address, &dest_byte_a, 1); /* Destination still running, wait for a byte to change */ do { qtest_memread(to, start_address, &dest_byte_b, 1); usleep(1000 * 10); } while (dest_byte_a == dest_byte_b); qtest_qmp_assert_success(to, "{ 'execute' : 'stop'}"); /* With it stopped, check nothing changes */ qtest_memread(to, start_address, &dest_byte_c, 1); usleep(1000 * 200); qtest_memread(to, start_address, &dest_byte_d, 1); g_assert_cmpint(dest_byte_c, ==, dest_byte_d); check_guests_ram(to); } qtest_quit(to); cleanup("migsocket"); cleanup("src_serial"); cleanup("dest_serial"); cleanup(FILE_TEST_FILENAME); } #ifdef CONFIG_GNUTLS struct TestMigrateTLSPSKData { char *workdir; char *workdiralt; char *pskfile; char *pskfilealt; }; static void * test_migrate_tls_psk_start_common(QTestState *from, QTestState *to, bool mismatch) { struct TestMigrateTLSPSKData *data = g_new0(struct TestMigrateTLSPSKData, 1); data->workdir = g_strdup_printf("%s/tlscredspsk0", tmpfs); data->pskfile = g_strdup_printf("%s/%s", data->workdir, QCRYPTO_TLS_CREDS_PSKFILE); g_mkdir_with_parents(data->workdir, 0700); test_tls_psk_init(data->pskfile); if (mismatch) { data->workdiralt = g_strdup_printf("%s/tlscredspskalt0", tmpfs); data->pskfilealt = g_strdup_printf("%s/%s", data->workdiralt, QCRYPTO_TLS_CREDS_PSKFILE); g_mkdir_with_parents(data->workdiralt, 0700); test_tls_psk_init_alt(data->pskfilealt); } qtest_qmp_assert_success(from, "{ 'execute': 'object-add'," " 'arguments': { 'qom-type': 'tls-creds-psk'," " 'id': 'tlscredspsk0'," " 'endpoint': 'client'," " 'dir': %s," " 'username': 'qemu'} }", data->workdir); qtest_qmp_assert_success(to, "{ 'execute': 'object-add'," " 'arguments': { 'qom-type': 'tls-creds-psk'," " 'id': 'tlscredspsk0'," " 'endpoint': 'server'," " 'dir': %s } }", mismatch ? data->workdiralt : data->workdir); migrate_set_parameter_str(from, "tls-creds", "tlscredspsk0"); migrate_set_parameter_str(to, "tls-creds", "tlscredspsk0"); return data; } static void * test_migrate_tls_psk_start_match(QTestState *from, QTestState *to) { return test_migrate_tls_psk_start_common(from, to, false); } static void * test_migrate_tls_psk_start_mismatch(QTestState *from, QTestState *to) { return test_migrate_tls_psk_start_common(from, to, true); } static void test_migrate_tls_psk_finish(QTestState *from, QTestState *to, void *opaque) { struct TestMigrateTLSPSKData *data = opaque; test_tls_psk_cleanup(data->pskfile); if (data->pskfilealt) { test_tls_psk_cleanup(data->pskfilealt); } rmdir(data->workdir); if (data->workdiralt) { rmdir(data->workdiralt); } g_free(data->workdiralt); g_free(data->pskfilealt); g_free(data->workdir); g_free(data->pskfile); g_free(data); } #ifdef CONFIG_TASN1 typedef struct { char *workdir; char *keyfile; char *cacert; char *servercert; char *serverkey; char *clientcert; char *clientkey; } TestMigrateTLSX509Data; typedef struct { bool verifyclient; bool clientcert; bool hostileclient; bool authzclient; const char *certhostname; const char *certipaddr; } TestMigrateTLSX509; static void * test_migrate_tls_x509_start_common(QTestState *from, QTestState *to, TestMigrateTLSX509 *args) { TestMigrateTLSX509Data *data = g_new0(TestMigrateTLSX509Data, 1); data->workdir = g_strdup_printf("%s/tlscredsx5090", tmpfs); data->keyfile = g_strdup_printf("%s/key.pem", data->workdir); data->cacert = g_strdup_printf("%s/ca-cert.pem", data->workdir); data->serverkey = g_strdup_printf("%s/server-key.pem", data->workdir); data->servercert = g_strdup_printf("%s/server-cert.pem", data->workdir); if (args->clientcert) { data->clientkey = g_strdup_printf("%s/client-key.pem", data->workdir); data->clientcert = g_strdup_printf("%s/client-cert.pem", data->workdir); } g_mkdir_with_parents(data->workdir, 0700); test_tls_init(data->keyfile); #ifndef _WIN32 g_assert(link(data->keyfile, data->serverkey) == 0); #else g_assert(CreateHardLink(data->serverkey, data->keyfile, NULL) != 0); #endif if (args->clientcert) { #ifndef _WIN32 g_assert(link(data->keyfile, data->clientkey) == 0); #else g_assert(CreateHardLink(data->clientkey, data->keyfile, NULL) != 0); #endif } TLS_ROOT_REQ_SIMPLE(cacertreq, data->cacert); if (args->clientcert) { TLS_CERT_REQ_SIMPLE_CLIENT(servercertreq, cacertreq, args->hostileclient ? QCRYPTO_TLS_TEST_CLIENT_HOSTILE_NAME : QCRYPTO_TLS_TEST_CLIENT_NAME, data->clientcert); test_tls_deinit_cert(&servercertreq); } TLS_CERT_REQ_SIMPLE_SERVER(clientcertreq, cacertreq, data->servercert, args->certhostname, args->certipaddr); test_tls_deinit_cert(&clientcertreq); test_tls_deinit_cert(&cacertreq); qtest_qmp_assert_success(from, "{ 'execute': 'object-add'," " 'arguments': { 'qom-type': 'tls-creds-x509'," " 'id': 'tlscredsx509client0'," " 'endpoint': 'client'," " 'dir': %s," " 'sanity-check': true," " 'verify-peer': true} }", data->workdir); migrate_set_parameter_str(from, "tls-creds", "tlscredsx509client0"); if (args->certhostname) { migrate_set_parameter_str(from, "tls-hostname", args->certhostname); } qtest_qmp_assert_success(to, "{ 'execute': 'object-add'," " 'arguments': { 'qom-type': 'tls-creds-x509'," " 'id': 'tlscredsx509server0'," " 'endpoint': 'server'," " 'dir': %s," " 'sanity-check': true," " 'verify-peer': %i} }", data->workdir, args->verifyclient); migrate_set_parameter_str(to, "tls-creds", "tlscredsx509server0"); if (args->authzclient) { qtest_qmp_assert_success(to, "{ 'execute': 'object-add'," " 'arguments': { 'qom-type': 'authz-simple'," " 'id': 'tlsauthz0'," " 'identity': %s} }", "CN=" QCRYPTO_TLS_TEST_CLIENT_NAME); migrate_set_parameter_str(to, "tls-authz", "tlsauthz0"); } return data; } /* * The normal case: match server's cert hostname against * whatever host we were telling QEMU to connect to (if any) */ static void * test_migrate_tls_x509_start_default_host(QTestState *from, QTestState *to) { TestMigrateTLSX509 args = { .verifyclient = true, .clientcert = true, .certipaddr = "127.0.0.1" }; return test_migrate_tls_x509_start_common(from, to, &args); } /* * The unusual case: the server's cert is different from * the address we're telling QEMU to connect to (if any), * so we must give QEMU an explicit hostname to validate */ static void * test_migrate_tls_x509_start_override_host(QTestState *from, QTestState *to) { TestMigrateTLSX509 args = { .verifyclient = true, .clientcert = true, .certhostname = "qemu.org", }; return test_migrate_tls_x509_start_common(from, to, &args); } /* * The unusual case: the server's cert is different from * the address we're telling QEMU to connect to, and so we * expect the client to reject the server */ static void * test_migrate_tls_x509_start_mismatch_host(QTestState *from, QTestState *to) { TestMigrateTLSX509 args = { .verifyclient = true, .clientcert = true, .certipaddr = "10.0.0.1", }; return test_migrate_tls_x509_start_common(from, to, &args); } static void * test_migrate_tls_x509_start_friendly_client(QTestState *from, QTestState *to) { TestMigrateTLSX509 args = { .verifyclient = true, .clientcert = true, .authzclient = true, .certipaddr = "127.0.0.1", }; return test_migrate_tls_x509_start_common(from, to, &args); } static void * test_migrate_tls_x509_start_hostile_client(QTestState *from, QTestState *to) { TestMigrateTLSX509 args = { .verifyclient = true, .clientcert = true, .hostileclient = true, .authzclient = true, .certipaddr = "127.0.0.1", }; return test_migrate_tls_x509_start_common(from, to, &args); } /* * The case with no client certificate presented, * and no server verification */ static void * test_migrate_tls_x509_start_allow_anon_client(QTestState *from, QTestState *to) { TestMigrateTLSX509 args = { .certipaddr = "127.0.0.1", }; return test_migrate_tls_x509_start_common(from, to, &args); } /* * The case with no client certificate presented, * and server verification rejecting */ static void * test_migrate_tls_x509_start_reject_anon_client(QTestState *from, QTestState *to) { TestMigrateTLSX509 args = { .verifyclient = true, .certipaddr = "127.0.0.1", }; return test_migrate_tls_x509_start_common(from, to, &args); } static void test_migrate_tls_x509_finish(QTestState *from, QTestState *to, void *opaque) { TestMigrateTLSX509Data *data = opaque; test_tls_cleanup(data->keyfile); g_free(data->keyfile); unlink(data->cacert); g_free(data->cacert); unlink(data->servercert); g_free(data->servercert); unlink(data->serverkey); g_free(data->serverkey); if (data->clientcert) { unlink(data->clientcert); g_free(data->clientcert); } if (data->clientkey) { unlink(data->clientkey); g_free(data->clientkey); } rmdir(data->workdir); g_free(data->workdir); g_free(data); } #endif /* CONFIG_TASN1 */ #endif /* CONFIG_GNUTLS */ static int migrate_postcopy_prepare(QTestState **from_ptr, QTestState **to_ptr, MigrateCommon *args) { QTestState *from, *to; if (test_migrate_start(&from, &to, "defer", &args->start)) { return -1; } if (args->start_hook) { args->postcopy_data = args->start_hook(from, to); } migrate_set_capability(from, "postcopy-ram", true); migrate_set_capability(to, "postcopy-ram", true); migrate_set_capability(to, "postcopy-blocktime", true); if (args->postcopy_preempt) { migrate_set_capability(from, "postcopy-preempt", true); migrate_set_capability(to, "postcopy-preempt", true); } migrate_ensure_non_converge(from); migrate_prepare_for_dirty_mem(from); qtest_qmp_assert_success(to, "{ 'execute': 'migrate-incoming'," " 'arguments': { " " 'channels': [ { 'channel-type': 'main'," " 'addr': { 'transport': 'socket'," " 'type': 'inet'," " 'host': '127.0.0.1'," " 