/* * libqos PCI bindings * * Copyright IBM, Corp. 2012-2013 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "pci.h" #include "hw/pci/pci.h" #include "hw/pci/pci_bridge.h" #include "hw/pci/pci_regs.h" #include "qemu/host-utils.h" #include "qgraph.h" void qpci_device_foreach(QPCIBus *bus, int vendor_id, int device_id, void (*func)(QPCIDevice *dev, int devfn, void *data), void *data) { int slot; for (slot = 0; slot < 32; slot++) { int fn; for (fn = 0; fn < 8; fn++) { QPCIDevice *dev; dev = qpci_device_find(bus, QPCI_DEVFN(slot, fn)); if (!dev) { continue; } if (vendor_id != -1 && qpci_config_readw(dev, PCI_VENDOR_ID) != vendor_id) { g_free(dev); continue; } if (device_id != -1 && qpci_config_readw(dev, PCI_DEVICE_ID) != device_id) { g_free(dev); continue; } func(dev, QPCI_DEVFN(slot, fn), data); } } } bool qpci_has_buggy_msi(QPCIDevice *dev) { return dev->bus->has_buggy_msi; } bool qpci_check_buggy_msi(QPCIDevice *dev) { if (qpci_has_buggy_msi(dev)) { g_test_skip("Skipping due to incomplete support for MSI"); return true; } return false; } static void qpci_device_set(QPCIDevice *dev, QPCIBus *bus, int devfn) { g_assert(dev); dev->bus = bus; dev->devfn = devfn; } QPCIDevice *qpci_device_find(QPCIBus *bus, int devfn) { QPCIDevice *dev; dev = g_malloc0(sizeof(*dev)); qpci_device_set(dev, bus, devfn); if (qpci_config_readw(dev, PCI_VENDOR_ID) == 0xFFFF) { g_free(dev); return NULL; } return dev; } void qpci_device_init(QPCIDevice *dev, QPCIBus *bus, QPCIAddress *addr) { uint16_t vendor_id, device_id; qpci_device_set(dev, bus, addr->devfn); vendor_id = qpci_config_readw(dev, PCI_VENDOR_ID); device_id = qpci_config_readw(dev, PCI_DEVICE_ID); g_assert(!addr->vendor_id || vendor_id == addr->vendor_id); g_assert(!addr->device_id || device_id == addr->device_id); } static uint8_t qpci_find_resource_reserve_capability(QPCIDevice *dev) { uint16_t device_id; uint8_t cap = 0; if (qpci_config_readw(dev, PCI_VENDOR_ID) != PCI_VENDOR_ID_REDHAT) { return 0; } device_id = qpci_config_readw(dev, PCI_DEVICE_ID); if (device_id != PCI_DEVICE_ID_REDHAT_PCIE_RP && device_id != PCI_DEVICE_ID_REDHAT_BRIDGE) { return 0; } do { cap = qpci_find_capability(dev, PCI_CAP_ID_VNDR, cap); } while (cap && qpci_config_readb(dev, cap + REDHAT_PCI_CAP_TYPE_OFFSET) != REDHAT_PCI_CAP_RESOURCE_RESERVE); if (cap) { uint8_t cap_len = qpci_config_readb(dev, cap + PCI_CAP_FLAGS); if (cap_len < REDHAT_PCI_CAP_RES_RESERVE_CAP_SIZE) { return 0; } } return cap; } static void qpci_secondary_buses_rec(QPCIBus *qbus, int bus, int *pci_bus) { QPCIDevice *dev; uint16_t class; uint8_t pribus, secbus, subbus; int index; for (index = 0; index < 32; index++) { dev = qpci_device_find(qbus, QPCI_DEVFN(bus + index, 0)); if (dev == NULL) { continue; } class = qpci_config_readw(dev, PCI_CLASS_DEVICE); if (class == PCI_CLASS_BRIDGE_PCI) { qpci_config_writeb(dev, PCI_SECONDARY_BUS, 255); qpci_config_writeb(dev, PCI_SUBORDINATE_BUS, 0); } g_free(dev); } for (index = 0; index < 32; index++) { dev = qpci_device_find(qbus, QPCI_DEVFN(bus + index, 0)); if (dev == NULL) { continue; } class = qpci_config_readw(dev, PCI_CLASS_DEVICE); if (class != PCI_CLASS_BRIDGE_PCI) { g_free(dev); continue; } pribus = qpci_config_readb(dev, PCI_PRIMARY_BUS); if (pribus != bus) { qpci_config_writeb(dev, PCI_PRIMARY_BUS, bus); } secbus = qpci_config_readb(dev, PCI_SECONDARY_BUS); (*pci_bus)++; if (*pci_bus != secbus) { secbus = *pci_bus; qpci_config_writeb(dev, PCI_SECONDARY_BUS, secbus); } subbus = qpci_config_readb(dev, PCI_SUBORDINATE_BUS); qpci_config_writeb(dev, PCI_SUBORDINATE_BUS, 255); qpci_secondary_buses_rec(qbus, secbus << 5, pci_bus); if (subbus != *pci_bus) { uint8_t res_bus = *pci_bus; uint8_t cap = qpci_find_resource_reserve_capability(dev); if (cap) { uint32_t tmp_res_bus; tmp_res_bus = qpci_config_readl(dev, cap + REDHAT_PCI_CAP_RES_RESERVE_BUS_RES); if (tmp_res_bus != (uint32_t)-1) { res_bus = tmp_res_bus & 0xFF; if ((uint8_t)(res_bus + secbus) < secbus || (uint8_t)(res_bus + secbus) < res_bus) { res_bus = 0; } if (secbus + res_bus > *pci_bus) { res_bus = secbus + res_bus; } } } subbus = res_bus; *pci_bus = res_bus; } qpci_config_writeb(dev, PCI_SUBORDINATE_BUS, subbus); g_free(dev); } } int qpci_secondary_buses_init(QPCIBus *bus) { int last_bus = 0; qpci_secondary_buses_rec(bus, 0, &last_bus); return last_bus; } void qpci_device_enable(QPCIDevice *dev) { uint16_t cmd; /* FIXME -- does this need to be a bus callout? */ cmd = qpci_config_readw(dev, PCI_COMMAND); cmd |= PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER; qpci_config_writew(dev, PCI_COMMAND, cmd); /* Verify the bits are now set. */ cmd = qpci_config_readw(dev, PCI_COMMAND); g_assert_cmphex(cmd & PCI_COMMAND_IO, ==, PCI_COMMAND_IO); g_assert_cmphex(cmd & PCI_COMMAND_MEMORY, ==, PCI_COMMAND_MEMORY); g_assert_cmphex(cmd & PCI_COMMAND_MASTER, ==, PCI_COMMAND_MASTER); } /** * qpci_find_capability: * @dev: the PCI device * @id: the PCI Capability ID (PCI_CAP_ID_*) * @start_addr: 0 to begin iteration or the last return value to continue * iteration * * Iterate over the PCI Capabilities List. * * Returns: PCI Configuration Space offset of the capabililty structure or * 0 if no further matching capability is found */ uint8_t qpci_find_capability(QPCIDevice *dev, uint8_t id, uint8_t start_addr) { uint8_t cap; uint8_t addr; if (start_addr) { addr = qpci_config_readb(dev, start_addr + PCI_CAP_LIST_NEXT); } else { addr = qpci_config_readb(dev, PCI_CAPABILITY_LIST); } do { cap = qpci_config_readb(dev, addr); if (cap != id) { addr = qpci_config_readb(dev, addr + PCI_CAP_LIST_NEXT); } } while (cap != id && addr != 0); return addr; } void qpci_msix_enable(QPCIDevice *dev) { uint8_t addr; uint16_t val; uint32_t table; uint8_t bir_table; uint8_t bir_pba; addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX, 0); g_assert_cmphex(addr, !=, 0); val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS); qpci_config_writew(dev, addr + PCI_MSIX_FLAGS, val | PCI_MSIX_FLAGS_ENABLE); table = qpci_config_readl(dev, addr + PCI_MSIX_TABLE); bir_table = table & PCI_MSIX_FLAGS_BIRMASK; dev->msix_table_bar = qpci_iomap(dev, bir_table, NULL); dev->msix_table_off = table & ~PCI_MSIX_FLAGS_BIRMASK; table = qpci_config_readl(dev, addr + PCI_MSIX_PBA); bir_pba = table & PCI_MSIX_FLAGS_BIRMASK; if (bir_pba != bir_table) { dev->msix_pba_bar = qpci_iomap(dev, bir_pba, NULL); } else { dev->msix_pba_bar = dev->msix_table_bar; } dev->msix_pba_off = table & ~PCI_MSIX_FLAGS_BIRMASK; dev->msix_enabled = true; } void qpci_msix_disable(QPCIDevice *dev) { uint8_t addr; uint16_t val; g_assert(dev->msix_enabled); addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX, 0); g_assert_cmphex(addr, !