'port': '0' } } ] } }"); /* Wait for the first serial output from the source */ wait_for_serial("src_serial"); wait_for_suspend(from, &src_state); migrate_qmp(from, to, NULL, NULL, "{}"); migrate_wait_for_dirty_mem(from, to); *from_ptr = from; *to_ptr = to; return 0; } static void migrate_postcopy_complete(QTestState *from, QTestState *to, MigrateCommon *args) { wait_for_migration_complete(from); if (args->start.suspend_me) { /* wakeup succeeds only if guest is suspended */ qtest_qmp_assert_success(to, "{'execute': 'system_wakeup'}"); } /* Make sure we get at least one "B" on destination */ wait_for_serial("dest_serial"); if (uffd_feature_thread_id) { read_blocktime(to); } if (args->finish_hook) { args->finish_hook(from, to, args->postcopy_data); args->postcopy_data = NULL; } test_migrate_end(from, to, true); } static void test_postcopy_common(MigrateCommon *args) { QTestState *from, *to; if (migrate_postcopy_prepare(&from, &to, args)) { return; } migrate_postcopy_start(from, to); migrate_postcopy_complete(from, to, args); } static void test_postcopy(void) { MigrateCommon args = { }; test_postcopy_common(&args); } static void test_postcopy_suspend(void) { MigrateCommon args = { .start.suspend_me = true, }; test_postcopy_common(&args); } static void test_postcopy_preempt(void) { MigrateCommon args = { .postcopy_preempt = true, }; test_postcopy_common(&args); } #ifdef CONFIG_GNUTLS static void test_postcopy_tls_psk(void) { MigrateCommon args = { .start_hook = test_migrate_tls_psk_start_match, .finish_hook = test_migrate_tls_psk_finish, }; test_postcopy_common(&args); } static void test_postcopy_preempt_tls_psk(void) { MigrateCommon args = { .postcopy_preempt = true, .start_hook = test_migrate_tls_psk_start_match, .finish_hook = test_migrate_tls_psk_finish, }; test_postcopy_common(&args); } #endif static void wait_for_postcopy_status(QTestState *one, const char *status) { wait_for_migration_status(one, status, (const char * []) { "failed", "active", "completed", NULL }); } static void postcopy_recover_fail(QTestState *from, QTestState *to, PostcopyRecoveryFailStage stage) { #ifndef _WIN32 bool fail_early = (stage == POSTCOPY_FAIL_CHANNEL_ESTABLISH); int ret, pair1[2], pair2[2]; char c; g_assert(stage > POSTCOPY_FAIL_NONE && stage < POSTCOPY_FAIL_MAX); /* Create two unrelated socketpairs */ ret = qemu_socketpair(PF_LOCAL, SOCK_STREAM, 0, pair1); g_assert_cmpint(ret, ==, 0); ret = qemu_socketpair(PF_LOCAL, SOCK_STREAM, 0, pair2); g_assert_cmpint(ret, ==, 0); /* * Give the guests unpaired ends of the sockets, so they'll all blocked * at reading. This mimics a wrong channel established. */ qtest_qmp_fds_assert_success(from, &pair1[0], 1, "{ 'execute': 'getfd'," " 'arguments': { 'fdname': 'fd-mig' }}"); qtest_qmp_fds_assert_success(to, &pair2[0], 1, "{ 'execute': 'getfd'," " 'arguments': { 'fdname': 'fd-mig' }}"); /* * Write the 1st byte as QEMU_VM_COMMAND (0x8) for the dest socket, to * emulate the 1st byte of a real recovery, but stops from there to * keep dest QEMU in RECOVER. This is needed so that we can kick off * the recover process on dest QEMU (by triggering the G_IO_IN event). * * NOTE: this trick is not needed on src QEMUs, because src doesn't * rely on an pre-existing G_IO_IN event, so it will always trigger the * upcoming recovery anyway even if it can read nothing. */ #define QEMU_VM_COMMAND 0x08 c = QEMU_VM_COMMAND; ret = send(pair2[1], &c, 1, 0); g_assert_cmpint(ret, ==, 1); if (stage == POSTCOPY_FAIL_CHANNEL_ESTABLISH) { /* * This will make src QEMU to fail at an early stage when trying to * resume later, where it shouldn't reach RECOVER stage at all. */ close(pair1[1]); } migrate_recover(to, "fd:fd-mig"); migrate_qmp(from, to, "fd:fd-mig", NULL, "{'resume': true}"); /* * Source QEMU has an extra RECOVER_SETUP phase, dest doesn't have it. * Make sure it appears along the way. */ migration_event_wait(from, "postcopy-recover-setup"); if (fail_early) { /* * When fails at reconnection, src QEMU will automatically goes * back to PAUSED state. Making sure there is an event in this * case: Libvirt relies on this to detect early reconnection * errors. */ migration_event_wait(from, "postcopy-paused"); } else { /* * We want to test "fail later" at RECOVER stage here. Make sure * both QEMU instances will go into RECOVER stage first, then test * kicking them out using migrate-pause. * * Explicitly check the RECOVER event on src, that's what Libvirt * relies on, rather than polling. */ migration_event_wait(from, "postcopy-recover"); wait_for_postcopy_status(from, "postcopy-recover"); /* Need an explicit kick on src QEMU in this case */ migrate_pause(from); } /* * For all failure cases, we'll reach such states on both sides now. * Check them. */ wait_for_postcopy_status(from, "postcopy-paused"); wait_for_postcopy_status(to, "postcopy-recover"); /* * Kick dest QEMU out too. This is normally not needed in reality * because when the channel is shutdown it should also happen on src. * However here we used separate socket pairs so we need to do that * explicitly. */ migrate_pause(to); wait_for_postcopy_status(to, "postcopy-paused"); close(pair1[0]); close(pair2[0]); close(pair2[1]); if (stage != POSTCOPY_FAIL_CHANNEL_ESTABLISH) { close(pair1[1]); } #endif } static void test_postcopy_recovery_common(MigrateCommon *args) { QTestState *from, *to; g_autofree char *uri = NULL; /* Always hide errors for postcopy recover tests since they're expected */ args->start.hide_stderr = true; if (migrate_postcopy_prepare(&from, &to, args)) { return; } /* Turn postcopy speed down, 4K/s is slow enough on any machines */ migrate_set_parameter_int(from, "max-postcopy-bandwidth", 4096); /* Now we start the postcopy */ migrate_postcopy_start(from, to); /* * Wait until postcopy is really started; we can only run the * migrate-pause command during a postcopy */ wait_for_migration_status(from, "postcopy-active", NULL); /* * Manually stop the postcopy migration. This emulates a network * failure with the migration socket */ migrate_pause(from); /* * Wait for destination side to reach postcopy-paused state. The * migrate-recover command can only succeed if destination machine * is in the paused state */ wait_for_postcopy_status(to, "postcopy-paused"); wait_for_postcopy_status(from, "postcopy-paused"); if (args->postcopy_recovery_fail_stage) { /* * Test when a wrong socket specified for recover, and then the * ability to kick it out, and continue with a correct socket. */ postcopy_recover_fail(from, to, args->postcopy_recovery_fail_stage); /* continue with a good recovery */ } /* * Create a new socket to emulate a new channel that is different * from the broken migration channel; tell the destination to * listen to the new port */ uri = g_strdup_printf("unix:%s/migsocket-recover", tmpfs); migrate_recover(to, uri); /* * Try to rebuild the migration channel using the resume flag and * the newly created channel */ migrate_qmp(from, to, uri, NULL, "{'resume': true}"); /* Restore the postcopy bandwidth to unlimited */ migrate_set_parameter_int(from, "max-postcopy-bandwidth", 0); migrate_postcopy_complete(from, to, args); } static void test_postcopy_recovery(void) { MigrateCommon args = { }; test_postcopy_recovery_common(&args); } static void test_postcopy_recovery_fail_handshake(void) { MigrateCommon args = { .postcopy_recovery_fail_stage = POSTCOPY_FAIL_RECOVERY, }; test_postcopy_recovery_common(&args); } static void test_postcopy_recovery_fail_reconnect(void) { MigrateCommon args = { .postcopy_recovery_fail_stage = POSTCOPY_FAIL_CHANNEL_ESTABLISH, }; test_postcopy_recovery_common(&args); } #ifdef CONFIG_GNUTLS static void test_postcopy_recovery_tls_psk(void) { MigrateCommon args = { .start_hook = test_migrate_tls_psk_start_match, .finish_hook = test_migrate_tls_psk_finish, }; test_postcopy_recovery_common(&args); } #endif static void test_postcopy_preempt_recovery(void) { MigrateCommon args = { .postcopy_preempt = true, }; test_postcopy_recovery_common(&args); } #ifdef CONFIG_GNUTLS /* This contains preempt+recovery+tls test altogether */ static void test_postcopy_preempt_all(void) { MigrateCommon args = { .postcopy_preempt = true, .start_hook = test_migrate_tls_psk_start_match, .finish_hook = test_migrate_tls_psk_finish, }; test_postcopy_recovery_common(&args); } #endif static void test_baddest(void) { MigrateStart args = { .hide_stderr = true }; QTestState *from, *to; if (test_migrate_start(&from, &to, "tcp:127.0.0.1:0", &args)) { return; } migrate_qmp(from, to, "tcp:127.0.0.1:0", NULL, "{}"); wait_for_migration_fail(from, false); test_migrate_end(from, to, false); } #ifndef _WIN32 static void test_analyze_script(void) { MigrateStart args = { .opts_source = "-uuid 11111111-1111-1111-1111-111111111111", }; QTestState *from, *to; g_autofree char *uri = NULL; g_autofree char *file = NULL; int pid, wstatus; const char *python = g_getenv("PYTHON"); if (!python) { g_test_skip("PYTHON variable not set"); return; } /* dummy url */ if (test_migrate_start(&from, &to, "tcp:127.0.0.1:0", &args)) { return; } /* * Setting these two capabilities causes the "configuration" * vmstate to include subsections for them. The script needs to * parse those subsections properly. */ migrate_set_capability(from, "validate-uuid", true); migrate_set_capability(from, "x-ignore-shared", true); file = g_strdup_printf("%s/migfile", tmpfs); uri = g_strdup_printf("exec:cat > %s", file); migrate_ensure_converge(from); migrate_qmp(from, to, uri, NULL, "{}"); wait_for_migration_complete(from); pid = fork(); if (!pid) { close(1); open("/dev/null", O_WRONLY); execl(python, python, ANALYZE_SCRIPT, "-f", file, NULL); g_assert_not_reached(); } g_assert(waitpid(pid, &wstatus, 0) == pid); if (!WIFEXITED(wstatus) || WEXITSTATUS(wstatus) != 0) { g_test_message("Failed to analyze the migration stream"); g_test_fail(); } test_migrate_end(from, to, false); cleanup("migfile"); } #endif static void test_precopy_common(MigrateCommon *args) { QTestState *from, *to; void *data_hook = NULL; if (test_migrate_start(&from, &to, args->listen_uri, &args->start)) { return; } if (args->start_hook) { data_hook = args->start_hook(from, to); } /* Wait for the first serial output from the source */ if (args->result == MIG_TEST_SUCCEED) { wait_for_serial("src_serial"); wait_for_suspend(from, &src_state); } if (args->live) { migrate_ensure_non_converge(from); migrate_prepare_for_dirty_mem(from); } else { /* * Testing non-live migration, we allow it to run at * full speed to ensure short test case duration. * For tests expected to fail, we don't need to * change anything. */ if (args->result == MIG_TEST_SUCCEED) { qtest_qmp_assert_success(from, "{ 'execute' : 'stop'}"); wait_for_stop(from, &src_state); migrate_ensure_converge(from); } } if (args->result == MIG_TEST_QMP_ERROR) { migrate_qmp_fail(from, args->connect_uri, args->connect_channels, "{}"); goto finish; } migrate_qmp(from, to, args->connect_uri, args->connect_channels, "{}"); if (args->result != MIG_TEST_SUCCEED) { bool allow_active = args->result == MIG_TEST_FAIL; wait_for_migration_fail(from, allow_active); if (args->result == MIG_TEST_FAIL_DEST_QUIT_ERR) { qtest_set_expected_status(to, EXIT_FAILURE); } } else { if (args->live) { /* * For initial iteration(s) we must do a full pass, * but for the final iteration, we need only wait * for some dirty mem before switching to converge */ while (args->iterations > 1) { wait_for_migration_pass(from); args->iterations--; } migrate_wait_for_dirty_mem(from, to); migrate_ensure_converge(from); /* * We do this first, as it has a timeout to stop us * hanging forever if migration didn't converge */ wait_for_migration_complete(from); wait_for_stop(from, &src_state); } else { wait_for_migration_complete(from); /* * Must wait for dst to finish reading all incoming * data on the socket before issuing 'cont' otherwise * it'll be ignored */ wait_for_migration_complete(to); qtest_qmp_assert_success(to, "{ 'execute' : 'cont'}"); } wait_for_resume(to, &dst_state); if (args->start.suspend_me) { /* wakeup succeeds only if guest is suspended */ qtest_qmp_assert_success(to, "{'execute': 'system_wakeup'}"); } wait_for_serial("dest_serial"); } finish: if (args->finish_hook) { args->finish_hook(from, to, data_hook); } test_migrate_end(from, to, args->result == MIG_TEST_SUCCEED); } static void file_dirty_offset_region(void) { g_autofree char *path = g_strdup_printf("%s/%s", tmpfs, FILE_TEST_FILENAME); size_t size = FILE_TEST_OFFSET; g_autofree char *data = g_new0(char, size); memset(data, FILE_TEST_MARKER, size); g_assert(g_file_set_contents(path, data, size, NULL)); } static void file_check_offset_region(void) { g_autofree char *path = g_strdup_printf("%s/%s", tmpfs, FILE_TEST_FILENAME); size_t size = FILE_TEST_OFFSET; g_autofree char *expected = g_new0(char, size); g_autofree char *actual = NULL; uint64_t *stream_start; /* * Ensure the skipped offset region's data has not been touched * and the migration stream starts at the right place. */ memset(expected, FILE_TEST_MARKER, size); g_assert(g_file_get_contents(path, &actual, NULL, NULL)); g_assert(!memcmp(actual, expected, size)); stream_start = (uint64_t *)(actual + size); g_assert_cmpint(cpu_to_be64(*stream_start) >> 32, ==, QEMU_VM_FILE_MAGIC); } static void test_file_common(MigrateCommon *args, bool stop_src) { QTestState *from, *to; void *data_hook = NULL; bool check_offset = false; if (test_migrate_start(&from, &to, args->listen_uri, &args->start)) { return; } /* * File migration is never live. We can keep the source VM running * during migration, but the destination will not be running * concurrently. */ g_assert_false(args->live); if (g_strrstr(args->connect_uri, "offset=")) { check_offset = true; /* * This comes before the start_hook because it's equivalent to * a management application creating the file and writing to * it so hooks should expect the file to be already present. */ file_dirty_offset_region(); } if (args->start_hook) { data_hook = args->start_hook(from, to); } migrate_ensure_converge(from); wait_for_serial("src_serial"); if (stop_src) { qtest_qmp_assert_success(from, "{ 'execute' : 'stop'}"); wait_for_stop(from, &src_state); } if (args->result == MIG_TEST_QMP_ERROR) { migrate_qmp_fail(from, args->connect_uri, NULL, "{}"); goto finish; } migrate_qmp(from, to, args->connect_uri, NULL, "{}"); wait_for_migration_complete(from); /* * We need to wait for the source to finish before starting the * destination. */ migrate_incoming_qmp(to, args->connect_uri, "{}"); wait_for_migration_complete(to); if (stop_src) { qtest_qmp_assert_success(to, "{ 'execute' : 'cont'}"); } wait_for_resume(to, &dst_state); wait_for_serial("dest_serial"); if (check_offset) { file_check_offset_region(); } finish: if (args->finish_hook) { args->finish_hook(from, to, data_hook); } test_migrate_end(from, to, args->result == MIG_TEST_SUCCEED); } static void test_precopy_unix_plain(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); MigrateCommon args = { .listen_uri = uri, .connect_uri = uri, /* * The simplest use case of precopy, covering smoke tests of * get-dirty-log dirty tracking. */ .live = true, }; test_precopy_common(&args); } static void test_precopy_unix_suspend_live(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); MigrateCommon args = { .listen_uri = uri, .connect_uri = uri, /* * despite being live, the test is fast because the src * suspends immediately. */ .live = true, .start.suspend_me = true, }; test_precopy_common(&args); } static void test_precopy_unix_suspend_notlive(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); MigrateCommon args = { .listen_uri = uri, .connect_uri = uri, .start.suspend_me = true, }; test_precopy_common(&args); } static void test_precopy_unix_dirty_ring(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); MigrateCommon args = { .start = { .use_dirty_ring = true, }, .listen_uri = uri, .connect_uri = uri, /* * Besides the precopy/unix basic test, cover dirty ring interface * rather than get-dirty-log. */ .live = true, }; test_precopy_common(&args); } #ifdef CONFIG_GNUTLS static void test_precopy_unix_tls_psk(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); MigrateCommon args = { .connect_uri = uri, .listen_uri = uri, .start_hook = test_migrate_tls_psk_start_match, .finish_hook = test_migrate_tls_psk_finish, }; test_precopy_common(&args); } #ifdef CONFIG_TASN1 static void test_precopy_unix_tls_x509_default_host(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); MigrateCommon args = { .start = { .hide_stderr = true, }, .connect_uri = uri, .listen_uri = uri, .start_hook = test_migrate_tls_x509_start_default_host, .finish_hook = test_migrate_tls_x509_finish, .result = MIG_TEST_FAIL_DEST_QUIT_ERR, }; test_precopy_common(&args); } static void test_precopy_unix_tls_x509_override_host(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); MigrateCommon args = { .connect_uri = uri, .listen_uri = uri, .start_hook = test_migrate_tls_x509_start_override_host, .finish_hook = test_migrate_tls_x509_finish, }; test_precopy_common(&args); } #endif /* CONFIG_TASN1 */ #endif /* CONFIG_GNUTLS */ #if 0 /* Currently upset on aarch64 TCG */ static void test_ignore_shared(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); QTestState *from, *to; if (test_migrate_start(&from, &to, uri, false, true, NULL, NULL)) { return; } migrate_ensure_non_converge(from); migrate_prepare_for_dirty_mem(from); migrate_set_capability(from, "x-ignore-shared", true); migrate_set_capability(to, "x-ignore-shared", true); /* Wait for the first serial output from the source */ wait_for_serial("src_serial"); migrate_qmp(from, to, uri, NULL, "{}"); migrate_wait_for_dirty_mem(from, to); wait_for_stop(from, &src_state); qtest_qmp_eventwait(to, "RESUME"); wait_for_serial("dest_serial"); wait_for_migration_complete(from); /* Check whether shared RAM has been really skipped */ g_assert_cmpint(read_ram_property_int(from, "transferred"), <, 1024 * 1024); test_migrate_end(from, to, true); } #endif static void * test_migrate_xbzrle_start(QTestState *from, QTestState *to) { migrate_set_parameter_int(from, "xbzrle-cache-size", 33554432); migrate_set_capability(from, "xbzrle", true); migrate_set_capability(to, "xbzrle", true); return NULL; } static void test_precopy_unix_xbzrle(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); MigrateCommon args = { .connect_uri = uri, .listen_uri = uri, .start_hook = test_migrate_xbzrle_start, .iterations = 2, /* * XBZRLE needs pages to be modified when doing the 2nd+ round * iteration to have real data pushed to the stream. */ .live = true, }; test_precopy_common(&args); } static void test_precopy_file(void) { g_autofree char *uri = g_strdup_printf("file:%s/%s", tmpfs, FILE_TEST_FILENAME); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", }; test_file_common(&args, true); } #ifndef _WIN32 static void fdset_add_fds(QTestState *qts, const char *file, int