=, 0); val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS); qpci_config_writew(dev, addr + PCI_MSIX_FLAGS, val & ~PCI_MSIX_FLAGS_ENABLE); if (dev->msix_pba_bar.addr != dev->msix_table_bar.addr) { qpci_iounmap(dev, dev->msix_pba_bar); } qpci_iounmap(dev, dev->msix_table_bar); dev->msix_enabled = 0; dev->msix_table_off = 0; dev->msix_pba_off = 0; } bool qpci_msix_pending(QPCIDevice *dev, uint16_t entry) { uint32_t pba_entry; uint8_t bit_n = entry % 32; uint64_t off = (entry / 32) * PCI_MSIX_ENTRY_SIZE / 4; g_assert(dev->msix_enabled); pba_entry = qpci_io_readl(dev, dev->msix_pba_bar, dev->msix_pba_off + off); qpci_io_writel(dev, dev->msix_pba_bar, dev->msix_pba_off + off, pba_entry & ~(1 << bit_n)); return (pba_entry & (1 << bit_n)) != 0; } bool qpci_msix_masked(QPCIDevice *dev, uint16_t entry) { uint8_t addr; uint16_t val; uint64_t vector_off = dev->msix_table_off + entry * PCI_MSIX_ENTRY_SIZE; g_assert(dev->msix_enabled); addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX, 0); g_assert_cmphex(addr, !=, 0); val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS); if (val & PCI_MSIX_FLAGS_MASKALL) { return true; } else { return (qpci_io_readl(dev, dev->msix_table_bar, vector_off + PCI_MSIX_ENTRY_VECTOR_CTRL) & PCI_MSIX_ENTRY_CTRL_MASKBIT) != 0; } } uint16_t qpci_msix_table_size(QPCIDevice *dev) { uint8_t addr; uint16_t control; addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX, 0); g_assert_cmphex(addr, !=, 0); control = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS); return (control & PCI_MSIX_FLAGS_QSIZE) + 1; } uint8_t qpci_config_readb(QPCIDevice *dev, uint8_t offset) { return dev->bus->config_readb(dev->bus, dev->devfn, offset); } uint16_t qpci_config_readw(QPCIDevice *dev, uint8_t offset) { return dev->bus->config_readw(dev->bus, dev->devfn, offset); } uint32_t qpci_config_readl(QPCIDevice *dev, uint8_t offset) { return dev->bus->config_readl(dev->bus, dev->devfn, offset); } void qpci_config_writeb(QPCIDevice *dev, uint8_t offset, uint8_t value) { dev->bus->config_writeb(dev->bus, dev->devfn, offset, value); } void qpci_config_writew(QPCIDevice *dev, uint8_t offset, uint16_t value) { dev->bus->config_writew(dev->bus, dev->devfn, offset, value); } void qpci_config_writel(QPCIDevice *dev, uint8_t offset, uint32_t value) { dev->bus->config_writel(dev->bus, dev->devfn, offset, value); } uint8_t qpci_io_readb(QPCIDevice *dev, QPCIBar token, uint64_t off) { if (token.addr < QPCI_PIO_LIMIT) { return dev->bus->pio_readb(dev->bus, token.addr + off); } else { uint8_t val; dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val)); return val; } } uint16_t qpci_io_readw(QPCIDevice *dev, QPCIBar token, uint64_t off) { if (token.addr < QPCI_PIO_LIMIT) { return dev->bus->pio_readw(dev->bus, token.addr + off); } else { uint16_t val; dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val)); return le16_to_cpu(val); } } uint32_t qpci_io_readl(QPCIDevice *dev, QPCIBar token, uint64_t off) { if (token.addr < QPCI_PIO_LIMIT) { return dev->bus->pio_readl(dev->bus, token.addr + off); } else { uint32_t val; dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val)); return le32_to_cpu(val); } } uint64_t qpci_io_readq(QPCIDevice *dev, QPCIBar token, uint64_t off) { if (token.addr < QPCI_PIO_LIMIT) { return dev->bus->pio_readq(dev->bus, token.addr + off); } else { uint64_t val; dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val)); return le64_to_cpu(val); } } void qpci_io_writeb(QPCIDevice *dev, QPCIBar token, uint64_t off, uint8_t value) { if (token.addr < QPCI_PIO_LIMIT) { dev->bus->pio_writeb(dev->bus, token.addr + off, value); } else { dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value)); } } void qpci_io_writew(QPCIDevice *dev, QPCIBar token, uint64_t off, uint16_t value) { if (token.addr < QPCI_PIO_LIMIT) { dev->bus->pio_writew(dev->bus, token.addr + off, value); } else { value = cpu_to_le16(value); dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value)); } } void qpci_io_writel(QPCIDevice *dev, QPCIBar token, uint64_t off, uint32_t value) { if (token.addr < QPCI_PIO_LIMIT) { dev->bus->pio_writel(dev->bus, token.addr + off, value); } else { value = cpu_to_le32(value); dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value)); } } void qpci_io_writeq(QPCIDevice *dev, QPCIBar token, uint64_t off, uint64_t value) { if (token.addr < QPCI_PIO_LIMIT) { dev->bus->pio_writeq(dev->bus, token.addr + off, value); } else { value = cpu_to_le64(value); dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value)); } } void qpci_memread(QPCIDevice *dev, QPCIBar token, uint64_t off, void *buf, size_t len) { g_assert(token.addr >= QPCI_PIO_LIMIT); dev->bus->memread(dev->bus, token.addr + off, buf, len); } void qpci_memwrite(QPCIDevice *dev, QPCIBar token, uint64_t off, const void *buf, size_t len) { g_assert(token.addr >= QPCI_PIO_LIMIT); dev->bus->memwrite(dev->bus, token.addr + off, buf, len); } QPCIBar qpci_iomap(QPCIDevice *dev, int barno, uint64_t *sizeptr) { QPCIBus *bus = dev->bus; static const int bar_reg_map[] = { PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2, PCI_BASE_ADDRESS_3, PCI_BASE_ADDRESS_4, PCI_BASE_ADDRESS_5, }; QPCIBar bar; int bar_reg; uint32_t addr, size; uint32_t io_type; uint64_t loc; g_assert(barno >= 0 && barno <= 5); bar_reg = bar_reg_map[barno]; qpci_config_writel(dev, bar_reg, 0xFFFFFFFF); addr = qpci_config_readl(dev, bar_reg); io_type = addr & PCI_BASE_ADDRESS_SPACE; if (io_type == PCI_BASE_ADDRESS_SPACE_IO) { addr &= PCI_BASE_ADDRESS_IO_MASK; } else { addr &= PCI_BASE_ADDRESS_MEM_MASK; } g_assert(addr); /* Must have *some* size bits */ size = 1U << ctz32(addr); if (sizeptr) { *sizeptr = size; } if (io_type == PCI_BASE_ADDRESS_SPACE_IO) { loc = QEMU_ALIGN_UP(bus->pio_alloc_ptr, size); g_assert(loc >= bus->pio_alloc_ptr); g_assert(loc + size <= QPCI_PIO_LIMIT); /* Keep PIO below 64kiB */ bus->pio_alloc_ptr = loc + size; qpci_config_writel(dev, bar_reg, loc | PCI_BASE_ADDRESS_SPACE_IO); } else { loc = QEMU_ALIGN_UP(bus->mmio_alloc_ptr, size); /* Check for space */ g_assert(loc >= bus->mmio_alloc_ptr); g_assert(loc + size <= bus->mmio_limit); bus->mmio_alloc_ptr = loc + size; qpci_config_writel(dev, bar_reg, loc); } bar.addr = loc; return bar; } void qpci_iounmap(QPCIDevice *dev, QPCIBar bar) { /* FIXME */ } QPCIBar qpci_legacy_iomap(QPCIDevice *dev, uint16_t addr) { QPCIBar bar = { .addr = addr }; return bar; } void add_qpci_address(QOSGraphEdgeOptions *opts, QPCIAddress *addr) { g_assert(addr); g_assert(opts); opts->arg = addr; opts->size_arg = sizeof(QPCIAddress); }