flags, int num_fds, bool direct_io) { for (int i = 0; i < num_fds; i++) { int fd; #ifdef O_DIRECT /* only secondary channels can use direct-io */ if (direct_io && i != 0) { flags |= O_DIRECT; } #endif fd = open(file, flags, 0660); assert(fd != -1); qtest_qmp_fds_assert_success(qts, &fd, 1, "{'execute': 'add-fd', " "'arguments': {'fdset-id': 1}}"); close(fd); } } static void *file_offset_fdset_start_hook(QTestState *from, QTestState *to) { g_autofree char *file = g_strdup_printf("%s/%s", tmpfs, FILE_TEST_FILENAME); fdset_add_fds(from, file, O_WRONLY, 1, false); fdset_add_fds(to, file, O_RDONLY, 1, false); return NULL; } static void test_precopy_file_offset_fdset(void) { g_autofree char *uri = g_strdup_printf("file:/dev/fdset/1,offset=%d", FILE_TEST_OFFSET); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", .start_hook = file_offset_fdset_start_hook, }; test_file_common(&args, false); } #endif static void test_precopy_file_offset(void) { g_autofree char *uri = g_strdup_printf("file:%s/%s,offset=%d", tmpfs, FILE_TEST_FILENAME, FILE_TEST_OFFSET); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", }; test_file_common(&args, false); } static void test_precopy_file_offset_bad(void) { /* using a value not supported by qemu_strtosz() */ g_autofree char *uri = g_strdup_printf("file:%s/%s,offset=0x20M", tmpfs, FILE_TEST_FILENAME); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", .result = MIG_TEST_QMP_ERROR, }; test_file_common(&args, false); } static void *test_mode_reboot_start(QTestState *from, QTestState *to) { migrate_set_parameter_str(from, "mode", "cpr-reboot"); migrate_set_parameter_str(to, "mode", "cpr-reboot"); migrate_set_capability(from, "x-ignore-shared", true); migrate_set_capability(to, "x-ignore-shared", true); return NULL; } static void *migrate_mapped_ram_start(QTestState *from, QTestState *to) { migrate_set_capability(from, "mapped-ram", true); migrate_set_capability(to, "mapped-ram", true); return NULL; } static void test_mode_reboot(void) { g_autofree char *uri = g_strdup_printf("file:%s/%s", tmpfs, FILE_TEST_FILENAME); MigrateCommon args = { .start.use_shmem = true, .connect_uri = uri, .listen_uri = "defer", .start_hook = test_mode_reboot_start }; test_file_common(&args, true); } static void test_precopy_file_mapped_ram_live(void) { g_autofree char *uri = g_strdup_printf("file:%s/%s", tmpfs, FILE_TEST_FILENAME); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", .start_hook = migrate_mapped_ram_start, }; test_file_common(&args, false); } static void test_precopy_file_mapped_ram(void) { g_autofree char *uri = g_strdup_printf("file:%s/%s", tmpfs, FILE_TEST_FILENAME); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", .start_hook = migrate_mapped_ram_start, }; test_file_common(&args, true); } static void *migrate_multifd_mapped_ram_start(QTestState *from, QTestState *to) { migrate_mapped_ram_start(from, to); migrate_set_parameter_int(from, "multifd-channels", 4); migrate_set_parameter_int(to, "multifd-channels", 4); migrate_set_capability(from, "multifd", true); migrate_set_capability(to, "multifd", true); return NULL; } static void test_multifd_file_mapped_ram_live(void) { g_autofree char *uri = g_strdup_printf("file:%s/%s", tmpfs, FILE_TEST_FILENAME); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", .start_hook = migrate_multifd_mapped_ram_start, }; test_file_common(&args, false); } static void test_multifd_file_mapped_ram(void) { g_autofree char *uri = g_strdup_printf("file:%s/%s", tmpfs, FILE_TEST_FILENAME); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", .start_hook = migrate_multifd_mapped_ram_start, }; test_file_common(&args, true); } static void *multifd_mapped_ram_dio_start(QTestState *from, QTestState *to) { migrate_multifd_mapped_ram_start(from, to); migrate_set_parameter_bool(from, "direct-io", true); migrate_set_parameter_bool(to, "direct-io", true); return NULL; } static void test_multifd_file_mapped_ram_dio(void) { g_autofree char *uri = g_strdup_printf("file:%s/%s", tmpfs, FILE_TEST_FILENAME); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", .start_hook = multifd_mapped_ram_dio_start, }; if (!probe_o_direct_support(tmpfs)) { g_test_skip("Filesystem does not support O_DIRECT"); return; } test_file_common(&args, true); } #ifndef _WIN32 static void multifd_mapped_ram_fdset_end(QTestState *from, QTestState *to, void *opaque) { QDict *resp; QList *fdsets; /* * Remove the fdsets after migration, otherwise a second migration * would fail due fdset reuse. */ qtest_qmp_assert_success(from, "{'execute': 'remove-fd', " "'arguments': { 'fdset-id': 1}}"); /* * Make sure no fdsets are left after migration, otherwise a * second migration would fail due fdset reuse. */ resp = qtest_qmp(from, "{'execute': 'query-fdsets', " "'arguments': {}}"); g_assert(qdict_haskey(resp, "return")); fdsets = qdict_get_qlist(resp, "return"); g_assert(fdsets && qlist_empty(fdsets)); qobject_unref(resp); } static void *multifd_mapped_ram_fdset_dio(QTestState *from, QTestState *to) { g_autofree char *file = g_strdup_printf("%s/%s", tmpfs, FILE_TEST_FILENAME); fdset_add_fds(from, file, O_WRONLY, 2, true); fdset_add_fds(to, file, O_RDONLY, 2, true); migrate_multifd_mapped_ram_start(from, to); migrate_set_parameter_bool(from, "direct-io", true); migrate_set_parameter_bool(to, "direct-io", true); return NULL; } static void *multifd_mapped_ram_fdset(QTestState *from, QTestState *to) { g_autofree char *file = g_strdup_printf("%s/%s", tmpfs, FILE_TEST_FILENAME); fdset_add_fds(from, file, O_WRONLY, 2, false); fdset_add_fds(to, file, O_RDONLY, 2, false); migrate_multifd_mapped_ram_start(from, to); return NULL; } static void test_multifd_file_mapped_ram_fdset(void) { g_autofree char *uri = g_strdup_printf("file:/dev/fdset/1,offset=%d", FILE_TEST_OFFSET); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", .start_hook = multifd_mapped_ram_fdset, .finish_hook = multifd_mapped_ram_fdset_end, }; test_file_common(&args, true); } static void test_multifd_file_mapped_ram_fdset_dio(void) { g_autofree char *uri = g_strdup_printf("file:/dev/fdset/1,offset=%d", FILE_TEST_OFFSET); MigrateCommon args = { .connect_uri = uri, .listen_uri = "defer", .start_hook = multifd_mapped_ram_fdset_dio, .finish_hook = multifd_mapped_ram_fdset_end, }; if (!probe_o_direct_support(tmpfs)) { g_test_skip("Filesystem does not support O_DIRECT"); return; } test_file_common(&args, true); } #endif /* !_WIN32 */ static void test_precopy_tcp_plain(void) { MigrateCommon args = { .listen_uri = "tcp:127.0.0.1:0", }; test_precopy_common(&args); } static void *test_migrate_switchover_ack_start(QTestState *from, QTestState *to) { migrate_set_capability(from, "return-path", true); migrate_set_capability(to, "return-path", true); migrate_set_capability(from, "switchover-ack", true); migrate_set_capability(to, "switchover-ack", true); return NULL; } static void test_precopy_tcp_switchover_ack(void) { MigrateCommon args = { .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_switchover_ack_start, /* * Source VM must be running in order to consider the switchover ACK * when deciding to do switchover or not. */ .live = true, }; test_precopy_common(&args); } #ifdef CONFIG_GNUTLS static void test_precopy_tcp_tls_psk_match(void) { MigrateCommon args = { .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_tls_psk_start_match, .finish_hook = test_migrate_tls_psk_finish, }; test_precopy_common(&args); } static void test_precopy_tcp_tls_psk_mismatch(void) { MigrateCommon args = { .start = { .hide_stderr = true, }, .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_tls_psk_start_mismatch, .finish_hook = test_migrate_tls_psk_finish, .result = MIG_TEST_FAIL, }; test_precopy_common(&args); } #ifdef CONFIG_TASN1 static void test_precopy_tcp_tls_x509_default_host(void) { MigrateCommon args = { .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_tls_x509_start_default_host, .finish_hook = test_migrate_tls_x509_finish, }; test_precopy_common(&args); } static void test_precopy_tcp_tls_x509_override_host(void) { MigrateCommon args = { .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_tls_x509_start_override_host, .finish_hook = test_migrate_tls_x509_finish, }; test_precopy_common(&args); } static void test_precopy_tcp_tls_x509_mismatch_host(void) { MigrateCommon args = { .start = { .hide_stderr = true, }, .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_tls_x509_start_mismatch_host, .finish_hook = test_migrate_tls_x509_finish, .result = MIG_TEST_FAIL_DEST_QUIT_ERR, }; test_precopy_common(&args); } static void test_precopy_tcp_tls_x509_friendly_client(void) { MigrateCommon args = { .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_tls_x509_start_friendly_client, .finish_hook = test_migrate_tls_x509_finish, }; test_precopy_common(&args); } static void test_precopy_tcp_tls_x509_hostile_client(void) { MigrateCommon args = { .start = { .hide_stderr = true, }, .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_tls_x509_start_hostile_client, .finish_hook = test_migrate_tls_x509_finish, .result = MIG_TEST_FAIL, }; test_precopy_common(&args); } static void test_precopy_tcp_tls_x509_allow_anon_client(void) { MigrateCommon args = { .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_tls_x509_start_allow_anon_client, .finish_hook = test_migrate_tls_x509_finish, }; test_precopy_common(&args); } static void test_precopy_tcp_tls_x509_reject_anon_client(void) { MigrateCommon args = { .start = { .hide_stderr = true, }, .listen_uri = "tcp:127.0.0.1:0", .start_hook = test_migrate_tls_x509_start_reject_anon_client, .finish_hook = test_migrate_tls_x509_finish, .result = MIG_TEST_FAIL, }; test_precopy_common(&args); } #endif /* CONFIG_TASN1 */ #endif /* CONFIG_GNUTLS */ #ifndef _WIN32 static void *test_migrate_fd_start_hook(QTestState *from, QTestState *to) { int ret; int pair[2]; /* Create two connected sockets for migration */ ret = qemu_socketpair(PF_LOCAL, SOCK_STREAM, 0, pair); g_assert_cmpint(ret, ==, 0); /* Send the 1st socket to the target */ qtest_qmp_fds_assert_success(to, &pair[0], 1, "{ 'execute': 'getfd'," " 'arguments': { 'fdname': 'fd-mig' }}"); close(pair[0]); /* Start incoming migration from the 1st socket */ migrate_incoming_qmp(to, "fd:fd-mig", "{}"); /* Send the 2nd socket to the target */ qtest_qmp_fds_assert_success(from, &pair[1], 1, "{ 'execute': 'getfd'," " 'arguments': { 'fdname': 'fd-mig' }}"); close(pair[1]); return NULL; } static void test_migrate_fd_finish_hook(QTestState *from, QTestState *to, void *opaque) { QDict *rsp; const char *error_desc; /* Test closing fds */ /* We assume, that QEMU removes named fd from its list, * so this should fail */ rsp = qtest_qmp(from, "{ 'execute': 'closefd'," " 'arguments': { 'fdname': 'fd-mig' }}"); g_assert_true(qdict_haskey(rsp, "error")); error_desc = qdict_get_str(qdict_get_qdict(rsp, "error"), "desc"); g_assert_cmpstr(error_desc, ==, "File descriptor named 'fd-mig' not found"); qobject_unref(rsp); rsp = qtest_qmp(to, "{ 'execute': 'closefd'," " 'arguments': { 'fdname': 'fd-mig' }}"); g_assert_true(qdict_haskey(rsp, "error")); error_desc = qdict_get_str(qdict_get_qdict(rsp, "error"), "desc"); g_assert_cmpstr(error_desc, ==, "File descriptor named 'fd-mig' not found"); qobject_unref(rsp); } static void test_migrate_precopy_fd_socket(void) { MigrateCommon args = { .listen_uri = "defer", .connect_uri = "fd:fd-mig", .start_hook = test_migrate_fd_start_hook, .finish_hook = test_migrate_fd_finish_hook }; test_precopy_common(&args); } static void *migrate_precopy_fd_file_start(QTestState *from, QTestState *to) { g_autofree char *file = g_strdup_printf("%s/%s", tmpfs, FILE_TEST_FILENAME); int src_flags = O_CREAT | O_RDWR; int dst_flags = O_CREAT | O_RDWR; int fds[2]; fds[0] = open(file, src_flags, 0660); assert(fds[0] != -1); fds[1] = open(file, dst_flags, 0660); assert(fds[1] != -1); qtest_qmp_fds_assert_success(to, &fds[0], 1, "{ 'execute': 'getfd'," " 'arguments': { 'fdname': 'fd-mig' }}"); qtest_qmp_fds_assert_success(from, &fds[1], 1, "{ 'execute': 'getfd'," " 'arguments': { 'fdname': 'fd-mig' }}"); close(fds[0]); close(fds[1]); return NULL; } static void test_migrate_precopy_fd_file(void) { MigrateCommon args = { .listen_uri = "defer", .connect_uri = "fd:fd-mig", .start_hook = migrate_precopy_fd_file_start, .finish_hook = test_migrate_fd_finish_hook }; test_file_common(&args, true); } #endif /* _WIN32 */ static void do_test_validate_uuid(MigrateStart *args, bool should_fail) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); QTestState *from, *to; if (test_migrate_start(&from, &to, uri, args)) { return; } /* * UUID validation is at the begin of migration. So, the main process of * migration is not interesting for us here. Thus, set huge downtime for * very fast migration. */ migrate_set_parameter_int(from, "downtime-limit", 1000000); migrate_set_capability(from, "validate-uuid", true); /* Wait for the first serial output from the source */ wait_for_serial("src_serial"); migrate_qmp(from, to, uri, NULL, "{}"); if (should_fail) { qtest_set_expected_status(to, EXIT_FAILURE); wait_for_migration_fail(from, true); } else { wait_for_migration_complete(from); } test_migrate_end(from, to, false); } static void test_validate_uuid(void) { MigrateStart args = { .opts_source = "-uuid 11111111-1111-1111-1111-111111111111", .opts_target = "-uuid 11111111-1111-1111-1111-111111111111", }; do_test_validate_uuid(&args, false); } static void test_validate_uuid_error(void) { MigrateStart args = { .opts_source = "-uuid 11111111-1111-1111-1111-111111111111", .opts_target = "-uuid 22222222-2222-2222-2222-222222222222", .hide_stderr = true, }; do_test_validate_uuid(&args, true); } static void test_validate_uuid_src_not_set(void) { MigrateStart args = { .opts_target = "-uuid 22222222-2222-2222-2222-222222222222", .hide_stderr = true, }; do_test_validate_uuid(&args, false); } static void test_validate_uuid_dst_not_set(void) { MigrateStart args = { .opts_source = "-uuid 11111111-1111-1111-1111-111111111111", .hide_stderr = true, }; do_test_validate_uuid(&args, false); } static void do_test_validate_uri_channel(MigrateCommon *args) { QTestState *from, *to; if (test_migrate_start(&from, &to, args->listen_uri, &args->start)) { return; } /* Wait for the first serial output from the source */ wait_for_serial("src_serial"); /* * 'uri' and 'channels' validation is checked even before the migration * starts. */ migrate_qmp_fail(from, args->connect_uri, args->connect_channels, "{}"); test_migrate_end(from, to, false); } static void test_validate_uri_channels_both_set(void) { MigrateCommon args = { .start = { .hide_stderr = true, }, .listen_uri = "defer", .connect_uri = "tcp:127.0.0.1:0", .connect_channels = "[ { 'channel-type': 'main'," " 'addr': { 'transport': 'socket'," " 'type': 'inet'," " 'host': '127.0.0.1'," " 'port': '0' } } ]", }; do_test_validate_uri_channel(&args); } static void test_validate_uri_channels_none_set(void) { MigrateCommon args = { .start = { .hide_stderr = true, }, .listen_uri = "defer", }; do_test_validate_uri_channel(&args); } /* * The way auto_converge works, we need to do too many passes to * run this test. Auto_converge logic is only run once every * three iterations, so: * * - 3 iterations without auto_converge enabled * - 3 iterations with pct = 5 * - 3 iterations with pct = 30 * - 3 iterations with pct = 55 * - 3 iterations with pct = 80 * - 3 iterations with pct = 95 (max(95, 80 + 25)) * * To make things even worse, we need to run the initial stage at * 3MB/s so we enter autoconverge even when host is (over)loaded. */ static void test_migrate_auto_converge(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); MigrateStart args = {}; QTestState *from, *to; int64_t percentage; /* * We want the test to be stable and as fast as possible. * E.g., with 1Gb/s bandwidth migration may pass without throttling, * so we need to decrease a bandwidth. */ const int64_t init_pct = 5, inc_pct = 25, max_pct = 95; if (test_migrate_start(&from, &to, uri, &args)) { return; } migrate_set_capability(from, "auto-converge", true); migrate_set_parameter_int(from, "cpu-throttle-initial", init_pct); migrate_set_parameter_int(from, "cpu-throttle-increment", inc_pct); migrate_set_parameter_int(from, "max-cpu-throttle", max_pct); /* * Set the initial parameters so that the migration could not converge * without throttling. */ migrate_ensure_non_converge(from); /* To check remaining size after precopy */ migrate_set_capability(from, "pause-before-switchover", true); /* Wait for the first serial output from the source */ wait_for_serial("src_serial"); migrate_qmp(from, to, uri, NULL, "{}"); /* Wait for throttling begins */ percentage = 0; do { percentage = read_migrate_property_int(from, "cpu-throttle-percentage"); if (percentage != 0) { break; } usleep(20); g_assert_false(src_state.stop_seen); } while (true); /* The first percentage of throttling should be at least init_pct */ g_assert_cmpint(percentage, >=, init_pct); /* Now, when we tested that throttling works, let it converge */ migrate_ensure_converge(from); /* * Wait for pre-switchover status to check last throttle percentage * and remaining. These values will be zeroed later */ wait_for_migration_status(from, "pre-switchover", NULL); /* The final percentage of throttling shouldn't be greater than max_pct */ percentage = read_migrate_property_int(from, "cpu-throttle-percentage"); g_assert_cmpint(percentage, <=, max_pct); migrate_continue(from, "pre-switchover"); qtest_qmp_eventwait(to, "RESUME"); wait_for_serial("dest_serial"); wait_for_migration_complete(from); test_migrate_end(from, to, true); } static void * test_migrate_precopy_tcp_multifd_start_common(QTestState *from, QTestState *to, const char *method) { migrate_set_parameter_int(from, "multifd-channels", 16); migrate_set_parameter_int(to, "multifd-channels", 16); migrate_set_parameter_str(from, "multifd-compression", method); migrate_set_parameter_str(to, "multifd-compression", method); migrate_set_capability(from, "multifd", true); migrate_set_capability(to, "multifd", true); /* Start incoming migration from the 1st socket */ migrate_incoming_qmp(to, "tcp:127.0.0.1:0", "{}"); return NULL; } static void * test_migrate_precopy_tcp_multifd_start(QTestState *from, QTestState *to) { return test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); } static void * test_migrate_precopy_tcp_multifd_start_zero_page_legacy(QTestState *from, QTestState *to) { test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); migrate_set_parameter_str(from, "zero-page-detection", "legacy"); return NULL; } static void * test_migration_precopy_tcp_multifd_start_no_zero_page(QTestState *from, QTestState *to) { test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); migrate_set_parameter_str(from, "zero-page-detection", "none"); return NULL; } static void * test_migrate_precopy_tcp_multifd_zlib_start(QTestState *from, QTestState *to) { /* * Overloading this test to also check that set_parameter does not error. * This is also done in the tests for the other compression methods. */ migrate_set_parameter_int(from, "multifd-zlib-level", 2); migrate_set_parameter_int(to, "multifd-zlib-level", 2); return test_migrate_precopy_tcp_multifd_start_common(from, to, "zlib"); } #ifdef CONFIG_ZSTD static void * test_migrate_precopy_tcp_multifd_zstd_start(QTestState *from, QTestState *to) { migrate_set_parameter_int(from, "multifd-zstd-level", 2); migrate_set_parameter_int(to, "multifd-zstd-level", 2); return test_migrate_precopy_tcp_multifd_start_common(from, to, "zstd"); } #endif /* CONFIG_ZSTD */ #ifdef CONFIG_QATZIP static void * test_migrate_precopy_tcp_multifd_qatzip_start(QTestState *from, QTestState *to) { migrate_set_parameter_int(from, "multifd-qatzip-level", 2); migrate_set_parameter_int(to, "multifd-qatzip-level", 2); return test_migrate_precopy_tcp_multifd_start_common(from, to, "qatzip"); } #endif #ifdef CONFIG_QPL static void * test_migrate_precopy_tcp_multifd_qpl_start(QTestState *from, QTestState *to) { return test_migrate_precopy_tcp_multifd_start_common(from, to, "qpl"); } #endif /* CONFIG_QPL */ #ifdef CONFIG_UADK static void * test_migrate_precopy_tcp_multifd_uadk_start(QTestState *from, QTestState *to) { return test_migrate_precopy_tcp_multifd_start_common(from, to, "uadk"); } #endif /* CONFIG_UADK */ static void test_multifd_tcp_uri_none(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_precopy_tcp_multifd_start, /* * Multifd is more complicated than most of the features, it * directly takes guest page buffers when sending, make sure * everything will work alright even if guest page is changing. */ .live = true, }; test_precopy_common(&args); } static void test_multifd_tcp_zero_page_legacy(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_precopy_tcp_multifd_start_zero_page_legacy, /* * Multifd is more complicated than most of the features, it * directly takes guest page buffers when sending, make sure * everything will work alright even if guest page is changing. */ .live = true, }; test_precopy_common(&args); } static void test_multifd_tcp_no_zero_page(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migration_precopy_tcp_multifd_start_no_zero_page, /* * Multifd is more complicated than most of the features, it * directly takes guest page buffers when sending, make sure * everything will work alright even if guest page is changing. */ .live = true, }; test_precopy_common(&args); } static void test_multifd_tcp_channels_none(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_precopy_tcp_multifd_start, .live = true, .connect_channels = "[ { 'channel-type': 'main'," " 'addr': { 'transport': 'socket'," " 'type': 'inet'," " 'host': '127.0.0.1'," " 'port': '0' } } ]", }; test_precopy_common(&args); } static void test_multifd_tcp_zlib(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_precopy_tcp_multifd_zlib_start, }; test_precopy_common(&args); } #ifdef CONFIG_ZSTD static void test_multifd_tcp_zstd(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_precopy_tcp_multifd_zstd_start, }; test_precopy_common(&args); } #endif #ifdef CONFIG_QATZIP static void test_multifd_tcp_qatzip(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_precopy_tcp_multifd_qatzip_start, }; test_precopy_common(&args); } #endif #ifdef CONFIG_QPL static void test_multifd_tcp_qpl(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_precopy_tcp_multifd_qpl_start, }; test_precopy_common(&args); } #endif #ifdef CONFIG_UADK static void test_multifd_tcp_uadk(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_precopy_tcp_multifd_uadk_start, }; test_precopy_common(&args); } #endif #ifdef CONFIG_GNUTLS static void * test_migrate_multifd_tcp_tls_psk_start_match(QTestState *from, QTestState *to) { test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); return test_migrate_tls_psk_start_match(from, to); } static void * test_migrate_multifd_tcp_tls_psk_start_mismatch(QTestState *from, QTestState *to) { test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); return test_migrate_tls_psk_start_mismatch(from, to); } #ifdef CONFIG_TASN1 static void * test_migrate_multifd_tls_x509_start_default_host(QTestState *from, QTestState *to) { test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); return test_migrate_tls_x509_start_default_host(from, to); } static void * test_migrate_multifd_tls_x509_start_override_host(QTestState *from, QTestState *to) { test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); return test_migrate_tls_x509_start_override_host(from, to); } static void * test_migrate_multifd_tls_x509_start_mismatch_host(QTestState *from, QTestState *to) { test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); return test_migrate_tls_x509_start_mismatch_host(from, to); } static void * test_migrate_multifd_tls_x509_start_allow_anon_client(QTestState *from, QTestState *to) { test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); return test_migrate_tls_x509_start_allow_anon_client(from, to); } static void * test_migrate_multifd_tls_x509_start_reject_anon_client(QTestState *from, QTestState *to) { test_migrate_precopy_tcp_multifd_start_common(from, to, "none"); return test_migrate_tls_x509_start_reject_anon_client(from, to); } #endif /* CONFIG_TASN1 */ static void test_multifd_tcp_tls_psk_match(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_multifd_tcp_tls_psk_start_match, .finish_hook = test_migrate_tls_psk_finish, }; test_precopy_common(&args); } static void test_multifd_tcp_tls_psk_mismatch(void) { MigrateCommon args = { .start = { .hide_stderr = true, }, .listen_uri = "defer", .start_hook = test_migrate_multifd_tcp_tls_psk_start_mismatch, .finish_hook = test_migrate_tls_psk_finish, .result = MIG_TEST_FAIL, }; test_precopy_common(&args); } #ifdef CONFIG_TASN1 static void test_multifd_tcp_tls_x509_default_host(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_multifd_tls_x509_start_default_host, .finish_hook = test_migrate_tls_x509_finish, }; test_precopy_common(&args); } static void test_multifd_tcp_tls_x509_override_host(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_multifd_tls_x509_start_override_host, .finish_hook = test_migrate_tls_x509_finish, }; test_precopy_common(&args); } static void test_multifd_tcp_tls_x509_mismatch_host(void) { /* * This has different behaviour to the non-multifd case. * * In non-multifd case when client aborts due to mismatched * cert host, the server has already started trying to load * migration state, and so it exits with I/O failure. * * In multifd case when client aborts due to mismatched * cert host, the server is still waiting for the other * multifd connections to arrive so hasn't started trying * to load migration state, and thus just aborts the migration * without exiting. */ MigrateCommon args = { .start = { .hide_stderr = true, }, .listen_uri = "defer", .start_hook = test_migrate_multifd_tls_x509_start_mismatch_host, .finish_hook = test_migrate_tls_x509_finish, .result = MIG_TEST_FAIL, }; test_precopy_common(&args); } static void test_multifd_tcp_tls_x509_allow_anon_client(void) { MigrateCommon args = { .listen_uri = "defer", .start_hook = test_migrate_multifd_tls_x509_start_allow_anon_client, .finish_hook = test_migrate_tls_x509_finish, }; test_precopy_common(&args); } static void test_multifd_tcp_tls_x509_reject_anon_client(void) { MigrateCommon args = { .start = { .hide_stderr = true, }, .listen_uri = "defer", .start_hook = test_migrate_multifd_tls_x509_start_reject_anon_client, .finish_hook = test_migrate_tls_x509_finish, .result = MIG_TEST_FAIL, }; test_precopy_common(&args); } #endif /* CONFIG_TASN1 */ #endif /* CONFIG_GNUTLS */ /* * This test does: * source target * migrate_incoming * migrate * migrate_cancel * launch another target * migrate * * And see that it works */ static void test_multifd_tcp_cancel(void) { MigrateStart args = { .hide_stderr = true, }; QTestState *from, *to, *to2; if (test_migrate_start(&from, &to, "defer", &args)) { return; } migrate_ensure_non_converge(from); migrate_prepare_for_dirty_mem(from); migrate_set_parameter_int(from, "multifd-channels", 16); migrate_set_parameter_int(to, "multifd-channels", 16); migrate_set_capability(from, "multifd", true); migrate_set_capability(to, "multifd", true); /* Start incoming migration from the 1st socket */ migrate_incoming_qmp(to, "tcp:127.0.0.1:0", "{}"); /* Wait for the first serial output from the source */ wait_for_serial("src_serial"); migrate_qmp(from, to, NULL, NULL, "{}"); migrate_wait_for_dirty_mem(from, to); migrate_cancel(from); /* Make sure QEMU process "to" exited */ qtest_set_expected_status(to, EXIT_FAILURE); qtest_wait_qemu(to); qtest_quit(to); args = (MigrateStart){ .only_target = true, }; if (test_migrate_start(&from, &to2, "defer", &args)) { return; } migrate_set_parameter_int(to2, "multifd-channels", 16); migrate_set_capability(to2, "multifd", true); /* Start incoming migration from the 1st socket */ migrate_incoming_qmp(to2, "tcp:127.0.0.1:0", "{}"); wait_for_migration_status(from, "cancelled", NULL); migrate_ensure_non_converge(from); migrate_qmp(from, to2, NULL, NULL, "{}"); migrate_wait_for_dirty_mem(from, to2); migrate_ensure_converge(from); wait_for_stop(from, &src_state); qtest_qmp_eventwait(to2, "RESUME"); wait_for_serial("dest_serial"); wait_for_migration_complete(from); test_migrate_end(from, to2, true); } static void calc_dirty_rate(QTestState *who, uint64_t calc_time) { qtest_qmp_assert_success(who, "{ 'execute': 'calc-dirty-rate'," "'arguments': { " "'calc-time': %" PRIu64 "," "'mode': 'dirty-ring' }}", calc_time); } static QDict *query_dirty_rate(QTestState *who) { return qtest_qmp_assert_success_ref(who, "{ 'execute': 'query-dirty-rate' }"); } static void dirtylimit_set_all(QTestState *who, uint64_t dirtyrate) { qtest_qmp_assert_success(who, "{ 'execute': 'set-vcpu-dirty-limit'," "'arguments': { " "'dirty-rate': %" PRIu64 " } }", dirtyrate); } static void cancel_vcpu_dirty_limit(QTestState *who) { qtest_qmp_assert_success(who, "{ 'execute': 'cancel-vcpu-dirty-limit' }"); } static QDict *query_vcpu_dirty_limit(QTestState *who) { QDict *rsp; rsp = qtest_qmp(who, "{ 'execute': 'query-vcpu-dirty-limit' }"); g_assert(!qdict_haskey(rsp, "error")); g_assert(qdict_haskey(rsp, "return")); return rsp; } static bool calc_dirtyrate_ready(QTestState *who) { QDict *rsp_return; const char *status; bool ready; rsp_return = query_dirty_rate(who); g_assert(rsp_return); status = qdict_get_str(rsp_return, "status"); g_assert(status); ready = g_strcmp0(status, "measuring"); qobject_unref(rsp_return); return ready; } static void wait_for_calc_dirtyrate_complete(QTestState *who, int64_t time_s) { int max_try_count = 10000; usleep(time_s * 1000000); while (!calc_dirtyrate_ready(who) && max_try_count--) { usleep(1000); } /* * Set the timeout with 10 s(max_try_count * 1000us), * if dirtyrate measurement not complete, fail test. */ g_assert_cmpint(max_try_count, !=, 0); } static int64_t get_dirty_rate(QTestState *who) { QDict *rsp_return; const char *status; QList *rates; const QListEntry *entry; QDict *rate; int64_t dirtyrate; rsp_return = query_dirty_rate(who); g_assert(rsp_return); status = qdict_get_str(rsp_return, "status"); g_assert(status); g_assert_cmpstr(status, ==, "measured"); rates = qdict_get_qlist(rsp_return, "vcpu-dirty-rate"); g_assert(rates && !qlist_empty(rates)); entry = qlist_first(rates); g_assert(entry); rate = qobject_to(QDict, qlist_entry_obj(entry)); g_assert(rate); dirtyrate = qdict_get_try_int(rate, "dirty-rate", -1); qobject_unref(rsp_return); return dirtyrate; } static int64_t get_limit_rate(QTestState *who) { QDict *rsp_return; QList *rates; const QListEntry *entry; QDict *rate; int64_t dirtyrate; rsp_return = query_vcpu_dirty_limit(who); g_assert(rsp_return); rates = qdict_get_qlist(rsp_return, "return"); g_assert(rates && !qlist_empty(rates)); entry = qlist_first(rates); g_assert(entry); rate = qobject_to(QDict, qlist_entry_obj(entry)); g_assert(rate); dirtyrate = qdict_get_try_int(rate, "limit-rate", -1); qobject_unref(rsp_return); return dirtyrate; } static QTestState *dirtylimit_start_vm(void) { QTestState *vm = NULL; g_autofree gchar *cmd = NULL; bootfile_create(tmpfs, false); cmd = g_strdup_printf("-accel kvm,dirty-ring-size=4096 " "-name dirtylimit-test,debug-threads=on " "-m 150M -smp 1 " "-serial file:%s/vm_serial " "-drive file=%s,format=raw ", tmpfs, bootpath); vm = qtest_init(cmd); return vm; } static void dirtylimit_stop_vm(QTestState *vm) { qtest_quit(vm); cleanup("vm_serial"); } static void test_vcpu_dirty_limit(void) { QTestState *vm; int64_t origin_rate; int64_t quota_rate; int64_t rate ; int max_try_count = 20; int hit = 0; /* Start vm for vcpu dirtylimit test */ vm = dirtylimit_start_vm(); /* Wait for the first serial output from the vm*/ wait_for_serial("vm_serial"); /* Do dirtyrate measurement with calc time equals 1s */ calc_dirty_rate(vm, 1); /* Sleep calc time and wait for calc dirtyrate complete */ wait_for_calc_dirtyrate_complete(vm, 1); /* Query original dirty page rate */ origin_rate = get_dirty_rate(vm); /* VM booted from bootsect should dirty memory steadily */ assert(origin_rate != 0); /* Setup quota dirty page rate at half of origin */ quota_rate = origin_rate / 2; /* Set dirtylimit */ dirtylimit_set_all(vm, quota_rate); /* * Check if set-vcpu-dirty-limit and query-vcpu-dirty-limit * works literally */ g_assert_cmpint(quota_rate, ==, get_limit_rate(vm)); /* Sleep a bit to check if it take effect */ usleep(2000000); /* * Check if dirtylimit take effect realistically, set the * timeout with 20 s(max_try_count * 1s), if dirtylimit * doesn't take effect, fail test. */ while (--max_try_count) { calc_dirty_rate(vm, 1); wait_for_calc_dirtyrate_complete(vm, 1); rate = get_dirty_rate(vm); /* * Assume hitting if current rate is less * than quota rate (within accepting error) */ if (rate < (quota_rate + DIRTYLIMIT_TOLERANCE_RANGE)) { hit = 1; break; } } g_assert_cmpint(hit, ==, 1); hit = 0; max_try_count = 20; /* Check if dirtylimit cancellation take effect */ cancel_vcpu_dirty_limit(vm); while (--max_try_count) { calc_dirty_rate(vm, 1); wait_for_calc_dirtyrate_complete(vm, 1); rate = get_dirty_rate(vm); /* * Assume dirtylimit be canceled if current rate is * greater than quota rate (within accepting error) */ if (rate > (quota_rate + DIRTYLIMIT_TOLERANCE_RANGE)) { hit = 1; break; } } g_assert_cmpint(hit, ==, 1); dirtylimit_stop_vm(vm); } static void migrate_dirty_limit_wait_showup(QTestState *from, const int64_t period, const int64_t value) { /* Enable dirty limit capability */ migrate_set_capability(from, "dirty-limit", true); /* Set dirty limit parameters */ migrate_set_parameter_int(from, "x-vcpu-dirty-limit-period", period); migrate_set_parameter_int(from, "vcpu-dirty-limit", value); /* Make sure migrate can't converge */ migrate_ensure_non_converge(from); /* To check limit rate after precopy */ migrate_set_capability(from, "pause-before-switchover", true); /* Wait for the serial output from the source */ wait_for_serial("src_serial"); } /* * This test does: * source destination * start vm * start incoming vm * migrate * wait dirty limit to begin * cancel migrate * cancellation check * restart incoming vm * migrate * wait dirty limit to begin * wait pre-switchover event * convergence condition check * * And see if dirty limit migration works correctly. * This test case involves many passes, so it runs in slow mode only. */ static void test_migrate_dirty_limit(void) { g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs); QTestState *from, *to; int64_t remaining; uint64_t throttle_us_per_full; /* * We want the test to be stable and as fast as possible. * E.g., with 1Gb/s bandwidth migration may pass without dirty limit, * so we need to decrease a bandwidth. */ const int64_t dirtylimit_period = 1000, dirtylimit_value = 50; const int64_t max_bandwidth = 400000000; /* ~400Mb/s */ const int64_t downtime_limit = 250; /* 250ms */ /* * We migrate through unix-socket (> 500Mb/s). * Thus, expected migration speed ~= bandwidth limit (< 500Mb/s). * So, we can predict expected_threshold */ const int64_t expected_threshold = max_bandwidth * downtime_limit / 1000; int max_try_count = 10; MigrateCommon args = { .start = { .hide_stderr = true, .use_dirty_ring = true, }, .listen_uri = uri, .connect_uri = uri, }; /* Start src, dst vm */ if (test_migrate_start(&from, &to, args.listen_uri, &args.start)) { return; } /* Prepare for dirty limit migration and wait src vm show up */ migrate_dirty_limit_wait_showup(from, dirtylimit_period, dirtylimit_value); /* Start migrate */ migrate_qmp(from, to, args.connect_uri, NULL, "{}"); /* Wait for dirty limit throttle begin */ throttle_us_per_full = 0; while (throttle_us_per_full == 0) { throttle_us_per_full = read_migrate_property_int(from, "dirty-limit-throttle-time-per-round"); usleep(100); g_assert_false(src_state.stop_seen); } /* Now cancel migrate and wait for dirty limit throttle switch off */ migrate_cancel(from); wait_for_migration_status(from, "cancelled", NULL); /* Check if dirty limit throttle switched off, set timeout 1ms */ do { throttle_us_per_full = read_migrate_property_int(from, "dirty-limit-throttle-time-per-round"); usleep(100); g_assert_false(src_state.stop_seen); } while (throttle_us_per_full != 0 && --max_try_count); /* Assert dirty limit is not in service */ g_assert_cmpint(throttle_us_per_full, ==, 0); args = (MigrateCommon) { .start = { .only_target = true, .use_dirty_ring = true, }, .listen_uri = uri, .connect_uri = uri, }; /* Restart dst vm, src vm already show up so we needn't wait anymore */ if (test_migrate_start(&from, &to, args.listen_uri, &args.start)) { return; } /* Start migrate */ migrate_qmp(from, to, args.connect_uri, NULL, "{}"); /* Wait for dirty limit throttle begin */ throttle_us_per_full = 0; while (throttle_us_per_full == 0) { throttle_us_per_full = read_migrate_property_int(from, "dirty-limit-throttle-time-per-round"); usleep(100); g_assert_false(src_state.stop_seen); } /* * The dirty limit rate should equals the return value of * query-vcpu-dirty-limit if dirty limit cap set */ g_assert_cmpint(dirtylimit_value, ==, get_limit_rate(from)); /* Now, we have tested if dirty limit works, let it converge */ migrate_set_parameter_int(from, "downtime-limit", downtime_limit); migrate_set_parameter_int(from, "max-bandwidth", max_bandwidth); /* * Wait for pre-switchover status to check if migration * satisfy the convergence condition */ wait_for_migration_status(from, "pre-switchover", NULL); remaining = read_ram_property_int(from, "remaining"); g_assert_cmpint(remaining, <, (expected_threshold + expected_threshold / 100)); migrate_continue(from, "pre-switchover"); qtest_qmp_eventwait(to, "RESUME"); wait_for_serial("dest_serial"); wait_for_migration_complete(from); test_migrate_end(from, to, true); } static bool kvm_dirty_ring_supported(void) { #if defined(__linux__) && defined(HOST_X86_64) int ret, kvm_fd = open("/dev/kvm", O_RDONLY); if (kvm_fd < 0) { return false; } ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, KVM_CAP_DIRTY_LOG_RING); close(kvm_fd); /* We test with 4096 slots */ if (ret < 4096) { return false; } return true; #else return false; #endif } int main(int argc, char **argv) { bool has_kvm, has_tcg; bool has_uffd, is_x86; const char *arch; g_autoptr(GError) err = NULL; const char *qemu_src = getenv(QEMU_ENV_SRC); const char *qemu_dst = getenv(QEMU_ENV_DST); int ret; g_test_init(&argc, &argv, NULL); /* * The default QTEST_QEMU_BINARY must always be provided because * that is what helpers use to query the accel type and * architecture. */ if (qemu_src && qemu_dst) { g_test_message("Only one of %s, %s is allowed", QEMU_ENV_SRC, QEMU_ENV_DST); exit(1); } has_kvm = qtest_has_accel("kvm"); has_tcg = qtest_has_accel("tcg"); if (!has_tcg && !has_kvm) { g_test_skip("No KVM or TCG accelerator available"); return 0; } has_uffd = ufd_version_check(); arch = qtest_get_arch(); is_x86 = !strcmp(arch, "i386") || !strcmp(arch, "x86_64"); tmpfs = g_dir_make_tmp("migration-test-XXXXXX", &err); if (!tmpfs) { g_test_message("Can't create temporary directory in %s: %s", g_get_tmp_dir(), err->message); } g_assert(tmpfs); module_call_init(MODULE_INIT_QOM); migration_test_add("/migration/bad_dest", test_baddest); #ifndef _WIN32 migration_test_add("/migration/analyze-script", test_analyze_script); #endif if (is_x86) { migration_test_add("/migration/precopy/unix/suspend/live", test_precopy_unix_suspend_live); migration_test_add("/migration/precopy/unix/suspend/notlive", test_precopy_unix_suspend_notlive); } if (has_uffd) { migration_test_add("/migration/postcopy/plain", test_postcopy); migration_test_add("/migration/postcopy/recovery/plain", test_postcopy_recovery); migration_test_add("/migration/postcopy/preempt/plain", test_postcopy_preempt); migration_test_add("/migration/postcopy/preempt/recovery/plain", test_postcopy_preempt_recovery); migration_test_add("/migration/postcopy/recovery/double-failures/handshake", test_postcopy_recovery_fail_handshake); migration_test_add("/migration/postcopy/recovery/double-failures/reconnect", test_postcopy_recovery_fail_reconnect); if (is_x86) { migration_test_add("/migration/postcopy/suspend", test_postcopy_suspend); } } migration_test_add("/migration/precopy/unix/plain", test_precopy_unix_plain); migration_test_add("/migration/precopy/unix/xbzrle", test_precopy_unix_xbzrle); migration_test_add("/migration/precopy/file", test_precopy_file); migration_test_add("/migration/precopy/file/offset", test_precopy_file_offset); #ifndef _WIN32 migration_test_add("/migration/precopy/file/offset/fdset", test_precopy_file_offset_fdset); #endif migration_test_add("/migration/precopy/file/offset/bad", test_precopy_file_offset_bad); /* * Our CI system has problems with shared memory. * Don't run this test until we find a workaround. */ if (getenv("QEMU_TEST_FLAKY_TESTS")) { migration_test_add("/migration/mode/reboot", test_mode_reboot); } migration_test_add("/migration/precopy/file/mapped-ram", test_precopy_file_mapped_ram); migration_test_add("/migration/precopy/file/mapped-ram/live", test_precopy_file_mapped_ram_live); migration_test_add("/migration/multifd/file/mapped-ram", test_multifd_file_mapped_ram); migration_test_add("/migration/multifd/file/mapped-ram/live", test_multifd_file_mapped_ram_live); migration_test_add("/migration/multifd/file/mapped-ram/dio", test_multifd_file_mapped_ram_dio); #ifndef _WIN32 migration_test_add("/migration/multifd/file/mapped-ram/fdset", test_multifd_file_mapped_ram_fdset); migration_test_add("/migration/multifd/file/mapped-ram/fdset/dio", test_multifd_file_mapped_ram_fdset_dio); #endif #ifdef CONFIG_GNUTLS migration_test_add("/migration/precopy/unix/tls/psk", test_precopy_unix_tls_psk); if (has_uffd) { /* * NOTE: psk test is enough for postcopy, as other types of TLS * channels are tested under precopy. Here what we want to test is the * general postcopy path that has TLS channel enabled. */ migration_test_add("/migration/postcopy/tls/psk", test_postcopy_tls_psk); migration_test_add("/migration/postcopy/recovery/tls/psk", test_postcopy_recovery_tls_psk); migration_test_add("/migration/postcopy/preempt/tls/psk", test_postcopy_preempt_tls_psk); migration_test_add("/migration/postcopy/preempt/recovery/tls/psk", test_postcopy_preempt_all); } #ifdef CONFIG_TASN1 migration_test_add("/migration/precopy/unix/tls/x509/default-host", test_precopy_unix_tls_x509_default_host); migration_test_add("/migration/precopy/unix/tls/x509/override-host", test_precopy_unix_tls_x509_override_host); #endif /* CONFIG_TASN1 */ #endif /* CONFIG_GNUTLS */ migration_test_add("/migration/precopy/tcp/plain", test_precopy_tcp_plain); migration_test_add("/migration/precopy/tcp/plain/switchover-ack", test_precopy_tcp_switchover_ack); #ifdef CONFIG_GNUTLS migration_test_add("/migration/precopy/tcp/tls/psk/match", test_precopy_tcp_tls_psk_match); migration_test_add("/migration/precopy/tcp/tls/psk/mismatch", test_precopy_tcp_tls_psk_mismatch); #ifdef CONFIG_TASN1 migration_test_add("/migration/precopy/tcp/tls/x509/default-host", test_precopy_tcp_tls_x509_default_host); migration_test_add("/migration/precopy/tcp/tls/x509/override-host", test_precopy_tcp_tls_x509_override_host); migration_test_add("/migration/precopy/tcp/tls/x509/mismatch-host", test_precopy_tcp_tls_x509_mismatch_host); migration_test_add("/migration/precopy/tcp/tls/x509/friendly-client", test_precopy_tcp_tls_x509_friendly_client); migration_test_add("/migration/precopy/tcp/tls/x509/hostile-client", test_precopy_tcp_tls_x509_hostile_client); migration_test_add("/migration/precopy/tcp/tls/x509/allow-anon-client", test_precopy_tcp_tls_x509_allow_anon_client); migration_test_add("/migration/precopy/tcp/tls/x509/reject-anon-client", test_precopy_tcp_tls_x509_reject_anon_client); #endif /* CONFIG_TASN1 */ #endif /* CONFIG_GNUTLS */ /* migration_test_add("/migration/ignore_shared", test_ignore_shared); */ #ifndef _WIN32 migration_test_add("/migration/precopy/fd/tcp", test_migrate_precopy_fd_socket); migration_test_add("/migration/precopy/fd/file", test_migrate_precopy_fd_file); #endif migration_test_add("/migration/validate_uuid", test_validate_uuid); migration_test_add("/migration/validate_uuid_error", test_validate_uuid_error); migration_test_add("/migration/validate_uuid_src_not_set", test_validate_uuid_src_not_set); migration_test_add("/migration/validate_uuid_dst_not_set", test_validate_uuid_dst_not_set); migration_test_add("/migration/validate_uri/channels/both_set", test_validate_uri_channels_both_set); migration_test_add("/migration/validate_uri/channels/none_set", test_validate_uri_channels_none_set); /* * See explanation why this test is slow on function definition */ if (g_test_slow()) { migration_test_add("/migration/auto_converge", test_migrate_auto_converge); if (g_str_equal(arch, "x86_64") && has_kvm && kvm_dirty_ring_supported()) { migration_test_add("/migration/dirty_limit", test_migrate_dirty_limit); } } migration_test_add("/migration/multifd/tcp/uri/plain/none", test_multifd_tcp_uri_none); migration_test_add("/migration/multifd/tcp/channels/plain/none", test_multifd_tcp_channels_none); migration_test_add("/migration/multifd/tcp/plain/zero-page/legacy", test_multifd_tcp_zero_page_legacy); migration_test_add("/migration/multifd/tcp/plain/zero-page/none", test_multifd_tcp_no_zero_page); migration_test_add("/migration/multifd/tcp/plain/cancel", test_multifd_tcp_cancel); migration_test_add("/migration/multifd/tcp/plain/zlib", test_multifd_tcp_zlib); #ifdef CONFIG_ZSTD migration_test_add("/migration/multifd/tcp/plain/zstd", test_multifd_tcp_zstd); #endif #ifdef CONFIG_QATZIP migration_test_add("/migration/multifd/tcp/plain/qatzip", test_multifd_tcp_qatzip); #endif #ifdef CONFIG_QPL migration_test_add("/migration/multifd/tcp/plain/qpl", test_multifd_tcp_qpl); #endif #ifdef CONFIG_UADK migration_test_add("/migration/multifd/tcp/plain/uadk", test_multifd_tcp_uadk); #endif #ifdef CONFIG_GNUTLS migration_test_add("/migration/multifd/tcp/tls/psk/match", test_multifd_tcp_tls_psk_match); migration_test_add("/migration/multifd/tcp/tls/psk/mismatch", test_multifd_tcp_tls_psk_mismatch); #ifdef CONFIG_TASN1 migration_test_add("/migration/multifd/tcp/tls/x509/default-host", test_multifd_tcp_tls_x509_default_host); migration_test_add("/migration/multifd/tcp/tls/x509/override-host", test_multifd_tcp_tls_x509_override_host); migration_test_add("/migration/multifd/tcp/tls/x509/mismatch-host", test_multifd_tcp_tls_x509_mismatch_host); migration_test_add("/migration/multifd/tcp/tls/x509/allow-anon-client", test_multifd_tcp_tls_x509_allow_anon_client); migration_test_add("/migration/multifd/tcp/tls/x509/reject-anon-client", test_multifd_tcp_tls_x509_reject_anon_client); #endif /* CONFIG_TASN1 */ #endif /* CONFIG_GNUTLS */ if (g_str_equal(arch, "x86_64") && has_kvm && kvm_dirty_ring_supported()) { migration_test_add("/migration/dirty_ring", test_precopy_unix_dirty_ring); if (qtest_has_machine("pc")) { migration_test_add("/migration/vcpu_dirty_limit", test_vcpu_dirty_limit); } } ret = g_test_run(); g_assert_cmpint(ret, ==, 0); bootfile_delete(); ret = rmdir(tmpfs); if (ret != 0) { g_test_message("unable to rmdir: path (%s): %s", tmpfs, strerror(errno)); } g_free(tmpfs); return ret; }